

| Ryoto University nesearch midmation nepository |                                                                                                              |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Title                                          | Simultaneous linearization of hyperbolic and parabolic fixed points(Complex Dynamics and its Related Fields) |
| Author(s)                                      | Ueda, Tetsuo                                                                                                 |
| Citation                                       | 数理解析研究所講究録 (2006), 1494: 1-8                                                                                 |
| Issue Date                                     | 2006-05                                                                                                      |
| URL                                            | http://hdl.handle.net/2433/58304                                                                             |
| Right                                          |                                                                                                              |
| Туре                                           | Departmental Bulletin Paper                                                                                  |
| Textversion                                    | publisher                                                                                                    |

# Simultaneous linearization of hyperbolic and parabolic fixed points

Tetsuo Ueda (上田 哲生) Kyoto University

#### 1 Statement of the result

This note is a summary of the preprint [8]. We will show that the Fatou coordinates (the solution to Abel equation) for a parabolic fixed point of holomorphic map of one variable can be obtained as a modified limit of the solution to Schröder equation for the perturbed hyperbolic maps. (An alternative proof is given by Kawahira [4].)

Let  $\{f_{\tau}\}_{\tau}$  be a family, depending on the parameter  $\tau$ , of holomorphic maps of the form

$$f_{\tau}(z) = \tau z + 1 + \frac{a_1(\tau)}{z} + \frac{a_2(\tau)}{z^2} + \cdots$$

defined in a neighborhood of  $\infty$  of the Riemann sphere  $\widehat{\mathbb{C}}$ .

For each  $\tau$  with  $|\tau| > 1$ , we have a unique analytic function  $\chi_{\tau}(z)$  in a neighborhood of  $\infty$  satisfing the Schröder equation

$$\chi_{\tau}(f_{\tau}(z)) = \tau \chi_{\tau}(z)$$

and normalized so that

$$\lim_{z \to \infty} \frac{\chi_{\tau}(z)}{z} = 1.$$

We will show that, when  $\tau$  tends to 1 non-tangentially within the domain  $|\tau| > 1$ , the sequence

$$\chi_{\tau}(z) - \frac{1}{\tau-1} - a_1(\tau)\log(\tau-1)$$

converges to a solution to the Abel equation  $\varphi(z)$   $\varphi(f_1(z)) = \varphi(z) + 1$ , on a half plane  $\{\text{Re } z > R\}$  with sufficiently large R.

#### 2 A family of linear maps

We begin with studying the family  $\{\ell_{\tau}\}_{\tau}$  of linear maps

$$\ell_{\tau}(z) = \tau z + 1 \tag{1}$$

on the Riemann sphere  $\widehat{\mathbb{C}}$  with a fixed point at  $\infty$ .

We will investigate the uniformity, with respect to the parameter  $\tau$ , of convergence of the sequence of the iterates  $\{f_{\tau}^n\}_{n=1}^{\infty}$ . Here, the parameter will be restricted in the closed sector

$$T_{\alpha} = \{ \tau \in \mathbb{C} \mid \operatorname{Re} \tau - 1 \ge |\tau - 1| \cos \alpha \},\$$

where  $\alpha$  is a real number with  $0 < \alpha < \pi/2$ .

To measure the rate of convergence to  $\infty$ , we define a function  $N: \widehat{\mathbb{C}} \times T_{\alpha} - \{(\infty, 1)\} \to \mathbb{R} \cup \{\infty\}$  as follows.

$$N_{\tau}(z) = \left| z - \frac{1}{1 - \tau} \right| - \left| \frac{1}{1 - \tau} \right|$$
 for  $(z, \tau) \in \widehat{\mathbb{C}} \times (T_{\alpha} - \{1\});$   
 $N_{1}(z) = \sup_{|\theta| \le \alpha} \operatorname{Re}(e^{i\theta}z)$  for  $z \in \mathbb{C}.$ 

We will not define  $N_1(\infty)$ .

As is easily shown,  $N_{\tau}(z)$  is upper semi-continuous and

$$N_1(z) = \limsup_{T \ni au o 1} N_{ au}(z).$$

Further the inequality

$$|N_{\tau}(z) - N_{\tau}(w)| \le |z - w| \quad z, w \in \mathbb{C}, \tau \in T_{\alpha}$$

and, in particular,

$$N_{\tau}(z) \leq |z|, \quad z \in \mathbb{C}, \tau \in T_{\alpha}.$$

hold.

