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A generalization of the Sobolev-Lieb-Thirring
inequality

ex-# - %¥E  ME —& (Kazuya Tachizawa)
Department of Mathematics, Hokkaido University

1 Introduction

In this article we explain about a generalization of the Sobolev-Lieb-Thirring inequal-

ity and its application. In the proof of our theorem we use the (-transform of Frazier
and Jawerth.

In 1976 Lieb and Thirring proved the following inequality([8]).

Theorem 1.1 (The Lieb-Thirring inequality) LetV be a non-negative measurable
function on R™ and

72-;— for n=1,
v>0 for n=2,
v20 for n>3

Then we have
SN < a / Yy,
i Rn

where Ay < A\p < .- are the negative eigenvalues of the Schrodinger operator —A —V
on L?(R™).

The case v > 1/2,n =1 or v > 0,n > 2 was proved by Lieb and Thirring([8]). The
case ¥ = 1/2,n = 1 was proved by Weidl([15]). The case v = 0,n > 3 was established
by Cwikel([1]), Lieb([7]) and Rozenbljum([9],[10}).

Furthermore Lieb and Thirring proved the following inequality as an application of
Theorem 1.1. |



Theorem 1.2 (The Sobolev-Lieb-Thirring inequality) Suppose thatn € N, ¢, |Vif| €
L*(R™) (i=1,...,N), and that {1;}, is orthonormal in L*(R™). Then we have

/ 1+2/'ndg;<an/ lvdhlzdx

=1
where

N
= z |9s(2)]*.

The Sobolev-Lieb-Thirring inequality has important applications such as the stability

of matter or the estimates of the dimension of attractors of nonlinear equations(c.f.[5],[8],[14]).

2 Proof of Theorem 1.2

In this section we explain about the outline of an alternative proof of Theorem 1.2.
First we recall the definition of A,-weights. By a cube in R" we mean a cube which
sides are parallel to coordinate axes. A locally integrable function w > 0 a.e. on R” is

an Ap-weight for some p € (1, 00) if there exists a positive constant C such that

I_612—i /Q w(ré) dz (I—Cljl /Q w('hrr)‘l/(l”’“l)cl:10>p_1 <C

for all cubes @ C R™. We say that w is an A;-weight if there exists a positive constant
C such that

IQI/ y)dy < Cw(z) ae z€Q

for all cubes @ C R™. We write A, for the class of Ap-weights. It is easy to show A; C 4,
for 1 < p < co. An example of A,-weight for 1 < p < oo is given by w(z) = |z|* € 4,
where z € R"™ and —n < a < n(p — 1). Let Q be a bounded C'-domain in R*,n > 2.
Then w(z) = dist(z, 00Q)%, (=1 < a < p— 1), is another example of A,-weight.

For f € L} ,(R"), we define the Hardy—LittIewood maximal operator as

M()(&) = sup oo / F@)l dg,

z€Q
‘where the supremum is taken over all cubes @ C R" such that z € Q. For a nonnegative,

locally integrable function w on R™ and p € (1, 00) we set

1/p
LP(w) = {f : measurable, || f||zr(w) = {/Rn |f (z)|Pw(x) dx} < oo}

The proof of the following proposition is in [6].



Proposition 2.1 (i) Let 1 < p < oo and w be a nonnegative, locally integrable
function on R™. Then M is bounded on LP(w) if and only if w € A,.

(i) Let 0 < 7 <1, f €Ll (R"), and M(f)(z) < 0o a.e.. Then M(f)(z)” € A;.

loc

(11) Let 1 < p < oo and wy,wy € A;. Then wlw;—” €A,

We consider a function ¢ which satisfies the following properties.
(A1) ¢ € S(R™).
(A2) suppp C {£ €R™: 3 < [¢| <2}
(A3) 1p(€)| 2 c>0if § < ¢ < $.

(A4) ) " |p(27¢)|? = 1 for all € # 0.
veZ

ForveZ,keZ",Q={(z1,.-..,Zn) : ki <2z; <k;+1, i=1,...,n}, and z € R",
we set pg(z) = 2“"/2p(2¥z — k). The cube Q described above is called a dyadic cube.
Let Q be the set of all dyadic cubes in R".

Now we explain about the outline of a proof of Theorem 1.2. We may assume 9; €
CPR™ fori=1,...,N. Let V(z) = 5p(a:)2/" where § is a positive constant. Then we
get / V2 4y < co. Set v(z) = M(V*)(z)/*. Then (i) of Proposition 2.1 leads to

R™
/ Vg = [ MV dr <o [ V2 dr < oo,
n Rﬂ Rﬂ-
Furthermore we have v € A; and V < v a.e..

The following two lemmas are essentially proved by Frazier and Jawerth , where (f, g)

denotes the inner product in L?(R")(c.f.[11]).

