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Hanner type inequalities and duality
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We shall first discuss two kinds of Hanner type inequalities with a weight in a Banach
space X in connection with sharp uniform smoothness and convexity: the first kind of
inequalities will characterize the 2-uniform smoothness and 2-uniform convexity of X,
and the other the p-uniform smoothness and g-uniform convexity of X. Next we shall
present a duality theorem on a ”general” Hanner type inequality with ”several weights”,
which is valid for both kinds of the above inequalities. Finally the best value of the weight
constant in these inequalities for L,-spaces will be determined.

Let X be a Banach space and X™* its dual space. Let Sx be the unit sphere of X.
Let 1< p,q,r,.. <ocand 1/p+1/p =1/q+1/¢ =1/r+1/r'=.. =1

1. Hanner’s inequalities for L, (Hanner {3], 1956)
() f1<p<2forall f,gin L,

£+l + 115 = gl = |1Flp + gl + |11l — lls|” (1)
(i) f2<p<oo,forall f,gin L,
£ + gl + 1£ = glls < |1 £llo+ | + [1£1lp — | (H2)

2. Definition (i) The modulus of convexity of X:

T+y
2

dx(€) :=inf {1 -

“: w,yESx,||z——y||=s} for0<e<2.

(ii) X is uniformly convex if §x(g) > 0 for all € > 0.
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(iif) X is g-uniformly convex (2 < g < 00) if there exists C > 0 such that dx(¢) > Ce?
for alle > 0.

3. Remark (i) If 1 < ¢ < 2 no Banach space is g-uniformly convex (cf. [2]; for a
proof see e.g., [11, esp., p. 268]).

(ii) Let 2 < ¢ < ¢1 < 00. Then if X is g-uniformly convex, X is g;-uniformly convex.

(iii) Ly (2 £ ¢ < 00) is g-uniformly convex (by Clarkson’s inequality of (g, g)-type).

(iv) L, (1 < p < 2) is p-uniformly convex (p' > 2) (by Clarkson’s inequality of
(p,p')-type). But in fact, L, (1 < p < 2) is 2-uniformly convex by Hanner’s inequality
(H1).

For convenience of the reader we see (iii) and the latter statement of (iv) in the
general Banach space setting.

Proof of (jii). Let 2 < ¢ < co. Assume that Clarkson’s inequality of (g, ¢)-type
holds in X:

(= + 9117 + llz — ylI9"e < 249 (Jlz]|? + Ilyl|9)Ve.
Let z,y € Sx and ||z — y|| = €. Then

llz + yl|? + €2 < 2/92 = 291/a'+1/a) — 99,
€\9
=) <1
HOE
q
<q (1 -
a1 (o)
2 [T qg\2/"

1
—
(0 2 et

whence

z+y|?

2

§'si-|e

Consequently we have

Therefore

z+y
5 .

1-—-

from which it follows that

or X is g-uniformly convex.

Proof of the latter assertion of (iv). Let 1 < p < 2. We have to show the
following: If Hanner’s inequality (H1),

I+ 9117 + iz = 9lI” 2 [zl + Iyl | + hall = il



holds in X, then X is 2-uniformly convex. Assume (H1). Then

l +y)2 + |z — g2\ 2 Iz +yll? + ||z — ylIP\V*
2>

2 2

(\nxu + 1l + el - ”y”r) o

v

2

2 2\ 1/2
[zl + vlgl|” + [l = vyl

— 2 }

where v = +/(p — 1)/(2—1) = /p—1 ([6, Corollary 1.e.15]). Therefore

2 2
o+ 9l?+lle—=ol? = [l +lgll| + [l = vyl
= 2l + "yl

Put here £ +y =u,z — y = v. Then

2 2
ut+v u—-v
IIU||2+||v|I222[ +(-1) 5 }
Now let u,v € Sx and |ju — v||A= €. Then
o2
u+v €\2
> - e
2_2[ —| +@ 1)(2)],
whence )
€\2 u+v u+v
(p—l)(i) <1- 52(1— . )
Therefore .
p_g_CQSl_ u+v .
Consequently we have

ox() 2 22,
or X is 2-uniformly convex, as is desired.
4. Definition (i) The modulus of smoothness of X is defined by
llz + 7yl + llz — Tyl

px(7) :=sup{ 3 —l:z,yESx} for >0
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(i) X is uniformly smooth if px(7)/7 — 0 as 7 — 0.
(iii) X is p-uniformly smooth (1 < p < 2) if there exists K > 0 such that px(7) <
K7? for all T > 0.

