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Abstract

Sufficient conditions for permanence of the periodic logistic system with periodic
impulsive perturbations are obtained via comparison $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{y}$ of impulsive differential
equations.
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1 Introduction

Usually, it is difficult to analyze the impulsive differential equations arisen from ap-
plications due to numerous theoretical and technical difficulties except that in some cases
the models can be rewritten as simple discrete-time mapping or difference equations when
the corresponding continuous models can be solved explicitly, $\mathrm{e}\mathrm{g}$ . $[1,2]$ . This is the reason
that numeric simulations are frequently used in applications. Recently, many investiga-
tions focus on the global dynamics of impulsive systems, see, for example [3-7].

Liu and Chen [4] studied the following logistic system with impulsive perturbations.

$x’(t)=x(t)(r(t)-a(t)x(t)),t\neq\tau_{k},$ $k\in N$, (1.1)
$\triangle x(\tau_{k})=b_{k^{X}}(\tau_{k}),$ $k\in N$ , (1.2)

where $N$ is the set of positive integers, $\tau_{0}=\mathrm{A}0<\tau_{1}<\ldots<\tau_{k}<\tau_{k+1}<\ldots,$ $\triangle x(\tau_{k})=$

$x(\tau_{k}^{+})-x(\tau_{k}),$ $r(\cdot),a(\cdot)\in PC[R, R]$ and $PC[R, R]=\{\phi$ : $Rrightarrow R,$ $\phi$ is continuous for $t\neq$

$\tau_{k},$ $\phi(\tau_{k}^{+})$ and $\phi(\tau_{k}^{-})$ exist and $\phi(\tau_{k})=\phi(\tau_{k}^{-}),$ $k\in N\}$ . Suppose that (1.1) is cv-periodic
and (1.2) is $T$-periodic, $\mathrm{i}$ . $\mathrm{e}.$ ,

$r(t+\omega)=r(t),$ $a(t+\omega)=a(t),t\in R$ (1.3)

$\mathrm{s}_{(}\cdot]_{1()_{\mathrm{A}’}^{1_{\mathrm{t}^{\lambda}b\mathrm{i}\mathrm{b}\mathrm{n}\mathrm{i}\mathrm{p}}}}$.
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and $T$ is the least positive constant such that there are $l\tau_{k}\mathrm{s}$ in the interval $(0, T)$ and

$\tau_{k+l}=\tau_{k}+T,$ $b_{k+l}=b_{k},$ $k\in N$. (1.4)

The following additional restrictions on system (1.1), (1.2) are natural for biological mean-
ings.

$r(t)>0,a(t)>0,$ $t\in R_{+}$ , (1.5)
$1+b_{\mathrm{k}}>0,$ $b_{k}\neq 0,$ $k\in N$. (1.6)

When $b_{k}>0$ , the perturbation stands for planting of the species, while $b_{k}<0$ stands
for harvesting. We suppose that conditions $(1.3)-(1.6)$ always hold in this paper. By the
basic theories of impulsive differential equations in $[8, 9]$ , system (1.1), (1.2) has a unique
solution $x(t)=x(t, x_{0})\in PC[R, R]$ for each initial value $x(\mathrm{O})=x_{0}\in R_{+}$ and further
$x(t)>0,$ $t\in R_{+}$ if $x(\mathrm{O})=x_{0}>0$ .

Let $\gamma=\mathrm{A}\omega/T$ . When $\gamma$ is rational, [4] showed that system (1.1), (1.2) has a unique
positive periodic solution, which is a global attractor of all positive solutions if the following
condition holds.

$\mu=\prod_{0<\tau_{k}<T}(\frac{1}{1+b_{k}})^{\gamma}e^{-\int_{0}r(\tau)d\tau}.<1$ . (1.7)

And if (1.7) is reversed, then the zero solution is a global attractor. When 7 is irrational,
system (1.1), (1.2) has no periodic solutions. [4] established sufficient conditions for the
positive solutions of system (1.1), (1.2) attracting each other and suggested that system
(1.1), (1.2) has a positive global attractor which is not periodic. This is quite different from
the corresponding continuous system. However, to guarantee the existence of a positive
global attractor permanence should be established. The purpose of this paper is to show
that system (1.1), (1.2) is permanent if (1.7) holds. Therefore ensure the existence result
of Conjecture 3 in [4].

2 Permanence

We first give the definition of permanence.

Definition 2.1. System (1.1), (1.2) is called permanent iff there exist positive constants
$M>\delta$, such that any positive solution $x(t)$ of system (1.1), (1.2) satisfies

$\delta\leq\lim\inf x(t)tarrow\infty\leq\lim_{tarrow}\sup_{\infty}x(t)\leq M$ .

