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Topological entropy and a theorem of
Misiurewicz, Szlenk and Young

HPERE - BEYEABRFHRR  #AS (Hisao Kato)

Institute of Mathematics, University of Tsukuba

1 Introduction

Recently, many geometric and dynamical properties of fractal sets have been
studied. In this note, we study dynamical pr operties of maps on regular curves,
which are contained in the class of fractal sets. It is well known that in the
dynamics of a piecewise strictly monotone (= piecewise embedding) map f on an
interval, the topological entropy can be expressed in terms of the growth of the
number (= the lap number) of strictly monotone intervals for f* (M. Misiurewicz,
W. Szlenk and L. S. Young). We generalize the theorem of M. Misiurewicz, W.
Szlenk and L. S. Young to the cases of regular curves and dendrites.

For a metric space X, Comp(X) denotes the set of all components of X.
A map f : X — Y of compacta is monotone if for each y € f(X), f~'(y) is
connected. A continuum X is a regular continuum (=regular curve) if for each
z € X and each open neighborhood V of z in X, there is an open neighborhood
U of z in X such that U C V and the boundary set Bd(U) of U is a finite set.
Clearly, each regular curve is a Peano curve (= 1-dimensional locally connected
continuum). For each p € X, we define the cardinal number lsx (p) of p as follows:
Isx(p) < a (« is a cardinal number) if and only if for any neighborhood V' of p
there is a neighborhood U C V of p in X such that |Comp(U - {p})| < ¢, and
Isx(p) = a if and only if Isx(p) < o and the inequality lsx(p) < B for B < a
does not hold. We define Is(X) < oo if lsx(p) < oo for each p € X.

For example, the Sierpinski triangle S is a well-known regular curve with
Iss(p) < 2 for each p € S. The Menger curve and the Sierpinski carpet are not
regular curves.

2 Topological Entropy

The notion of topological entropy provided a numerical measure for the com-
plexity of map of a compactum. First, we introduce topological entropy by
Adler, Konheim and McAndrew. Let .A, B be finite open coverings of a com-
pactum X, and let N(A) denote the minimum cardinality of subcovering of
A. For any map f : X — X, put f*(A) = {f*U)|U € A}. Define
AV B={UNV|U € A,V € B}. Consider the following

h(f, A) = limpee(1/n) - 0gN(AV F72(A) V ... V F~D(A)).
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Then topological entropy h(f) of f is then
h(f) = sup{h(f,A)| A is an open covering of X }.

Related to this representation of topological entropy, recently we obtained a
theorem about topological dimension. Pontrjagin and Schniremann characterized
dimension of a compact metric space X as follows: For a metric p on X and € > 0,
let

N(e,p) = min{|U| | U is a finite open covering of X with mesh(U) < €}

and
{log N(e p)
—loge

where |A| denotes the cardinality of a set A. Then

k(X, p) = sup{inf |0<e<e} | e >0},

dim X = inf{x(X, p)| p is a metric for X}.

Bruijning and Nagata introduced an index Ag(X) for a (topological) space X
and a natural number k, and they determined the value of Ag(X): The function
Ag(X) is defined as the least natural number m such that for evey (cozero-set)
open covering U of X with || = k there is an (cozero-set) open covering V of X
with |V| < m such that V is a delta-refinement of I. They proved that for every
infinite normal space X with dim X = n and a natural number k,

28 -1, if k<n+1
Ae(X) = 2;;“11(’“. ) if k>n+1
J
By use of Ax(X) they gave an interesting characterization of the covering dimen-
sion dim X: log A (X
dim X = lim °82:(X)

k—oo log k -1

Hashimoto and Hattori determined the value of an index %x(X), which was
also introduced by Nagata:

k-2l if k<n+1
*x(X) = 2;*:11(;?)'3', if k>n+1

Also, Nagata defined an index A%(X) and gave a problem on the determination
of the index AL(X). For a finite open cover U of a normal space X, we define
indices:

AP(X,U) = min{lVI | V is a finite open covering of X such that V2* < U},



and
**(X,U) = min{|V| | V is a finite open covering of X such that V*" < U}.

