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Simultaneous linearization of hyperbolic and
parabolic fixed points

Tetsuo Ueda (LH #H4)
Kyoto University

1 Statement of the result

This note is a summary of the preprint [8]. We will show that the Fatou coordinates
(the solution to Abel equation) for a parabolic fixed point of holomorphic map of one
variable can be obtained as a modified limit of the solution to Schroder equation for
the perturbed hyperbolic maps. (An alternative proof is given by Kawahira [4].)

Let {f,}- be a family, depending on the parameter 7, of holomorphic maps of the
form

fr(z)=rz+1+a—lii)+9—';—(;—)+---

defined in a neighborhood of 0o of the Riemann sphere C.
For each 7 with |7| > 1, we have a unique analytic function x,(2) in a neighbor-
hood of oo satisfing the Schroder equation

x-(fr(2)) = TX.,-(Z)

and normalized so that
' lim ——-XT(Z) =1.

z—00 2

We will show that, when 7 tends to 1 non-tangentially within the domain |7| > 1,
the sequence

Xe(2) = = — ax(7)log(r — 1)

converges to a solution to the Abel equation ¢(2) ¢(f1(2)) = ¢(z) + 1, on a half plane
{Re z > R} with sufficiently large R.



2 A family of linear maps
We begin with studying the family {¢,}. of linear maps
b(z)=72+1 )

on the Riemann sphere C with a fixed point at oo.

We will investigate the uniformity, with respect to the parameter 7, of convergence
of the sequence of the iterates { f"'}22,. Here, the parameter will be restricted in the
closed sector

To={r€C|Rer—12|r—1|cosa},

where a is a real number with 0 < o < 7/2.

To measure the rate of convergence to co, we define a function N : C x T, —
{(00,1)} = RU {oo} as follows.

1 1 -~
NT(Z)_Z—I—-T —-.1_7_ for (z,7) € C x (T — {1});
Ni(z) = sup Re(e”2) for z € C.
10l<ex
We will not define V; (00).

As is easily shown, N, (z) is upper semi-continuous and

Ni(z) = IE}? sulp N.(2).

Further the inequality
|N-r(z) - N‘r(w)l < IZ - 'w‘ zZ,we C,T € Ta

and, in particular,
N.(2)<|z|, z€eC,7r€T,.
hold.
For a real number R, let
Va(R) = {(2,7) € C x Ta — {(o0,1)} | N-(2) > R}.
We note that V,(R) is not open. Slices of V,(R) by T = const. are open sets given by

V,(R)={ze€C|N.(2) >R} (r#1)
Vi(R) = {z € C| My(2) > R} = | {Re(¢*2) > 0}.

16l



Lemma 2.1 For (2,7) € C x Ty — {(00, 1)}, we have
N:(£-(2)) 2 |7|N,(2) + cosa.
If N,(z) > 0, we have N, (£.(z)) > N,(z) + cosa. So we have the following.

Proposition 2.2 The sequence {{7(2)}, converges to oo as n — oo uniformly on the
set Vo (0).

3 Families of maps with attracting/parabolic fixed points
— Domain of convergence

Now we consider a family of holomorphic maps f, : U — C of the form

fT(z)=Tz+1+£1—£L)+-g%+---. )

defined on a neighborhood
U={zeC|R<|z| < oo}

of oo € C. We suppose that f depends holomorphically on 7 € A (1) = {r € C |
|7 — 1| < p}. Let
Tt
As in the previous section, we choose and fix a so that 0 < a < 7/2 and let

6 = lcosa. By shrinking the neighbohoods U and W, we assume that there is a
constant K; such

A(z) =20 | &)

4@ <Bos 3

|2|

for (z,7) € U x W. Further we assume that f,(2) is injective in z for every 7 € A,(1)
Since f-(z) are approximated by linear maps £, (2), we have a result concerning
the uniformity of convergence of { f*(2)}. Let T, , = T, N A (1).

Lemma3.1 For(z,7) € U x T,, we have
N, (£:(2)) 2 7N (2) + 6.
Now let V =V, ,(R) = {(2,7) € Vo(R) | T € Ty}

Proposition 3.2  If(2,7) € V, then (f-(2),7) € V. The sequence {f(z)}, con-
verges uniformly on 'V to oo as n — oo.



4 Schroder-Abel equation — special case

Here we consider the special case where the coefficient a;(7) in (2) vanishes identi-
cally.

Theorem 4.1 There exists a function o, (z) continuous on 'V such that
(i) -(2) satisfies the functional equation
pr(fr(2)) = 79 (2) + 1 @
(ii) ¢-(2) is injective in the variable z for each parameter T € Ta,r.
(iii) lim,_o ,(2)/2 = las z — oo, when |T| > 1.
In fact ¢, (2) is given by

n

or(2) = lim {;I;f"(Z) —Z%} ®

k=1

In the case where a;(7) does not identically vanish, the expression in (5) is not
convergent. So we have to modify (5) in order to yield convergence. For this purpose,
we will introduce a function satisfying a difference equation in the next section.

