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Holomorphic motion and invariant metrics

Bo-Yong Chen and Jinhao Zhang*

1 Introduction

The study of holomorphic motions initiated by Mafié, Sad and Sullivan [16] has
attracted much attention since then (cf. (2], [10], [22], [23]). The precise definition is
as follows:

Definition. Let E be a subset of C. Let A, denote the open disc |z| < 7. A
holomorphic motion of E is a map '

f: A xE—C

with the following properties: 1) f(0, z) = z for all z € E; 2) for every fixed A € A, the
map f(),) : B — C is an injection; 3) for every fixed z € E, the map f(-,2) : A, = C
is holomorphic.

In other words, a holomorphic motion is a holomorphic family of injections. The
original motivation of studying it arises from complex dynamics. From the viewpoint
of several complex variables, the study of the graphs

L(f) .= {(\f(\2)) €C*: A€ A,,z€ E}, E: domains

are more natural. A particular interesting case is when E = A;, since ['(f) often

serves as the universal covering of a holomorphic family of compact Riemann surfaces
- with finite punctures, according to the celebrated simultaneous uniformization of Bers.

Generally, I'(f) is not biholomorphically equivalent to the unit polydisc (cf. [13]).

In this note, we will show

Theorem 1. Let f : A; X A; — C be a holomorphic motion. Then for any
0<7 <1, T(flaxa,) i a bounded domain of holomorphy which enjoys the following
function properties

(i) The Carathéodory, Bergman, Kobayashi and Kdhler-Einstein metrics are equiv-
alent;
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(ii) K > Cé672%|log8|~2, where K denotes the Bergman kernel and & the Euclidean
boundary distance;

(iii) Al invariant pseudo-distances dominate |log d|.
As applications of Theorem 1 we present the following

Theorem 2. Let m: M — A, be a holomorphic family of open hyperbolic Riemann
surfaces. Then for every 0 <r < 1, n7(A,) is a complete Kobayashi hyperbolic Stein
manifold.

Theorem 3. The L? 0— cohomology group of type (p, q) with respect to the Bergman
metric on I'(f|a,xa,) 8 vanishing for p + q # 2 and non-vanishing for p+ ¢ = 2.

Given a bounded domain in C™, it is generally very difficult to determine whether
the L?—cohomology group with respect to the Bergman metric is vanishing or not.
Besides the trivial polydisc case, only a few results are known, for instance, bounded
strongly pseudoconvex domains [8] and bounded symmetric domains [12].

- The Kobe-Poincaré uniformization shows that the universal covering of a Reimann
surface different from P! is either A, or C. However, one can not expect such a
perfect phenomenon still holds for high dimensional complex manifolds. In fact, their
universal coverings are completely mysterious expect some special cases (eg. balls,
symmetric domains). Based on the Bers theory, Griffiths [11] showed that every point in
a projective manifold admits a Zariski neighborhood U such that the universal covering
U is topologically a cell and is biholomorphically equivalent to a bounded domain
of holomorphy. Griffiths’ uniformization was used by Nadel-Tsuji [18] to compactify
certain complete Kahler manifolds of finite volume.

Theorem 4. Let U be a Zariski open set in the sense of Griffiths. Then the
universal covering U is a bounded domain of holomorphy which enjoys the following
properties:

(i) The Carathéodory, Bergman, Kobayashi and Kdihler-Einstein metrics are equiv-
alent;

(i) The Bergman metric of U has bounded geometry and it descends to a complete
Kihler metric on U which has finite volume.

The geometry interests of (ii) lie in that Cheeger-Gromov [3] extended the L? index
theory of Atiyah [1] to those non-compact manifolds of finite volume whose universal
coverings have bounded sectional curvature and positive injectivity radius.

An interesting consequence of Theorem 4 is the following

Theorem 5. Lét M be a projective maﬁzfold Given a point p € M, there ez-
ists a Zariski open neighborhood U of p which is complete Kobayashz hyperbolic and
hyperbolically embedded into M.
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Hyperbolically embedded complex spaces have important apphcatlons in the theory
of moduli space of holomorphic maps (cf. [19]).

