

Kyoto University Research Infor	rmation Repository KYOTO UNIVERSITY
Title	On Numerical Semigroups of Genus 9(Algorithmic problems in algebra, languages and computation systems)
Author(s)	Komeda, Jiryo
Citation	数理解析研究所講究録 (2006), 1503: 70-75
Issue Date	2006-07
URL	http://hdl.handle.net/2433/58474
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On Numerical Semigroups of Genus 9

神奈川工科大学・基礎・教養教育センター 米田 二良 (Jiryo Komeda)
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology

§1. Introduction.

Let \mathbb{N}_0 be the additive semigroup of non-negative integers. A subsemigroup H of \mathbb{N}_0 is called a *numerical semigroup* if the complement $\mathbb{N}_0 \setminus H$ of H in \mathbb{N}_0 is a finite set. The cardinality g(H) of the set $\mathbb{N}_0 \setminus H$ is called the *genus* of H. In this paper we are interested in numerical semigroups of genus 9. For a non-singular complete irreducible curve C over an algebraically closed field k of characteristic 0 (which is called a *curve* in this paper) and its point P we set

$$H(P) = \{n \in \mathbb{N}_0 | \exists \text{ a rational function } f \text{ on } C \text{ with } (f)_{\infty} = nP\}.$$

A numerical semigroup is Weierstrass if there exists a curve C with its point P such that H(P) = H. We have the following results:

Fact 1. Every numerical semigroup of genus $g \le 8$ is Weierstrass. (See Lax [10], Komeda [4] and Komeda-Ohbuchi [8] for the case g = 4, $5 \le g \le 7$ and g = 8 respectively.)

We note that for any $g \ge 16$ there exists a non-Weierstrass numerical semigroup of genus g (see Buchweitz [1].) A numerical semigroup H is primitive if the largest positive integer not in H is less than twice the least positive integer in H. Then we know the following fact:

Fact 2. Every primitive numerical semigroup of genus 9 is Weierstrass. (See Komeda [6].)

We want to study non-primitive numerical semigroups of genus 9.

§2. Non-primitive numerical semigroups of genus 9.

An n-semigroup, i.e., a numerical semigroup in which the least positive integer is n. When n is lower, we have the following result:

Fact 3. For $1 \le n \le 5$ every n-semigroup is Weierstrass. (See Maclachlan [11], Komeda [2] and [3] for the case n = 3, n = 4 and n = 5 respectively.)

Moreover, we have the following facts for two kinds of numerical semigroups:

Fact 4. Every g-semigroup of genus g is Weierstrass. (See Pinkham [12].)

Fact 5. There is a unique non-primitive (g-1)-semigroup of genus g, which is Weierstrass. (See Komeda [5].)

Therefore, we are interested in non-primitive n-semigroups of genus 9 for n = 6, 7.

§3. Non-primitive 6-semigroups of genus 9.

Definition 1. A numerical semigroup H with $\sharp M(H)=m$ is said to be of toric type if there are a positive integer l, monomials g_j 's $(j=1,\ldots,l+m-1)$ in $k[X_1,\ldots,X_m]$ and a saturated subsemigroup S of \mathbb{Z}^l generated by b_1,\ldots,b_{l+m-1} which generates \mathbb{Z}^l as a group such that

$$\begin{array}{cccc} \operatorname{Spec} \ k[H] & \hookrightarrow & \operatorname{Spec} \ k[X_1, \dots, X_m] \\ \downarrow & \Box & \downarrow \\ \operatorname{Spec} \ k[S] & \hookrightarrow & \operatorname{Spec} \ k[Y_1, \dots, Y_{l+m-1}] \end{array}$$

where the horizontal maps are the embeddings through the generators and the right vertical map is induced by the k-algebra morphism from $k[Y_1, \ldots, Y_{l+m-1}]$ to $k[X_1, \ldots, X_m]$ sending Y_j to g_j .

Definition 2. A 2m-semigroup H is of double covering type if there is a double covering $\pi: C \longrightarrow C_0$ of curves with ramification point P such that H(P) = H.

We can show the following:

Theorem 1. Every non-primitive 6-semigroup of genus 9 is either of toric type or double covering type, hence Weierstrass. (See Komeda [9].)

§4. Non-primitive 7-semigroups of genus 9.

We know that every non-primitive 7-semigroup of genus 9 is generated by 5 or 6 elements. We list up all non-primitive 7-semigroups of genus 9.