For a real number R, let

$$\mathcal{V}_{\alpha}(R) = \{(z, \tau) \in \widehat{\mathbb{C}} \times T_{\alpha} - \{(\infty, 1)\} \mid N_{\tau}(z) > R\}.$$

We note that  $\mathcal{V}_{\alpha}(R)$  is not open. Slices of  $\mathcal{V}_{\alpha}(R)$  by  $\tau = \text{const.}$  are open sets given by

$$\begin{split} V_{\tau}(R) &= \{z \in \widehat{\mathbb{C}} \mid N_{\tau}(z) > R\} \qquad (\tau \neq 1); \\ V_{1}(R) &= \{z \in \mathbb{C} \mid N_{1}(z) > R\} = \bigcup_{|\theta| \leq \alpha} \{\operatorname{Re}(e^{i\theta}z) > 0\}. \end{split}$$

**Lemma 2.1** For  $(z, \tau) \in \widehat{\mathbb{C}} \times T_{\alpha} - \{(\infty, 1)\}$ , we have

$$N_{\tau}(\ell_{\tau}(z)) \ge |\tau| N_{\tau}(z) + \cos \alpha.$$

If  $N_{\tau}(z) > 0$ , we have  $N_{\tau}(\ell_{\tau}(z)) \geq N_{\tau}(z) + \cos \alpha$ . So we have the following.

**Proposition 2.2** The sequence  $\{\ell_{\tau}^n(z)\}_n$  converges to  $\infty$  as  $n \to \infty$  uniformly on the set  $V_{\alpha}(0)$ .

# Families of maps with attracting/parabolic fixed points Domain of convergence

Now we consider a family of holomorphic maps  $f_{\tau}: U \to \widehat{\mathbb{C}}$  of the form

$$f_{\tau}(z) = \tau z + 1 + \frac{a_1(\tau)}{z} + \frac{a_2(\tau)}{z^2} + \cdots$$
 (2)

defined on a neighborhood

$$U = \{ z \in \widehat{\mathbb{C}} \mid R < |z| \le \infty \}$$

of  $\infty \in \widehat{\mathbb{C}}$ . We suppose that f depends holomorphically on  $\tau \in \Delta_{\rho}(1) = \{\tau \in \mathbb{C} \mid |\tau - 1| < \rho\}$ . Let

$$A_{\tau}(z) = \frac{a_1(\tau)}{z} + \frac{a_2(\tau)}{z^2} + \cdots$$

As in the previous section, we choose and fix  $\alpha$  so that  $0 < \alpha < \pi/2$  and let  $\delta = \frac{1}{2}\cos\alpha$ . By shrinking the neighbohoods U and W, we assume that there is a constant  $K_1$  such

$$|A_{\tau}(z)| < \frac{K_1}{|z|} < \delta \tag{3}$$

for  $(z,\tau)\in U\times W$ . Further we assume that  $f_{\tau}(z)$  is injective in z for every  $\tau\in\Delta_{\rho}(1)$ Since  $f_{\tau}(z)$  are approximated by linear maps  $\ell_{\tau}(z)$ , we have a result concerning the uniformity of convergence of  $\{f_{\tau}^n(z)\}$ . Let  $T_{\alpha,\rho}=T_{\alpha}\cap\Delta_{\rho}(1)$ .

**Lemma 3.1** For  $(z, \tau) \in U \times T_{\alpha, \rho}$  we have

$$N_{\tau}(f_{\tau}(z)) \geq |\tau| N_{\tau}(z) + \delta.$$

Now let  $\mathcal{V} = \mathcal{V}_{\alpha,\rho}(R) = \{(z,\tau) \in \mathcal{V}_{\alpha}(R) \mid \tau \in T_{\alpha,\rho}\}.$ 

**Proposition 3.2** If  $(z, \tau) \in \mathcal{V}$ , then  $(f_{\tau}(z), \tau) \in \mathcal{V}$ . The sequence  $\{f_{\tau}^{n}(z)\}_{n}$  converges uniformly on  $\mathcal{V}$  to  $\infty$  as  $n \to \infty$ .

### 4 Schröder-Abel equation — special case

Here we consider the special case where the coefficient  $a_1(\tau)$  in (2) vanishes identically.

**Theorem 4.1** There exists a function  $\varphi_{\tau}(z)$  continuous on V such that

(i)  $\varphi_{\tau}(z)$  satisfies the functional equation

$$\varphi_{\tau}(f_{\tau}(z)) = \tau \varphi_{\tau}(z) + 1; \tag{4}$$

(ii)  $\varphi_{\tau}(z)$  is injective in the variable z for each parameter  $\tau \in T_{\alpha,\tau}$ .

(iii) 
$$\lim_{z\to\infty} \varphi_{\tau}(z)/z = 1$$
 as  $z\to\infty$ , when  $|\tau|>1$ .

In fact  $\varphi_{\tau}(z)$  is given by

$$\varphi_{\tau}(z) = \lim_{n \to \infty} \left\{ \frac{1}{\tau^n} f^n(z) - \sum_{k=1}^n \frac{1}{\tau^k} \right\}$$
 (5)

In the case where  $a_1(\tau)$  does not identically vanish, the expression in (5) is not convergent. So we have to modify (5) in order to yield convergence. For this purpose, we will introduce a function satisfying a difference equation in the next section.