Also, the function A% (X) is defined as the least natural number m such that for
every open covering U of X with || = k, there is an open covering V of X such
that |V| < m and VA" < Y. Similarly, the function #{(X) is defined as the least
natural number m such that for every open covering U of X with |U| = k, there
is an open covering V of X such that |V| < m and V** <U.

For natural numbers k,m,p > 1 with k > m, we define the natural numbers

< k J Jp—

o k(i Jo-1 ) 4
*(k;m;p) = 2m2j12122~--.>_jp21 ( J ) ( J; ) ( I-;P ).JP.

Theorem 2.1. (H. Kato and M. Matsumoto) Let X be a normal space and dim X =
n and let k and p be natural numbers. Then

and

[ Ak k2l = (P )R — (2°0F, i k<n+1
ALX) = { A(k;n+1;2070), if k2n+1
and
poxy = [ *Ek (1/2)(3 - 1)) = K[(1/2)(3 — 1) + DFL if k<n+1
*(X) = H(k;n + 15 (1/2)(3 - 1)), if k>n+l.

In particular,

dim X = sup{limsup

p—00

1 14
08 Ap(X U) | U is a finite open covering of X},

and

logs +(

dim X = sup{limsup pX’ u) | U is a finite open covering of X }.

P00

Next, we shall introduce the definition of topological entropy by Bowen. Let
f: X — X be a map of a compactum X and let K C X be a closed subset of
X. We define the topological entropy h(f, K) of f with respect to K as follows.

Let n be a natural number and € > 0. A subset F' of K is an (n, €)-spanning set
for f with respect to K if for each z € K, there is y € F such that

max{d(f'(z), f/(y))| 0<i<n-1}<e
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A subset E of K is an (n,¢)-separated set for f with respect to K if for each
z,y € E with = # y, there is 0 < j < n — 1 such that

d(f(z), /() > e

Let 7,(¢, K) be the smallest cardinality of all (n,e€)-spanning sets for f with
respect to K. Also, let s, (¢, K) be the maximal cardinality of all (n, €)-separated
sets for f with respect to K. Put .

r(e, K) = limsup (1/n)logr,(e, K)

n—00 '
and
s(e, K) = limsup (1/n)log s, (€, K).
n—eo
Also, put

h(f,K) = 1i_1}1(1)r(e, K).
Then it is well known that h(f, K) = lim._,o s(¢, K). Finally, put
h(f) = h(f, X).

It is well known that h(f) is equal to the topological entropy which was defined
by Adler, Konheim and McAndrew.

Let X be a regular continuum. A finite closed covering A of a regular curve
X is a regular partition of X provided that if A,A’ € A and A # A, then
Int(A) # ¢, AN A’ = Bd(A) N Bd(A’), and Bd(A) is a finit set. We can easily
see that if X is a regular curve and € > 0, then there is a regular partition A of
X such that mesh A < ¢, that is, diam A < ¢ for each A € A. '

For a regular partition A of X, moreover, A is called a strongly regular parti-
tion if lsx(a) < oo for each a € | J{Bd(4)| A € A}.

A map f: X — X is a piecewise embedding map with respect to a regular
partition A if the restriction f|A: A — X is an embedding (= injective) map for
each A € A. Amap f: X — X is a piecewise monotone map with respect to A
if the restriction f|A: A — f(A) is a monotone map for each A € A.

The following theorem of M. Misiurewicz, W. Szlenk and L. S. Young is well
known.