From Definition 2.1, we can see that permanence means that each positive solutions is
ultimately bounded both above and below by some positive constants independent of the
initial values of solution. [4, Theorem 3.1] has already established the following result of
ultimate upper bound.

Lemma 2.1. System (1.1), (1.2) is uniformly ultimately bounded above, $i$ . $e.$ , there exists
a constant $M>0$ such that $x(t)\leq M$ for $t$ sufficiently large, where $x(t)$ is any solution
of system (1.1), (1.2) unth $x(\mathrm{O})=x_{0}>0$ .
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We now establish the ultimate lower bound of system (1.1), (1.2). If we express $nT,$ $n\in$

$N$ by $\omega$ , the following lemma is obviously valid.

Lemma 2.2. For any $n\in N_{f}nT$ can be expressed by $\omega$ as

$nT=q_{n}\omega+s_{n}$ ,

where $q_{n}\in N\cup\{0\},$ $s_{n}\in R_{+},$ $0\leq s_{n}<\omega$ . Moreover, $\lim_{narrow\infty}n/q_{n}=\gamma,$ $\lim_{narrow\infty}q_{n}=\infty$ .
Remark 2.1. If there enists $n_{0}\in N$ such that $s_{n_{0}}=0$ , then 7 is rational. And if $s_{n}>0$

for any $n\in N$ , then $\gamma$ is irrational.

Theorem 2.1. Suppose that (1.7) holds. Then there enists a $\delta>0$ such that

$\lim\inf x(t)tarrow\infty\geq\delta$,

where $x(t)$ is any solution of system (1.1), (1.2) with initial value $x(\mathrm{O})=x_{0}>0$ .
$P^{r\prime}.oo‘\tau’$. By (1.7), we can choose $\delta_{1}>0$ be sufficiently small such that

$\prod$ $(1+b_{k})^{\gamma}e^{\int_{0}^{\omega}(r(\tau)-a(\tau)\delta_{1})d\tau}>1$.
$0<\tau_{k}<T$

As a consequence, by Lemma 2.2, there exist $\theta>0,$ $n_{0}\in N$ such that

$\prod_{0<\tau_{k}<T}(1+b_{k})^{\frac{n}{q_{\hslash}}}e^{\int_{0}^{\omega}(r(\tau)-a(\tau)\delta_{1})d\tau}>1+\theta$
, (2.1)

for $n\geq n_{0}$ . Denote

$h= \min\{0,r(\tau)-a(\tau)\delta_{1},\tau\in[0,\omega]\},$ $H= \max\{0, r(\tau)-a(\tau)\delta_{1},\tau\in[0,\omega]\}$.
Thus $h\leq 0\leq H$ . We will prove the result as the following two steps. We may suppose
that $x_{0}\leq\delta_{1}$ since step 1 can be skipped if $x_{0}>\delta_{1}$ .
Step 1. There exists a $t_{0}>0$ such that $x(t_{0})>\delta_{1}$ .

Suppose for the contrary that

$x(t)\leq\delta_{1}$ ,

for all $t\geq 0$ . Then by (1.1), we have

$x’(t)\geq x(t)(r(t)-a(t)\delta_{1}),t\geq 0,$ $t\neq\tau_{k},$ $k\in N$.
By the comparison result of scalar impulsive differential equations $[8, 9]$ , Lemma 2.2 and
(2.1), we find that

$x(nT)$ $\geq$
$x0 \prod_{0<\tau_{k}<nT}(1+b_{k})e^{\int_{0}^{nT}(r(\tau)-a(\tau)\delta_{1})d\tau}$

$=$ $x0 \prod_{0<\tau_{k}<nT}(1+b_{k})e^{\int_{0}^{qn^{\omega}}(r(\tau)-a(\tau)\delta_{1})d\tau}e^{\int_{qn}^{q_{n}\cdot+\iota_{n}}(r(\tau)-a(\tau)\delta_{1})d\tau}$
.

$=$
$x_{0} \prod_{0<\tau_{k}<T}(1+b_{k})^{nq_{n}\int_{0}^{\omega}(r(\tau)-a(\tau)\delta_{1})d\tau\int_{0}^{*n}(r(\tau)-a(\tau)\delta_{1})d\tau}ee$

$=$
$x_{0}( \prod_{0<\tau_{k}<T}(1+b_{k})^{\frac{n}{qn}}e^{\int_{0}^{\omega}(r(\tau)-a(\tau)\delta_{1})d\tau})^{q_{\mathfrak{n}}}e^{\int_{0}^{\epsilon_{\hslash}}(r(\tau)-a(\tau)\delta_{1})d\tau}$

$\geq$ $x_{0}e^{h\omega}(1+\theta)^{q_{n}}$ ,
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for $n\geq n_{0}$ . Hence $x(nT)arrow$ oo as $narrow\infty$ , which is a contradiction. Thus there exists a
$t_{0}>0$ such that $x(t_{0})>\delta_{1}$ .
Step 2. Establish a positive ultimate lower bound $\delta\leq\delta_{1}$ .