Lemma 2.1 There ezists an a > 0 such that

o S 117 (£, 0o)l? < / (VS e

QeQ

for all f € CP(R™).



Lemma 2.2 Let v € Ay. Then there exists a B > 0 such that

[ iPvde <831 vall g [ vde

QEQ
for all f € CF(R™).

By Lemmas 2.1 and 2.2 we have for f € C§°(R")
2 7. 2
/Rn V12 da / VIfitde
—-2/n
> a3 1@\, 00)t = 83 I(F %0)l IQI/”d"”'

QeQ QeQ
Let
1-{QeQ: § [ vis>alQ")
Q

and {u}1<k be the non-decreasing rearrangement of

Q- gl d} .
{al 2~ giQ) /Q o}

e = a|QI — BIQI? /Q vda,

we define ¢ = ¢pg. Then we get

When

/ Vi3 / Vil da

>ZZ (vl {alel - sl [ vis)

i=1l QeQ
>ZZukI Wi, )| —ZMZI (%5, )
=1 k i=1

= CZ ||
k

Now we use the following lemma in [13].

Lemma 2.3 There exists a positive constant ¢ such that

D el < c/ vt dg,
k R~

where c depends only on n.



Hence by Lemma 2.3 we have

N N
i=1 YR? i=1 YR?
> -—C/ V1+n/2 dz = _c5l+n/2/ p1+2/n da.

Therefore

Z/ lV'lﬁ,lz dz > 5/ +2/n go 051+n/2/ 1+2/n g
i=1 R®
={6—- 651+n/2} / P+ gy,
R»

If we take 6 small enough, then we get the inequality in Theorem 1.2.

3 Some generalizations

We have the following generalization of the Sobolev-Lieb-Thirring inequality for
n 2> 3(c.f.[11, Lemma 3.2}, [13]).

Theorem 3.1 Letn € N, n > 3, w € Ay and w™? € Anjz. Suppose that ¢; €
L2R™), |V € L3 (w) (i = 1,...,N), and {¢;}Y, is orthonormal in L*(R™). Then
we have

/n p(z) ¥ w(z da: < CZ |V1,Z), (z)*w(z)dz

where

=Y lgi(e)

i=1

and ¢ is a positive constant depending only on n and w.

An example of w which satisfies the conditions in Theorem 3.1 is given by w(z) = |z|*
for -n+2<a<2.

In the proof of Theorem 3.1 we use the following lemma.

Lemma 3.1 Let w € Ay. Then there exists an o > 0 such that

« L0 (f el gy [ wde < [ 195Pwes

QeQ
for all f € CP(R™).



We omit the detail of the proof of Theorem 3.1.
By Theorem 3.1 we can prove the following LP version of the Sobolev-Lieb-Thirring

inequality.

Theorem 3.2 Let n € N, n > 3 and 2n/(n + 2) < p < n. Then there exists a
positive constant ¢ such that for every family {;}X, in L*(R"™) which is orthonormal
and |Vy;(z)| € LP(R™), (i=1,...,N), we have

p/2
/ p(x)(1+2/n)P/2 dz < C/ <Z [V’l,b@ ) dz,

i=1

where

N
p(@) = 3 ()P

i=1

and ¢ depends only on n and p.

Proof

Our proof is very similar to that of the extrapolation theorem in harmonic analysis(c.f.[2,
Theorem 7.8]).

Let 2<p<nand 2/p+1/g=1 Letue€ L u >0 and ||ul|zc = 1. We take a
7 such that n/(n — 2) < v < ¢. Then we have u < M(u?)/" a.e and M(u")/" € A,.
Furthermore let o = ( . Then0<a<1land

M (u’)'"/ 2 = (M)} € Anp,

where we used M(u")* € A, and (iii) of Proposition 2.1. Therefore we have

/p1+2/"udx S/ PP MW Y dz < c/ (Z|V1/) |2> M) dz
< ( / (i nwz-P) ” dx) N ([ mwryiras) "
- N p/2 2/p
c ( / (;lvw,-lz) dz) ,

where we used Theorem 3.1 and the inequality

/M(u’y)q/"’ dz < c/u"dz =c.