Theorem 2.2. (Misiurewicz-Szlenk and Young) If f : I = [0,1] — I is a piece-
wise embedding map (i.e., there is a finite sequence ci,cs,...,cx of I such that
co=0<c <cy <..<cp=1, each restriction fl[ci,ci+1] : [ciycir1] = I is an
embedding (=strictly monotone) map and each ¢; (i = 1,2,..,k — 1) is a turning

point of f, then
() = lim (1/n) log (f"),

where I(f*) denotes the lap number of f™.
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Let f : X — X be a map of a regular curve X and let A = {4, A3, ..., An}
be a regular partition of X. For each n > 0, consider the itinerary set I t(f,n;A)
for f and n defined by '

n—1
It(f,1;.A) = {(%0, Z1, - Tno1) | %i € {1,2,...,m} and () f7(Int(4s,)) # ¢}
=0
Put I(f,n;A) = |It(f,n; A)|. Note that I(f,n+m;A) < I(f,n; A) - I(f,m; A).
Hence we see that the limit lim,_,o(1/n) log I(f, n; A) exists. Note thatif f : I —
I is a piecewise embedding map of the unit interval I, then ( Y =1I(f,n; A,
where A = {[¢;, ¢i+1] | 1 =0,1, ...,k — 1}.
We can generalize the theorem of Misiurewicz-Szlenk and Young to the case of
piecewise embedding maps with respect to strongly regular partitions of regular
curves.

Theorem 2.3. Let X be a regular curve. If a map f : X — X is a piecewise
embedding map with respect to a strongly regular partition A of X, then

h(f) = lim (1/n)log I(f,n; A).
For the proof of the above theorem, we need the following Bowen’s result.

Proposition 2.4. (Bowen) Let X andY be compacta, andlet f : X = X, g: Y
—Y bemaps. If 7 : X =Y is an onto map such that w- f = g-m, then

h(g) < h(f) < h(g) + sup h(f, 7 (y))-

Theorem 2.5. Let X be a regular curve. If a map f : X — X is a piecewise
embedding map with respect to a regular partition A of X, then

A(A) < Jim (1/m) log I(£,m; A).

Let f : X — X be a piecewise embedding map of a regular curve X with
respect to a regular partition 4 = {4;, A3, ..., An} of X. Note that m = |A|.
Define an m x m matrix M; = (a;;) by the following; a;; = 1 if f(Int(A4;)) D
Int(A;), and a;; = O otherwise. Also, define an m x m matrix Ny = (b;) by the
following; b;; = 1 if f(Int(4;)) N Int(A;) # ¢, and b;; = 0 otherwise. Let A(My)
be the real eigenvalue of M; such that A(My) > || for all the other eigenvalue A
of My. Then we have the following corollary.

Corollary 2.6. Let X be a regular curve. If a map f : X — X is a piecewise
embedding map with respect to a strongly regular partition A of X, then

MMy) < h(f) < MNy)-

75



Remark. (1) The assertion of Theorem 2.3 is not true for piecewise embed-
ding maps on Peano curves. Let X = u! be the Menger curve. We can choose
a homeomorphism f : X — X such that h(f) # 0. Then f is also a piecewise
embedding map with respect to A = {X} and

B(f) > 0= lim (1/n) log I(f,n; A).

(2) There is a piecewise embedding map f : X — X of a dendrite X with respect
to a regular partition 4 of X such that

A($) < lim (1/n) log I(f,n; A).

The assertion of Theorem 2.3 is not true for piecewise embedding maps with
respect to regular partitions of regular curves.
(3) Moreover, there is a homeomorphism f : X — X of a dendrite X such that

A(f) < Jim (1/n) og (£, 1.4
for some regular partition A of X.

Foramap f: X = X of a regular curve X and a regular partition A =
{Ai]i=1,2,..,m} of X, we put

Y (£, A) = {(2:)2] Aq; € A and ﬂf" (Int(Ag,)) # ¢ forall n =0,1,2,...}.

=0
Also, let o(;,.4) : Y _(f, A) = >_(f, A) be the shift map defined by
U(f,A)((xz)a—o) (Tis1)520-
Then we have

Theorem 2.7. Let X be o dendrite. If a map f : X — X is a piecewise mono-
tone map with respect to a strongly regular partition A of X, then

h(f) = h(o(s,4))-
For each map f : X — X of a compactum X and a natural number n, put
o(f,n) = sup{|Comp(f"(¥))| | y € X}.
Then we have the following theorem.

Theorem 2.8. If f : X — X is a map of a regular curve X, then

h(f) < limsup (1/n)log ¢(f,n).
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