5 Solution to a difference equation

We consider the difference equation
1
hr(€r(2)) = Thr(2) = > + Cr. (6)

where £,(2) = 7z + 1 with |r| > 1 or 7 = 1; and C; is a constant depending on 7,
which will be given later.
A solution to this equation is given by

o0

1 1 1 1
M= L {5 G (7)

T

=1

Proposition 5.1 The function h.(2) is continuous on V,(0).

For a fixed 7 with |7| > 1, the function h.(z) is meromorphic on C except the
essential singularity at 1/(1—7), and has polesat (1—-77")/(1-7), (n=0,1,2,...).
This function h.(z) is holomorphic at co and we write

o 1

H, = hy(o0) = ;;,.T,Q;T:(F) ®



For 7 = 1, we have £*(2) = z + n and

(e8]

no ==+ o)

n=1

This function is meromorphic on C and has poles at 0, —1, -2, . ... We note that

hl(z)=-1;—'(%)+v

where I'(z) denotes the gamma function and  denotes the Euler constant

LS
v=Jim (3 g ~losn).
Now we study the dependence of h..(z) on the parameter 7.
Corollary 1 The constat C, is a continuous function of T € T.,.
The function h,(z) satisfies the equation () with
Cr=(1-1)H,. ®

for |7| > 1 and with C; = 0 for 7 = 1. We have C, — C; = 0 (1 — 1), since h.,.(2)
is continuous.

Proposition 5.2 For any € > 0, there is a constant M such that

ke (2)] < on Va(e)

M
N.(z)

6 Behavior of H,
Now we look at the behavior of the function H, defined by (), when 7 — 1 within the
sector T'. It is clear from the expression () that H, is unbounded, while C, = (1-7)H,
tends to 0 by the corollary to Proposition 2.4, Here we give a more precise description
of its behavior.
Proposition 6.1 We have

Hy=—-log(t-1)+~v-1+40(1)

as T — 1 within the sector T' Here vy denotes the Euler constant .



To show this, we write A = 1/7. We have
Hyjp=(1-=A)L() -

Here L()) denotes the Lambert series defined by

L) =Y+ i"/\n.

This series L()) defines a holomorphic function on |A\| < 1, and is developped into
the power series

L) = S dm)A™ = A+ 2X2 + 2)% +3X +

n=1

where d(n) denotes the number of divisors of n. Let

L(’\) Z D ))‘n

with
D(n) =d(1) +--- +d(n).

The asymptotic behavior of D(n) is given by a theorem of Dirichlet (see Apostol
[1], Chandrasekharan [2]) :

D(n) =nlogn + (2y = 1)n+ O(v/n) (n— o).

Using this estimate, we have

LO) _$% piope o 280N | D gy

n=1

where P(A\) = 3°2° | p,A". From the estimate of p, we have
P()) =o((1=X)"%)  as X — 1 non-tangentially
Hence it follows that

H,=—-log(t—1)+v—-1+40(r—1)



7 Schrider-Abel equation — general case
Now we treat the general case where a;(7) does hot necessarily vanish, Let
B, =1-aT)C;
we have the following result corresponding to Theorem ?

Theorem 7.1 There exists a function ., (z) continuous on V such that
(i) . (2) satisfies the functional equation

@r(f+(2)) = T79.(2) + Br; (10)

(ii) ¢.(z) is injective in the variable z for each parameter T € T, ,.
(ii)) lim, .0 9, (2)/2 = 1 as z — oo, when |7] > 1.

To define ¢.(z), we let
@, (2) = z — a1 (1) h(2).

Then }
&, (fr(2)) = 7®(2) + Br + A(z).

From this we can define
( ) = Ii —1 d ( )) B Y —"1 (11)
ez im T( fr(z)) - B, kz 1 =

8 Relation with the Schroder equation
When |7| > 1, the Schréder equation
X+ (fr(2)) = Tx-(2).
has a unique solution x,(2) of the form
X~ (2) =z+00+%+---
in a neighbouhood of oo.

Theorem 8.1 Fort € T,, — {1} we have

B,
T—-1

pr(2) = x-(2) —



Proof We can easily verify that ¢(z) + B, /(7 — 1) satisfies the Schroder equation.

The assertion follows from the uniqueness of the solution. O
Now recall that
B.,- _ 1- 0101-
r—1  r-1
= 1 _ a H.
=1 14dr

1
= +aylog(r = 1) + ax(1 =) +o(1)

Using this fact the theorem is reformulated as follows:

Theorem 8.2 Let
1
p(z) = x(2) = ——7 —alog(r - 1)

Jor T € T — {1}. Then ¢(2) converges to a solution to the Abel equation.
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