Let $t_{0}>0$ such that $x(t_{0})>\delta_{1}$ . If $x(t)\geq\delta_{1}$ for all $t\geq t_{0}$ , then our aim is obtained
for any positive constant $\delta\leq\delta_{1}$ . We shall consider those solutions which leave region
$\{x|x\leq\delta_{1}\}$ and reenter it. Let $t_{1}= \inf\{t>t_{0}|x(t)\leq\delta_{1}\}$ . Then $x(t)>\delta_{1},$ $t\in[t_{0}, t_{1})$

and $x(t_{1})\geq\delta_{1}$ . Suppose that $t_{1}\in(n_{1}T, (n_{1}+1)T]$ for some $n_{1}\in N\cup\{0\}$ . Let $b=$

$\min\{\prod_{t\leq\tau_{k}\leq T}(1+b_{k})|t\in[0, T]\}$ . By (1.7), as (2.1), we can choose an $m\in N,$ $m>\gamma$

such that

$\prod_{0<\tau_{k}<T}(1+b_{k})^{\frac{\gamma}{1+\gamma/m}}e^{\int_{0}^{\omega}(r(\tau)-a(\tau)\delta_{1})d\tau}>1+\theta$

and

$be^{h(\omega+T)-Hv}‘(1+\theta)^{\frac{m}{\gamma}-1}>1$ .

Denote $n_{2}=(n_{1}+1+m)$ . By Lemma 2.2, we have

$\frac{n_{2}-n_{1}-1}{q_{n_{2}}-q_{n_{1}+1}}=\frac{m\omega}{mT+s_{n_{1}+1}-s_{n_{2}}}\geq\frac{m\omega}{mT+\omega}=\frac{\gamma}{1+\gamma/m}$

and

$q_{n_{2}}-q_{n_{1}+1}= \frac{1}{\omega}((n_{2}-n_{1}-1)T+s_{n_{1}+1}-s_{n_{2}})\geq\frac{1}{\omega}(mT-\omega)=\frac{m}{\gamma}-1$ .

We claim that there must exist $t_{2}\in(t_{1}, n_{2}T]$ such that $x(t_{2})>\delta_{1}$ . Otherwise, $x(t)\leq\delta_{1}$

for $t\in(t_{1}, n_{2}T]$ . Thus by

$x’(t)\geq x(t\rangle(r(t)-a(t)\delta_{1}),t\in(t_{1},n_{2}T],$ $t\neq\tau_{k},$ $k\in N$ ,

we have

$x(n_{2}T)$ $\geq$ $x(t_{1}) \prod_{t_{1}\leq\tau_{\mathrm{k}}<n_{2}T}(1+b_{k})e^{\int_{t_{1}}^{n_{2^{T}}}(r(\tau)-a(\tau)\delta_{1})d\tau}$

$=$

$x(t_{1}) \prod_{c_{\iota\leq}}(1+b_{k}).\prod(1+b_{k})ee^{\int_{q_{n_{1^{+1}}}}^{qn_{2}}.(r(\tau)-a(\tau)\delta_{1})d\tau}\int_{t_{1}}^{(n_{1}+1)\tau_{(r(\tau)-a(\tau)\delta_{1})d\tau}^{\tau_{k}\leq(n_{1}+1)T(n_{1}+1)T<\tau_{k}<n_{2}T}}$

$e^{-\int_{q_{n_{1^{+1^{u}}}}}^{ln_{1}+\iota^{\omega+\epsilon_{n_{1^{+1}}}}}(r(\tau)-a(\tau)\delta_{1})d\tau_{e}\int_{qn_{2^{\omega}}}^{qn_{2^{\omega+n_{n}}2(r(\tau)-a(\tau)\delta_{1})d\tau}}}$

$\geq$ $\delta_{1}be^{h(\omega+T)-Hv}‘(\prod_{0<\tau_{k}<T}(1+b_{k})^{q_{n_{2}}}.)^{q_{n_{2}}-q_{n_{1}}+1}\infty_{\iota e^{\int_{0}(\mathrm{r}(\tau)-a(\tau)\delta_{1})d\tau}}n=_{q_{\mathfrak{n}+1}}n-1$

$\geq$
$\delta_{1}be^{h(\omega+T)-H\omega}(\prod_{0<\tau_{k}<T}(1+b_{k})^{\overline{1+}_{\mathrm{Y}\overline{/m}}^{1}}e^{\int_{0}(f(\tau)-a(r)\delta_{1})d\tau}.)^{q_{\hslash}}2^{-q_{n_{1^{+1}}}}$