2 Elementary properties of quasiconformal maps

A homeomorphism f of a domain E in C is called L—quasiconformal if it is
differentiable almost everywhere and

|0f/0z| < |(9f/6z| a.e.on E

where L > 1 is a constant. It is clear that a 1—quasiconformal map is conformal. The
smallest L is called the dilatation of f. A L—quasiconformal map f on E is Hélder
continuous, that is, for any compact subset F' in E,

|f(22) = f(21)| < Clza — 2 |'*
for all 2;, 25 € F. Note that f~! is also L—quasiconformal. Thus
f(22) = f(21)] = C M |za — 2| "

A Beltrami coefficient y in a planar domain F is an element of the open unit ball
in the complex Banach space L*(E). A p—conformal map f of E is a solution of the
Beltrami equation:

0f/0z = ndf/oz 1)
where the derivatives are taken in the sense of distribution. An important remark is
that f depends holomorphically on parameters if p does. If fi, f, are two p—conformal
maps of E, then foo fi! is conformal. A basic result is: for any measurable, compactly
supported function p of the plane with ||ul|lec < 1, there exists a solution f of the
Beltrami equation (1) of the plane with the property that

f (z)

—1 (z— 00).
The start point is

Proposition 1. (cf. [15], pp. 17) Let f be a L—quasiconformal map of the plane
fizing 0 and oo. Then for everyr >0

max, | f(re®)]
ming | f(re®)|
We infer from the above proposition that if f is a L—quasiconformal map of C

fixing oo, then for any |23 — 2| = |21 — 2|:

|f(22) = f(20)] < €™ f(21) = f(20)]- (2)
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Claim. Let f be a L—quasiconformal map of the plane and E a bounded domain.
Then there is a constant C depends only on E such that for any disc A.(2)) CC E

ax |f(2) = f(z0)] < Ce™ min |f(2) — f(20)| (3)

zeaA( 0) 2€0Ar(20)

Proof. Fix a disc A’ containing the closure of E. Let u be the Beltrami coefficient
of f. Set i = xar + p where xa is the characteristic function of A’. Then there exists
a ji—conformal map f of the plane such that f(z)/z — 1as z — co. As fo flisa
- conformal map of f (A') and Cauchy’s estimate implies that the norm of its derivative
is uniformly controllable on f(E), the assertion follows immediately from (2).

The central theorem in the theory of holomorphic motion is the following
Proposition 2. Let f: A; X E — C be a holomorphic motion. Then

a) (cf. [2]) every f(A,-) is the restriction to E of a quasiconformal self-map of C,
of dilatation not ezceeding
1+ Al

L=1_|)‘|.

b) (cf. [22]) f extends to a holomorphic motion f:A;xC—C.

3 Proof of Theorem 1

Suppose that f : A; x A; — C is a holomorphic motion. We first note that for
every boundary point (A*, f(A\*, 2*)) the holomorphic function

(w - f()‘: z*))—l

gives a holomorphic function on I'(f|a,xa,) Which can not be extended through this
boundary point. Consequently, I'(f|a,xa,) is & domain of holomorphy. By Proposition
2, for every fixed A € Ay, f(),-) extends to a i—fl%}—quasiconformal map of the plane.
Therefore, I'( f|a,xa,) i8 bounded.

For arbitrary fixed 2* € A;, take |z.] > 1 so that argz, = argz* such that the
middle point 32 € dA;. Let 0 < r < 1 be given. Fix a number r < ' < 1. As f
depends holomorphically on J, it follows from (3) and a compactness argument that
there is a constant Cy depending only on 7,7’ such that.

B fO) = SO S Co_min 12 = 10,5
L max ‘lf(/\ A= f0a) < G min | 1F(A2) = f(ha)]
max (fh2) - fOTEE) < G min [5(h2) - FO z ZIE)

|o—2g2e =1~ (2% B o= 242 =1~ 2|
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hold for all A € A,. It follows that

U {0w) e @ w001 < G0 EE) - ra o feT) @

AEA,
lf()\ zZ ) f(A z‘-ﬂ”
G S - fo =) = (5)
and .
h(\,w) := fONE52) = f(A 2)

Colw — f(A, 24)]
defines a holomorphic map I'(f|a,xa,) — A;. For an arbitrary fixed point (X*,2*) €
A, x A;, we define a holomorphic embedding as follows

o* {F(f|ArXA1)a (A*)f(’\*’ z*))} — {A?’O}
. =X 1 A\ w) =k f(A2Y)
()"w)—’()\’w)=(2()\—)\*)—§’ ) )1

where |\ >, arg A, = arg A* and 23X € 9A,. Let Q" denote the imagé ®*. As

N = A(X") = 5(:\;:‘_/\’17
RO - f ) = ot AT SOz o S

FOz) -2 w—fOz)
there exists a constant 0 < a < 1 (independent of (\*, 2*)) such that
Ao QD A2

by (4), (5) and the following primary fact

2
{zEC: |zlilll2 <e} Cc4d;, forekl.