#### 5 Solution to a difference equation

We consider the difference equation

$$h_{\tau}(\ell_{\tau}(z)) - \tau h_{\tau}(z) = \frac{1}{z} + C_{\tau}. \tag{6}$$

where  $\ell_{\tau}(z) = \tau z + 1$  with  $|\tau| > 1$  or  $\tau = 1$ ; and  $C_{\tau}$  is a constant depending on  $\tau$ , which will be given later.

A solution to this equation is given by

$$h_{\tau}(z) = -\frac{1}{\tau z} + \sum_{n=1}^{\infty} \frac{1}{\tau^{n+1}} \left\{ \frac{1}{\ell_{\tau}^{n}(0)} - \frac{1}{\ell_{\tau}^{n}(z)} \right\}. \tag{7}$$

**Proposition 5.1** The function  $h_{\tau}(z)$  is continuous on  $\mathcal{V}_{\alpha}(0)$ .

For a fixed  $\tau$  with  $|\tau| > 1$ , the function  $h_{\tau}(z)$  is meromorphic on  $\widehat{\mathbb{C}}$  except the essential singularity at  $1/(1-\tau)$ , and has poles at  $(1-\tau^{-n})/(1-\tau)$ ,  $(n=0,1,2,\ldots)$ . This function  $h_{\tau}(z)$  is holomorphic at  $\infty$  and we write

$$H_{\tau} = h_{\tau}(\infty) = \sum_{n=1}^{\infty} \frac{1}{\tau^{n+1} \ell_{\tau}^{n}(0)}.$$
 (8)

For  $\tau = 1$ , we have  $\ell^n(z) = z + n$  and

$$h_1(z) = -\frac{1}{z} + \sum_{n=1}^{\infty} \left\{ \frac{1}{n} - \frac{1}{z+n} \right\}.$$

This function is meromorphic on  $\mathbb{C}$  and has poles at  $0, -1, -2, \ldots$  We note that

$$h_1(z) = rac{\Gamma'(z)}{\Gamma(z)} + \gamma$$

where  $\Gamma(z)$  denotes the gamma function and  $\gamma$  denotes the Euler constant

$$\gamma = \lim_{n \to \infty} \Big( \sum_{k=1}^{n} \frac{1}{k} - \log n \Big).$$

Now we study the dependence of  $h_{\tau}(z)$  on the parameter  $\tau$ .

**Corollary 1** The constat  $C_{\tau}$  is a continuous function of  $\tau \in T_{\alpha}$ .

The function  $h_{\tau}(z)$  satisfies the equation () with

$$C_{\tau} = (1 - \tau)H_{\tau}.\tag{9}$$

for  $|\tau| > 1$  and with  $C_1 = 0$  for  $\tau = 1$ . We have  $C_\tau \to C_1 = 0$   $(\tau \to 1)$ , since  $h_\tau(z)$  is continuous.

**Proposition 5.2** For any  $\varepsilon > 0$ , there is a constant M such that

$$|h'_{ au}(z)| \leq rac{M}{N_{ au}(z)} \quad on \ \mathcal{V}_{lpha}(arepsilon)$$

#### 6 Behavior of $H_{\tau}$

Now we look at the behavior of the function  $H_{\tau}$  defined by (), when  $\tau \to 1$  within the sector T. It is clear from the expression () that  $H_{\tau}$  is unbounded, while  $C_{\tau} = (1-\tau)H_{\tau}$  tends to 0 by the corollary to Proposition 2.4. Here we give a more precise description of its behavior.

Proposition 6.1 We have

$$H_{\tau} = -\log(\tau - 1) + \gamma - 1 + o(1)$$

as au o 1 within the sector T Here  $\gamma$  denotes the Euler constant.

To show this, we write  $\lambda = 1/\tau$ . We have

$$H_{1/\lambda} = (1 - \lambda)L(\lambda) - \lambda.$$

Here  $L(\lambda)$  denotes the Lambert series defined by

$$L(\lambda) = \sum_{n=1}^{\infty} \frac{\lambda^n}{1 - \lambda^n}.$$

This series  $L(\lambda)$  defines a holomorphic function on  $|\lambda| < 1$ , and is developped into the power series

$$L(\lambda) = \sum_{n=1}^{\infty} d(n)\lambda^n = \lambda + 2\lambda^2 + 2\lambda^3 + 3\lambda^4 + \cdots,$$

where d(n) denotes the number of divisors of n. Let

$$\frac{L(\lambda)}{1-\lambda} = \sum_{n=1}^{\infty} D(n)\lambda^n$$

with

$$D(n) = d(1) + \cdots + d(n).$$

The asymptotic behavior of D(n) is given by a theorem of Dirichlet (see Apostol [1], Chandrasekharan [2]):