Remark 2. A non-primitive 7-semigroup of genus 9 generated by 5 elements is one of the following:

$$\langle 7, 9, 10, 11, 13 \rangle$$
, $\langle 7, 9, 10, 11, 12 \rangle$, $\langle 7, 9, 10, 12, 13 \rangle$, $\langle 7, 8, 11, 12, 13 \rangle$.

Theorem 3. Every non-primitive 7-semigroup of genus 9 generated by 5 elements is of toric type, hence Weierstrass. (See Komeda [7])

Remark 4. A non-primitive 7-semigroup of genus 9 generated by 6 elements is one of the following:

$$\langle 7, 9, 11, 12, 13, 17 \rangle, \ \langle 7, 9, 11, 12, 13, 15 \rangle, \ \langle 7, 10, 11, 12, 13, 16 \rangle, \ \langle 7, 10, 11, 12, 13, 15 \rangle.$$

First, we shall show that $\langle 7, 9, 11, 12, 13, 17 \rangle$ is of toric type. We set $a_1 = 7$, $a_2 = 9$, $a_3 = 11$, $a_4 = 12$, $a_5 = 13$, $a_6 = 17$. Then we have a generating system of

relations among a_1 , a_2 , a_3 , a_4 , a_5 and a_6 as follows:

$$3a_1 = a_2 + a_4, 2a_2 = a_1 + a_3, 2a_3 = a_2 + a_5, 2a_4 = a_1 + a_6, 2a_5 = a_2 + a_6,$$

$$2a_6 = a_2 + a_4 + a_5, a_1 + a_5 = a_2 + a_3, a_1 + a_6 = a_3 + a_5, 2a_1 + a_3 = a_4 + a_5,$$

$$a_3 + a_6 = a_1 + a_2 + a_4, a_5 + a_6 = a_1 + a_3 + a_4, 2a_1 + a_2 = a_3 + a_4,$$

$$2a_1 + a_4 = a_2 + a_6, a_4 + a_6 = a_1 + a_2 + a_5.$$

We set

$$\mathbf{b}_i = \mathbf{e}_i \in \mathbb{Z}^6, i = 1, \dots, 6, \mathbf{b}_7 = (1, 1, -1, 0, 0, 0), \mathbf{b}_8 = (1, 0, -1, 1, 0, 0),$$

 $\mathbf{b}_9 = (1, 0, 1, -1, 1, 0), \mathbf{b}_{10} = (-1, 0, -1, 1, 0, 1), \mathbf{b}_{11} = (0, 0, 2, -1, 0, 0).$

Let S be the subsemigroup of \mathbb{Z}^6 generated by $\mathbf{b}_1, \dots, \mathbf{b}_{11}$. Then Spec k[S] is a 6-dimensional affine toric variety. We have a fiber product

Spec
$$k[H] \hookrightarrow \operatorname{Spec} k[X_1, \dots, X_6] = \mathbb{A}^6$$

 $\downarrow \qquad \qquad \qquad \qquad \downarrow^{a_{\eta}}$
Spec $k[S] \hookrightarrow \operatorname{Spec} k[Y_1, \dots, Y_{11}] = \mathbb{A}^{11}$

where $\eta: k[Y_1, \ldots, Y_{11}] \longrightarrow k[X_1, \ldots, X_6]$ is the k-algebra homomorphism sending Y_i to ξ_i for $1 \le i \le 11$ where

$$\xi_1 = X_1, \ \xi_2 = X_6, \ \xi_3 = X_3, \ \xi_4 = X_5, \ \xi_5 = X_1, \ \xi_6 = X_6,$$

$$\xi_7 = X_5, \ \xi_8 = X_2, \ \xi_9 = X_4, \ \xi_{10} = X_4, \ \xi_{11} = X_2.$$

Hence, the numerical semigroup (7, 9, 11, 12, 13, 17) is Weierstrass.

Second, we shall show that $\langle 7, 9, 11, 12, 13, 15 \rangle$ is of toric type. We set $a_1 = 7$, $a_2 = 9$, $a_3 = 11$, $a_4 = 12$, $a_5 = 13$, $a_6 = 15$. Then we have a generating system of relations among a_1 , a_2 , a_3 , a_4 , a_5 and a_6 as follows:

$$3a_1 = a_2 + a_4, \ 2a_2 = a_1 + a_3, \ 2a_3 = a_1 + a_6, \ 2a_4 = a_3 + a_5, \ 2a_5 = a_3 + a_6,$$

$$2a_6 = a_1 + a_3 + a_4, \ a_1 + a_5 = a_2 + a_3, \ a_1 + a_6 = a_2 + a_5,$$

$$2a_1 + a_3 = a_4 + a_5, \ a_3 + a_6 = 2a_1 + a_4, \ a_5 + a_6 = a_1 + a_2 + a_4,$$