The rest steps will be proceeded in a similar way as in [4]. The equivalence of the
Carathéodory metric ¢, Bergman metric b and Kobayashi metric k at (A*, f(A*, 2%))
follows immediately from the biholomorphic invariance and the following well-known
properties:

caz < Car < a2
kA% S kgt S kAg

and

A2 V Ka2
tbaz < bar < KA“ baz.
A2 A2



To see the equivalence of the Kéhler-Einstein metric with other canonical metrics,
we need to do more. Let H2° denote the space of L? holomorphic (2,0)—forms on
I'(fla,xa,)- For any s € H2° with unit L? norm, Cauchy’s estimates imply
ootBg*

NGB (O)I < Coas

where we write s = s*dX A dw’ on A2. By the well-known extreme property of the
Bergman metric, we conclude that I'(f|a,xa,) has bounded geometry in the sense of
Cheng-Yau [5] with respect to the Bergman metric. By the Schwarz lemma of Yau
[24], dVkg is always dominated by dV, where dVkg and dVp denote the volume forms
of the Kéhler-Einstein and Bergman metrics respectively. Since the Kéahler-Einstein
metric always dominates the Carathéodory metric (cf. [5]), the proof of (i) is complete.

Let K denote the Bergman kernel form of T'(f|a,xa,) and K the Bergman kernel
function. Then

K

Il

K*d)\ Adw' AdV Adw’
= KdAAdwAd\A dw
which implies

~ 2
= K*

X
|

det ON/ON Ow/ON
€ ON/Ow' Ow/ow

)\* - A* . f(Avang*) - f()‘)z*)
20— A)?2 Colw — f(A 22

. -2
= RK*

(6)

Since the ratio of K and dVip is pinched between two positive uniform constants, (ii)

follows from iV
KE -2 -2
= >
DA Adwnds 20 108l
(compare [17]). Next consider the holomorphic function

FO, 232) — f(\ 2)
w— f(A 2)

on AZ. Since it is bounded between two uniform positive constants, the classical
Schwarz lemma implies

f(A’ %) - f(>‘a z*)
w— f(Aa z*)
has bounded length at 0 € A% w.r.t. the Euclidean metric, hence by (6)

Olog

sup |0, log K|y < 0o (7)

and (iii) follows immediately from (i), (ii), since the lower estimate of the Bergman
distance along horizontal direction is trivial.
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Remarks. a) It is not known whether 85log K is bounded with respect to the
Bergman metric. )

b) The conclusion of Theorem 1 still holds for a holomorphic motion of planar
domains bounded by finite Jordan curves.

c) Every bounded Carathéodory complete domain in C™ is hyperconvex, i.e., there
exists a bounded continuous plurisubharmonic exhaustion function.

d) A bounded domain € C™ is called B—regular if every boundary point is a peak
point for plurisubharmonic functions. The most important examples of B—regular do-
mains are strongly pseudoconvex domains. It is easy to show that I'(f|a,xa,) is not
boholomorphically equivalent to a B—regular domain Q. In fact, if such a biholomor-
phic map F exists one can choose a sequence of points z; € A; such that |2;] — 1 and
the sequence of embedded analytic disks F(-, f(+, z;))|a, accommodate to the boundary
of €, violating the maximal principle for psh functions since every boundary point of
Q is a peak point. Contradictory.

4 Proof of Theorem 2

A Riemann surface S is call hyperbolic if there is a Fuchsian group I' acting
freely on A; such that S = A;/T. A holomorphic family of Riemann surfaces over
A; with fiber model S consists of a complex manifold M and a holomorphic split
submersion 7 mapping M onto A; such that there is a map f : A; x § — 7 HA)
satisfying the following properties: 1) f(0,2) = z for all z € E; 2) for every fixed
X € A,, the map f(),-) : E — C is quasiconformal; 3) for every fixed z € E, the
map f(+,2) : A, — C is holomorphic. Generalizing the Bers theory, Earle-Fowler [9]
showed that the universal covering of M is a holomorphic motion of the unit disc, thus
by Theorem 1 that 7~1(A,) is complete Kobayashi hyperbolic for any r < 1. The
proof of Steinness is essentially due to Ohsawa [20], which is included here for the
sake of completeness. Let S be exhausted by an increasing continuous family of open
Riemann surfaces {S;}:>o. By a theorem of Docquier-Grauert [6], it suffices to show
that T'(f|a,xs,) is Stein for every t > 0. Fixt' >t and r < r' < 1. Since every 71(N) is
a Stein submanifold of 7=1(A;), it has a Stein neighborhood V) by Siu’s theorem. [21]
on which admits a strictly plurisubharmonic function ). A compactness argument
shows that there exists a finite covering Wi, - - -, W; of A, together with a partition of
unitary xa, 1 < a <1 such that