5. Remark (i) No Banach space is p-uniformly smooth for 2 < p < oo.

(ii) Let 1 < p; < p < 2. Then if X is p-uniformly smooth, X is p;-uniformly smooth.
(iii) Ly (1 < p < 2) is p-uniformly smooth.

(iv) Lg (2 £ g < 00) is 2-uniformly smooth.

The first kind of Hanner type inequalities

6. Theorem (Yamada-Takahashi-Kato [13]) Let 1 < p, s, < co. Then the following
are equivalent.

(i) X is 2-uniformly convex.

(ii) There exists oy > 0 for which
4

P
o+l + lle = 11 > |l + gl + |llall = lvyl (1
holds in X.
(iii) There exists v > 0 for which
t t\ 1/t
Iz +yll* + ||z — yl]*\ ¥* ‘II:BII + ||7ylll + |l|xll - H'Yylll

holds in X.

According to Remark 3 (iv) the Hanner type inequalities (1) and (2) hold in L,, 1 <
r<2.

7. Theorem ([13]) Let 1 < p, s,t < co. Then the following are equivalent.
(i) X is 2-uniformly smooth.
(i) There exists v > 0 for which

e+l + lle — 1P < |llzl + Il + [all = vl 3)

holds in X.
(iii) There exists v > 0 for which

t t\ 1/t
<||a: +yll + Jlo - yll’)"’ e R R “
2 - 2
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holds in X.

The above Hanner type inequalities (3) and (4) hold in L,, 2 < r < 0.

The second kind of Hanner type inequalities

8. Theorem ([13]) Let 2 < ¢ < 00, 1 <t < ¢. Then the following are equivalent.
(i) X is g-uniformly convex.
(ii) There exists v > 0 such that

1/t

(I + 9l + Iz~ 1) < (|l + ]| + [iell = 1] )
for all z,y € X.

The Hanner type inequality (5) holds in L, (2 < ¢ < o).

9. Theorem ([13]) Let 1 < p £ 2 and p £ s < oo. Then the following are
equivalent.

(i) X is p-uniformly smooth.
(ii) There exists v > 0 such that

1/s

(I + 9P + e = )IP) " = ([lell + Il + |tz = 1] ) (6)
for all z,y € X.

The Hanner type ineduality (6) holds in L, (1 <p < 2).

Duality between Hanner type inequalities

According to Ball-Carlen-Lieb [1] Hanner’s inequalities (H1) and (H2) are equivalent.
This is extended as follows.

10. Theorem ([13]) Let 1< s,t <oo, 1/s+1/¢=1/t+1/t' =1and a,8,7 > 0.

Then the following are equivalent.
(i) Forall z,y € X

(late + I+ 18 =019 = ([1all+ Il + |1zl - b Y



(ii) For all z*,y* € X*

t’
+ el = Iyl

’ — % * / 1/8I * — *

(1o e+ + 157 =) < ([l + v
(8)

11. Corollary Let 1 < s,t,p<o0,1/s+1/s =1/t+1/t' =1/p+1/g=1 and

v > 0.
(i) The inequality

t t\ 1/t
(Ilz +yl + Iz - yn‘)‘/' N [zl + lvwll| -+ |1zl = ol

; 5 (2)
holds in X if and only if
) ¢ . ¢\ Ut
(;w Ly + ot - y*”a')l/a a1+ Iyl =+ el = =)
<
2 - 2
()
holds in X™.
(ii) The inequality
P » P b4
Iz + 3117 + iz = 91l 2 [llall + vl =+ liall = Il 1
holds in X if and only if
q * 4 *
la* + 919+ lla* = 71 < [ll2*ll + Iy 7|+ |21 = 1) (37

holds in X™*.

The best value of the weights for L,-spaces

12. Theorem ([13]) Let 1 < p < 2 and 1 < s,t < oo. Then the Hanner type
inequality (2) holds in L,:

CELETETAER ell-+ || + el = ot
2 - 2

t’) 1/

103



The best value of v is

. p—-1 [s—-1
- 1./~  [5 72
7 mm{’ t—1’\/t-—1}

13. Theorem ([13]) Let 2 < p < o0 and 1 < s,t < 0o. Then the Hanner type
inequality (4) holds in Ly:

' t t\ 1/t
(Hx +yll° + |1z - y||,,)1,. . [zl + lvg| + [l = llvwl|
2 = 2 '

The best value of 7 is

p—1 [s-1
= 1 —_—
U m{’\/t—l’\/t—l}
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