$$2a_1 + a_2 = a_3 + a_4, \ 2a_1 + a_5 = a_4 + a_6, \ a_2 + a_6 = a_3 + a_5.$$

We set

$$\mathbf{b}_i = \mathbf{e}_i \in \mathbb{Z}^4, i = 1, \dots, 4, \ \mathbf{b}_5 = (1, 1, -1, 0), \ \mathbf{b}_6 = (-1, 1, 1, 0),$$

$$\mathbf{b}_7 = (-1, 0, 2, 0), \ \mathbf{b}_8 = (2, 0, -1, 1), \ \mathbf{b}_9 = (-1, 2, 0, -1).$$

Let S be the subsemigroup of \mathbb{Z}^4 generated by $\mathbf{b}_1, \dots, \mathbf{b}_9$. Then Spec k[S] is a 4-dimensional affine toric variety. We have a fiber product

$$\begin{array}{ccc} \operatorname{Spec} \ k[H] & \hookrightarrow & \operatorname{Spec} \ k[X_1, \dots, X_6] = \mathbb{A}^6 \\ \downarrow & & \square & \downarrow^{a_\eta} \\ \operatorname{Spec} \ k[S] & \hookrightarrow & \operatorname{Spec} \ k[Y_1, \dots, Y_9] = \mathbb{A}^9 \end{array}$$

where $\eta: k[Y_1, \ldots, Y_9] \longrightarrow k[X_1, \ldots, X_6]$ is the k-algebra homomorphism sending Y_i to ξ_i for $1 \le i \le 9$ where

$$\xi_1 = X_1, \, \xi_2 = X_5, \, \xi_3 = X_2, \, \xi_4 = X_1, \, \xi_5 = X_3, \, \xi_6 = X_6, \, \xi_7 = X_3, \, \xi_8 = X_4, \, \xi_9 = X_4.$$

Hence, the numerical semigroup (7,9,11,12,13,15) is Weierstrass.

Third, we consider the semigroup (7, 10, 11, 12, 13, 16). We set

$$a_1 = 7$$
, $a_2 = 10$, $a_3 = 11$, $a_4 = 12$, $a_5 = 13$, $a_6 = 16$.

Then we have a generating system of relations among a_1 , a_2 , a_3 , a_4 , a_5 and a_6 as follows:

$$3a_1 = a_2 + a_3, \ 2a_2 = a_1 + a_5, \ 2a_3 = a_2 + a_4, \ 2a_4 = a_3 + a_5,$$

$$2a_5 = a_2 + a_6, \ 2a_6 = a_1 + a_4 + a_5, \ a_1 + a_6 = a_2 + a_5, \ a_1 + a_6 = a_3 + a_4,$$

$$2a_1 + a_2 = a_3 + a_5, \ 2a_1 + a_3 = a_4 + a_5, \ 2a_1 + a_4 = a_2 + a_6,$$

$$2a_1 + a_5 = a_3 + a_6, \ a_4 + a_6 = a_1 + a_2 + a_3, \ a_5 + a_6 = a_1 + a_2 + a_4.$$

Let S be the subsemigroup of \mathbb{Z}^4 generated by

$$\mathbf{b_i} = \mathbf{e_i} \in \mathbb{Z}^4, i = 1, \dots, 4, \mathbf{b_5} = (2, -1, 0, 0), \mathbf{b_6} = (3, -2, 0, 0),$$

 $\mathbf{b_7} = (-1, 2, 1, 0), \mathbf{b_8} = (-2, 2, 1, 1), \mathbf{b_9} = (4, -3, -1, 0).$

Then Spec k[S] is a 4-dimensional non-normal variety such that we have a fiber product

Spec
$$k[H] \hookrightarrow \operatorname{Spec} k[X_1, \dots, X_6] = \mathbb{A}^6$$

 $\downarrow \qquad \qquad \downarrow^{a\eta}$
Spec $k[S] \hookrightarrow \operatorname{Spec} k[Y_1, \dots, Y_9] = \mathbb{A}^9$

Here $\eta: k[Y_1, \ldots, Y_9] \longrightarrow k[X_1, \ldots, X_6]$ is the k-algebra homomorphism sending Y_i to ξ_i for $1 \le i \le 9$ where

$$\xi_1 = X_2, \, \xi_2 = X_1, \, \xi_3 = X_1, \, \xi_4 = X_3, \, \xi_5 = X_5, \, \xi_6 = X_6, \, \xi_7 = X_3, \, \xi_8 = X_4, \, \xi_9 = X_4.$$

Lastly we investigate the semigroup (7, 10, 11, 12, 13, 15). We set

$$a_1 = 7$$
, $a_2 = 10$, $a_3 = 11$, $a_4 = 12$, $a_5 = 13$, $a_6 = 15$.