Cl)\|2 + Z X&,l)b)\a

is strictly psh on I'(f|a_, xs,,) provided ¢ suﬁiciehtly large. On the other hand, T'(f|a,xs.)
is locally pseudoconvex, thus is Stein by a theorem of Ellencwajg [7].
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5 Proof of Theorem 3

We shall first prepare notations on the L? §—cohomology. Let (X,w) be a com-
plete Kihler manifold of dimension n and C§?(X) the set of compactly supported C*
(p, g)—forms on X. We set

(u,v)z/xu/\‘%, for u,v € C§(X)

where * denotes the Hodge’s star operator. Let L{;j(X) denote the completion of

CP(X) with respect to the L? norm | - || = 4/(-,*). By d we denote the exterior

derivative, and by 8 the (0, 1)—component of d. Their maximal closed extensions will

be denoted by the same symbol. The L? cohomology groups of X are defined by
Ker 0 N L2 (X)

P9 — (2)
Hey X = 13 LX)

From now on, we restrict our attention to the case of holomorphic motions. To
show that the middle cohomology is non-vanishing, we only need to consider the type
(1,1) since other cases are trivial. By the argument in section 2, we find for each point
(A*, f(O*, 2*)) € T'(f|a.xa, ), an embedded polydisc A2 on which the Bergman and the
Euclidean metrics are equivalent. It is important to mention that the first coordinate
) in the embedded polydiscs remains unchanged when their centers belong to a fixed
fiber. Now fix a non-vanishing L? holomorphic 1-form s on the fiber at A = 0 (eg. dw).
We try to extend it to a L? holomorphic 1-form on I'(f|a,xa,) if Hé;; = {0}. This is
proceeded as follows: take a locally finite covering {A2 .} of T'(f|a,xa,) among these
embedded polydiscs and let x, be a partition of unity subordinate to {Afw}, we set

v=XN"1Y"7%(s)0xa

where 7, : A2, — A2 is the projection (X, w') — X'. Since on every A2, , m3(s) =
s =y (s) at X' =0 and

D Ta(8)Xa = Mo + D (e () — 75 (8))Xa

Cauchy’s estimate implies _
v € Kerd N LB

Suppose H (12)1 vanishes, then there exists a L? (1,0)—form u such that Ou = v, hence

S =) Xams(s) — Nu

gives a L? holomorphic 1-form on I'(f|a,xa,) Which extends s.

Write
S =g w)dA + 92()‘7 w)dw
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for some holomorphic functions g1, g2 on I'(f|a,xa,). Clearly, go # 0. Now choose a
polydisc

Ay x Ay CT(flarxas)-
It follows easily from Hérmander’s L? theory that the Bergman metric of T'(f|a,xa,)

is equivalent to the Bergman metric of A, X A, on A, X A,/2, whilst the latter is equal
to

ba,(A) + ba, (w).
As godw is L? on T'(f|a,xa,), We see that

— A -2 A 2
‘/ArXA.,/z(r I I) |g2( ,QU)| < 00

which implies g = 0 on A, x A,/2 hence on I'(f|a,xa,), & contradiction.

Clearly, there is no non-vanishing holomorphic function on I'(f|a,xa,) Which is
square-integrable with respect to the Bergman metric. Let

S = g1(A, w)dA + g2 (A, w)dw

be any L? holomorphic 1-form. Clearly g, = 0 as the above argument shows. We must
show g; = 0. Note that

dblog K A gi(\, w)d\ = —0[0log K A g1(A, w)dA]
~d [0y log K A g1(A, w)dA]

whilst the term [- - -] in the second equality is L? by (7). As the left side is a L? harmonic
form, it must be vanishing by the Gaffney trick (cf. 1.1.C’ in [12]), consequently g, = 0.
The remaining cases follow from the Serre duality.

6 Proof of Theorem 4

Let us first recall some basic facts about the Teichmiiller space. Let I' be a Fuchsian
group acting freely on A and M(T') the open unit ball in the complex Banach space of
Beltrami differentials for T, i.e., all L* functions u on A, satisfying x|l < 1 and

(Boy)¥y/y =p forallyeT. (8)

For each p € M(T), there exists a unique quasiconformal map w* of the plane onto
itself that satisfies the Beltrami equation w; = pw, in Ay, is conformal on C — A; and
satisfies

wh(2) = 2+ O(|2|™?), as z— oo. 9)
We say that u, v € M(T') are equivalent if w#(z) = w”(z) when |z| = 1. The Te-
ichmiiller space T'(T') is the set of equivalent classes in M(T'). Let ®(u) denote the
equivalence class of 4 € M(T). A fundamental fact in the Teichmiiller theory is that
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T(T) has a unique complex structure so that the map ® : M(I') — T(T') is a holomor-
phic submersion. We define the Bers fiber space F(I') by

F(T) = {(®(u),2) eT(C) x C: pe M(T), z€w' (A1)}
Clearly, it is a complex manifold.