$$D(n) = n \log n + (2\gamma - 1)n + O(\sqrt{n}) \quad (n \to \infty).$$

Using this estimate, we have

$$\frac{L(\lambda)}{1-\lambda} = \sum_{n=1}^{\infty} D(n)\lambda^n = -\frac{\lambda \log(1-\lambda)}{(1-\lambda)^2} + \frac{\gamma \lambda}{(1-\lambda)^2} + P(\lambda)$$

where  $P(\lambda) = \sum_{n=1}^{\infty} p_n \lambda^n$ . From the estimate of  $p_n$  we have

$$P(\lambda) = o((1 - \lambda)^{-2})$$
 as  $\lambda \to 1$  non-tangentially

Hence it follows that

$$H_{\tau} = -\log(\tau - 1) + \gamma - 1 + o(\tau - 1)$$

#### 7 Schröder-Abel equation — general case

Now we treat the general case where  $a_1(\tau)$  does not necessarily vanish. Let

$$B_{\tau} = 1 - a_{\ell}(\tau)C_{\tau}$$

we have the following result corresponding to Theorem?

**Theorem 7.1** There exists a function  $\varphi_{\tau}(z)$  continuous on V such that (i)  $\varphi_{\tau}(z)$  satisfies the functional equation

$$\varphi_{\tau}(f_{\tau}(z)) = \tau \varphi_{\tau}(z) + B_{\tau}; \tag{10}$$

(ii)  $\varphi_{\tau}(z)$  is injective in the variable z for each parameter  $\tau \in T_{\alpha,\tau}$ .

(iii) 
$$\lim_{z\to\infty} \varphi_{\tau}(z)/z = 1$$
 as  $z\to\infty$ , when  $|\tau|>1$ .

To define  $\varphi_{\tau}(z)$ , we let

$$\Phi_{\tau}(z) = z - a_1(\tau)h_{\tau}(z).$$

Then

$$\Phi_{\tau}(f_{\tau}(z)) = \tau \Phi(z) + B_{\tau} + \tilde{A}(z).$$

From this we can define

$$\varphi_{\tau}(z) = \lim_{n \to \infty} \left\{ \frac{1}{\tau^n} \Phi_{\tau} \left( f_{\tau}^n(z) \right) - B_{\tau} \sum_{k=1}^n \frac{1}{\tau^k} \right\} \tag{11}$$

## 8 Relation with the Schröder equation

When  $|\tau| > 1$ , the Schröder equation

$$\chi_{\tau}(f_{\tau}(z)) = \tau \chi_{\tau}(z).$$

has a unique solution  $\chi_{\tau}(z)$  of the form

$$\chi_{\tau}(z)=z+c_0+\frac{c_1}{z}+\cdots$$

in a neighbouhood of  $\infty$ .

**Theorem 8.1** For  $\tau \in T_{\alpha,\rho} - \{1\}$  we have

$$\varphi_{\tau}(z) = \chi_{\tau}(z) - \frac{B_{\tau}}{\tau - 1}.$$

**Proof** We can easily verify that  $\varphi(z) + B_{\tau}/(\tau - 1)$  satisfies the Schröder equation. The assertion follows from the uniqueness of the solution.

Now recall that

$$\begin{aligned} \frac{B_{\tau}}{\tau - 1} &= \frac{1 - a_1 C_{\tau}}{\tau - 1} \\ &= \frac{1}{\tau - 1} - a_1 H_{\tau} \\ &= \frac{1}{\tau - 1} + a_1 \log(\tau - 1) + a_1 (1 - \gamma) + o(1) \end{aligned}$$

Using this fact the theorem is reformulated as follows:

Theorem 8.2 Let

$$\varphi(z) = \chi(z) - \frac{1}{\tau - 1} - a_1 \log(\tau - 1)$$

for  $\tau \in T - \{1\}$ . Then  $\varphi(z)$  converges to a solution to the Abel equation.

#### References

- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, (1974).
- [2] K. Chandrasekharan, Introduction to Analytic Number Theory, Springer-Verlag, (1968).
- [3] P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France, 47 (1919) 161-271; 48 (1920) 33-94, 208-314.
- [4] T.Kawahira, A proof of simultaneous linearization, preprint.
- [5] L. Leau, Étude sur les équations fonctionnles à une ou à plusiers variables, Ann. Fac. Sci. Toulouse 11 (1897) E.1-E.110.
- [6] J. Milnor, Dynamics in One Complex Variable, Introductory Lectures, Vieweg, 1999.
- [7] E. Schröder, Ueber iterierte Funktionen, Math. Ann.,3 (1871) 296-322.
- [8] T. Ueda, Schröder equation and Abel equation, preprint.