Then we have a generating system of relations among a_1 , a_2 , a_3 , a_4 , a_5 and a_6 as follows:

$$3a_1 = a_2 + a_3, \ 2a_2 = a_1 + a_5, \ 2a_3 = a_1 + a_6, \ 2a_4 = 2a_1 + a_2,$$

$$2a_5 = 2a_1 + a_4, \ 2a_6 = a_1 + a_3 + a_4, \ a_1 + a_6 = a_2 + a_4, \ a_2 + a_6 = a_4 + a_5,$$

$$2a_1 + a_2 = a_3 + a_5, \ 2a_1 + a_3 = a_4 + a_5, \ 2a_1 + a_4 = a_3 + a_6,$$

$$2a_1 + a_5 = a_4 + a_6, \ a_2 + a_5 = a_3 + a_4, \ a_5 + a_6 = a_1 + a_2 + a_3.$$

Let S be the subsemigroup of \mathbb{Z}^3 generated by

$$\mathbf{b}_i = \mathbf{e}_i \in \mathbb{Z}^3, i = 1, \dots, 3, \mathbf{b}_4 = (1, 1, -1), \mathbf{b}_5 = (1, -1, 1),$$

 $\mathbf{b}_6 = (2, -2, 1), \mathbf{b}_7 = (-2, 1, 1), \mathbf{b}_8 = (-1, 3, -1).$

Then Spec k[S] is a 3-dimensional non-normal variety where we have a fiber product

$$\begin{array}{ccc} \operatorname{Spec} \ k[H] & \hookrightarrow & \operatorname{Spec} \ k[X_1, \dots, X_6] = \mathbb{A}^6 \\ \downarrow & \square & \downarrow^{a_\eta} \\ \operatorname{Spec} \ k[S] & \hookrightarrow & \operatorname{Spec} \ k[Y_1, \dots, Y_8] = \mathbb{A}^8 \end{array}$$

Here $\eta: k[Y_1, \ldots, Y_8] \longrightarrow k[X_1, \ldots, X_6]$ is the k-algebra homomorphism sending Y_i to ξ_i for $1 \le i \le 8$ where

$$\xi_1 = X_2, \, \xi_2 = X_4, \, \xi_3 = X_6, \, \xi_4 = X_1, \, \xi_5 = X_5, \, \xi_6 = X_3, \, \xi_7 = X_1, \, \xi_8 = X_3.$$

References

- [1] R.O. Buchweitz, On Zariski's criterion for equisingularity and non-smoothable monomial curves, preprint 113, University of Hannover, 1980.
- [2] J. Komeda, On Weierstrass points whose first non-gaps are four, J. Reine Angew. Math. 341 (1983) 68–86.
- [3] J. Komeda, On the existence of Weierstrass points whose first non-gaps are five, Manuscripta Math. 76 (1992) 193–211.
- [4] J. Komeda, On the existence of Weierstrass gap sequences on curves of genus ≤ 8, J. Pure Appl. Algebra 97 (1994) 51-71.
- [5] J. Komeda, Cyclic coverings of an elliptic curve with two branch points and the gap sequences at the ramification points, Acta Arithmetica LXXXI (1997) 275-297.

- [6] J. Komeda, Existence of the primitive Weierstrass gap sequences on curves of genus 9, Bol. Soc. Bras. Mat. 30 (1999) 125-137.
- [7] J. Komeda, On 7-semigroups of genus 9 generated by 5 elements, Research Reports of Kanagawa Institute of Technology B-30 (2006) 91-100.
- [8] J. Komeda and A. Ohbuchi, Existence of the non-primitive Weierstrass gap sequences on curves of genus 8, In Preparation
- [9] J. Komeda, Existence of the non-primitive Weierstrass gap sequences on curves of genus 9, In Preparation
- [10] R. Lax, Gap sequences and moduli in genus 4, Math. Z. 175 (1980) 67-75.
- [11] C. Maclachlan, Weierstrass points on compact Riemann surfaces, J. London Math. Soc. 3 (1971) 722–724.
- [12] H. Pinkham, Deformations of algebraic varieties with \mathbb{G}_m action, Astérisque 20 (1974) 1-131.