In [11], Griffiths constructed the Zariski neighborhood U of a given point in a
projective manifold V by induction on the dimension n of V/, precisely, U can be realized
as a holomorphic family of Riemann surfaces C; with genus g and m punctures over a
quasi-projective manifold S such that

a)3g—3+m>0;

b) the universal covering S of S is biholomorphically equivalent to a bounded do-
main of holomorphy in C*~2.

The case n = 1 is just the uniformization of Riemann surfaces. The step from n—1
to n uses the Bers simultaneous unformization as follows. Note that mg : U — S lifts
to a holomorphic family of algebraic curves, say Ug, over S with fibers C; = 75*(5).
Fixing §; € S, one chooses a Fuchsian group I' such that

Cs, = AyT.

For every § € S, there exists a quasiconformal map f; : C5, — C; which depends
holomorphically on §. Every f; lifts to a quasiconformal map w® 1 Ay — A fixing
1, -1, with complex dilatation

w(2) = wi(2)/wy(2)

satisfying (7), and w® can be extended to a quasiconformal map of the plane to itself so
that it is conformal outside the unit disc such that (8) holds, furthermore, it depends
holomorphically on 3. Thus there is a holomorphic map ¥ : S — T(T) where

§— o(p’)

such that the pull-back of F(T') by ¥, say Us, is a bounded domain of holomorphy in
Cr. Since S is simply-connected, the fundamental groups of Cj, and the fibration Uy
are isometric, the universal covering U of U is biholomorphically equivalent to Us 2

To get our assertion, we shall assume the following more

For every point 3, € S, there is a holomorphic embedding © of S into AT such
that ©(3,) = 0 and the zmage of S contains a polydisc AT with a < 1 a uniform
constant.

Again the case n =1 is trivial. Observe that U is biholomorphic to a holomorphic
family of Jordan domains over ©(S) such that its restriction to the polydisc A}~
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defines a holomorphic motion of the unit disc such that the dilatations of w® are
bounded by a uniform constant on A%, Since all w® are conformal outside A; (i.e.,
the dilatations are 1) and satisfy (8), it follows form Proposition 1 and the arguments
in section 3 that for every point g € U, there is a holomorphic embedding © of U into
A™ such that ©(q) = 0 and ©(U) contains a polydisc A7, for some uniform constant
a’ < 1, completing the induction step from n—1ton. A similar argument as in section
3 1mphes (i) and that the Bergman metric has bounded geometry. As the Bergman
metric on U descends to a complete Kéhler metric on U which is equivalent to the
Kobayashi metric, hence has finite volume since U is quasi-projective.

7 Proof of Theorem 5

Let X C Y be two complex manifolds. Let X denote the closure of XinY. Xis
called to be hyperbolically embedded in Y if for any two points z,y € X, there exists
an open neighborhood U of z, V of y such that

dx(UNnX,vNY)>0
where dx denotes the Kobayashi distance on X.

Suppose now M is a projective manifold. By [11], one can choose and ample divisor
D such that

a) D has only simple normal crossings;

b) Ky + D is ample where Kj; denotes the canonical line bundle of M;

c) The universal covering of M — D is biholomorphically equivalent to a bounded
domain of holomorphy as in Theorem 4.

Let D =Y. +=1 Dj be the decomposition into irreducible components and g; a holo-
morphic sectlon of [D | defining D;. It follows from b) that there exists a volume form
Q on M such that

!
—RicQ - Y 881og | 0;|°
j=1
is positive definite on M. Set

l
¥ =9/ [] lio;|*(log lo;I1)*.

j=1

After taking a suitable constant multiple of ||-||, we may assume —Ric ¥ dominates some
fixed Kahler metric w on M. R. Kobayashi [14] showed that there exists a complete
Kahler-Einstein metric on M — D which is equivalent to —Ric ¥. By c) and Theorem
4, M — D is complete hyperbolic and the Kobayashi metric on M — D is equivalent
to the Kahler-Einstein metric, hence dominates w, which implies that M — D can be
hyperbolically embedded into M.
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