$\geq$ $\delta_{1}be^{h(- T)-Hw}((d\dashv 1+\theta)^{q_{n_{2}}-q_{n_{1^{+1}}}}$

$\geq$
$\delta_{1}be^{h(\omega+T)-H\omega}(1+\theta)^{\frac{m}{\gamma}-1}$

$>$ $\delta_{1}$ ,

which is a contradiction. Thus there exists $t_{2}\in(t_{1}, n_{2}T]$ such that $x(t_{2})>\delta_{1}$ . Let
$t_{3}= \inf\{t>t_{1}|x(t)>\delta_{1}\}$ . Then $x(t)\leq\delta_{1}$ for $t\in(t_{1},t_{3}]$ .
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Let $b_{1}= \min\{\prod_{t_{1}\leq\tau_{k}<t_{2}}(1+b_{k})|0<t_{1}<t_{2}\leq(m+1)T\}$ and $\delta=\min\{\delta_{1}, \delta_{1}b_{1}e^{h(m+1)T}\}$ .
Obviously, $\delta$ is independent of any positive solution. Note that $x(t_{1})\geq\delta_{1}$ , we have for
any $t\in(t_{1},t_{3}]$ ,

$x’(t)\geq x(t)(r(t)-a(t)\delta_{1}),$ $t\neq\tau_{k},$ $k\in N$

and

$x(t)$ $\geq$
$x(t_{1}) \prod_{t_{1}<\tau_{k}<C}(1+b_{k})e^{\int_{t_{1}}^{t}(r(\tau)-a(\tau)\delta_{1})d\tau}$

$\geq$
$\delta_{1}b_{1e^{h(\overline{t}-t_{1})}}$

$\geq$ $\delta_{1}b_{1e^{h(m+1)T}}$

$\geq$ $\delta$.
Since $x(t_{3}^{+})>\delta_{1}$ , the same argument can be continued. We can conclude that $x(t)\geq\delta$

for all $t\geq t_{0}$ . The proof is complete. $\square$

Lemma 2.1 and Theorem 2.1 indicate that system (1.1), (1.2) is permanent with con-
ditions $(1.3)-(1.7)$ . Lemma 2.1 is proved in [4] by the method of Liapunov function, which
relies on condition (1.5). This condition means the birth rate is always larger than death
rate and the density dependance always exists. It maybe unreasonable for some species
living in a periodic changing environment, for example, birth may take place seasonally.
From the proof of Theorem 2.1, we can see clearly that only $a(t)\geq 0$ is necessary. Suppose
that

$a(t)$ liir $0,$ $\int_{0}^{v}‘ a(\tau)d\tau>0$. (2.2)

Then we can choose $M_{1}>0$ be sufficient large such that

$\mu_{1}=\prod_{0<\tau_{k}<T}(1+b_{k})^{\gamma}e^{\int_{0}(r(\tau)-a(\tau\rangle M_{1})d\tau}<1$ . (2.3)

Using (2.3), the ultimate upper bound can be established by the method similar to the
proof of Theorem 2.1. Hence we have the following theorem. Its proof will be omitted.

Theorem 2.2. Suppose that (1.3), (1.4), (1.6) and (2.2) hold. Then there exists a constant
$M>0$ such that $x(t)\leq M$ for $t$ sufficiently large, where $x(t)$ is any solution of system
(1.1), (1.2) with $x(\mathrm{O})=x_{0}>0$ .

Theorems 2.1 and 2.2 establish the permanence of system (1.1), (1.2).

Theorem 2.3. Suppose that (1.3), (1.4), (1.6),(1.7) and (2.2) hold. Then system (1.1),
(1.2) is permanent.

Remark 2.2. Condition (1.5) is replaced by (2.2), which only contains restrictions for
$a(t)$ . In fact, condition (1.7) already has restrictions for $r(t)$ . Note that it is unnecessary
that the intrinsic rate $r(t)$ be always nonnegative here, which is reasonable for species with
seasonal birth.
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3 Conclusion remark

When $\gamma$ is rational, [4] proved that if (1.7) holds, system (1.1), (1.2) has a unique
positive global attractor which is a positive periodic solution. The system is then obvi-
ously permanent. In this paper, we proved that with this condition, system (1.1), (1.2)
is permanent wether $\gamma$ is rational or not. Our results ensure the existence of positive
global attractor in [4, Conjecture 3]. With condition (1.7), [4] proved that the positive
solutions of system (1.1), (1.2) attracts each other in the sense of lower limit. Thus the
permanence result in this paper also strongly suggests that the global attractivity results
in [4, Conjectures 1 and 2] are valid. Since the positive global attractor of system (1.1),
(1.2) is not periodic, which is different from the corresponding continuous system, it is
interesting to study further its structure.
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