If we take the supremum for all u € L9, u > 0 and |lu||z« = 1, then we get

2/p N /2 2/p
(/ p(1+2/n)P/2 dx) <ec (/ (Z lv,(p"IZ) dz i
=1 A
Next we consider the case 2n/(n+2) <p < 2. Let

N 1/2
f= (ZIW/&'IZ) :

i=1

We can take « such that (2 — p)n/2 < v < p. Then we have
M(f")"C-P/ ¢ 4,

because

M(f’?)(z“l’)/"l € 4,

by (ii) of Proposition 2.1. Furthermore we have
{ M( f7)—(2—P)/'Y}—n/2 — M( f’y)(Z—p)n/(?y) €A C An/2-
Therefore

/ pH2D/2 gy / pU2/mIB/2 g ( F1) (2P0l () pp( F1)(2BRI@) i

< </ p1+2/nM(f7)—(2—P)/», dm)P/z (/M(f‘f)l’/”rdx>l—p/2

<c (/ f2M(f'r)—(2—p)/7 d:z:) #/2 (/ 1 da:) 1-p/2
sc </ M2 M(f)=CPh dz‘) i (/ i dx) e/
<c (/ M(fyPl dm)p/2 (/ f” dz)l—plz < C/fp i

where we used Theorem 3.1 in the second inequality.

We shall give a generalization of Theorem 3.1. We say a family {y;}, C L*(R") is
suborthonormal if

N N
> &) < D141

ij=1 i=1

forall §; € C,i=1,...,N (ct.[5]).



For w € A; and s > 0 let H*(w) be the completion of C§°(R") with respect to the

o f|f||ww)—{ [ 12y (x)dx+||fu2}”2.‘

For any @ € Q there exists a unique @’ € Q such that @ C @’ and the side-length of
Q' is double of that of Q. We call Q' the parent of Q.
We have the following generalization of Theorem 3.1([13]).

Theorem 3.3 Letn €N, s> 0, max(1, ) <p< 1+ £, andw € A;. If2s < n, then

we assume that w™/*) € A, /5). If 25 > n, then we assume that w™/?) € A, and

/ wdx$223/wdx
! Q

for all dyadic cubes Q and its parent Q'.
Then for {;}, C H*(w) which is suborthonormal in L*(R™) we have

2s(p-1)/
{/Rn p(z)P/ =Dy (g)n/ (2sle-1) dz} < CZ/ [(=A)* 2 (z) 2w (z) dz,

where

N
p(z) =Y (=)

i=]

and c 1s a positive constant depending only on n,p, s, and w.

Remarks

(1) The case s € N adn w =1 is studied by Ghidaglia, Marion and Temam([5]).

(2) The case w = 1 is studied by Edmunds and Ilyin([3]) for {1;}}, which is or-
thonormal in L2(R™).

(3) When 2s < n, an example of w is given by w(z) = |z|* for —n + 25 < a < 2s.
(4) When 2s > n, an example of w is given by w(z) = |z|* for 0 < a < min{2s—n,n}.

(5) When 2s = n, our condition means w = 1.



4 Estimate of the Hausdorff dimension of the at-

tractor of a nonlinear equation

In this section we apply Theorem 3.1 to a nonlinear equation. In [14] the following

result is proved.

Theorem 4.1 Let Q) C R” be an open bounded set. Let

2p-1

g(s) = Z b;s’; where bj € R, bgyp-1 >0,
§=0

and
K120, g'(s) > —kKk;, VseR
Let d > 0 and ug € L*(Q). Then the equation

@——dAu-f-g(u) =0 in Q xR,

ot
u(z,t) =0 . on 90 x R,
u(z,0) =wup(z) =z€N

has a unique solution u = u(z,t) such that
u € L*(0,T; Hy () N L*(0,T; L*(Q)), VT >0

and
u € C(Ry; L*(Q)).
Furthermore there ezists a mazimal attractor A which is bounded in H}(Q), compact

and connected in L*(Q). Let m be the integer such that

m—1 <c(%)n/zl§2| <m,

where ¢ is a constant depending only on n. Then the Hausdorff dimension of A is less

than or equal to m.

We have the following result as an application of Theorem 3.1.



10

Theorem 4.2 Letn > 3 and 2 C R™ be a bounded C?-domain. Let

2p—1
g(s) = Z b]-sj, bj € R, bgp..l >0
Jj=0
and
k120, g(s)>-k1, VseR.
Let

d(z) = dist(z, 0Q),
2 2 .
—l+-<a<s, w(z) = d(z)°%,

and H(Q, w) be the completion of C(QY) with respect to the norm

1/2
|z = { JIGZiE Iflz)wdx} .

Let d > 0 and up € L*(Q). Then the equation

Oou - .
5 d;@w‘. (w(z)Ozu) + g(u) =0 in QxR

u(z,t) = on O x Ry
u(z,0) =up(z) z€Q

has a a unique solution u = u(z,t) such that
u € L*(0,T; Hi(Q,w)), VYT >0,

and
u€ C(R+;L2(Q)).

Furthermore there exists a mazimal attractor A which is bounded in Hg(Q, w), compact

and connected in L?(S)). Let m be the integer such that
n/2
m-1<d (-K—l-) /w""/zda:Sm,
d Q .
Then the Hausdorff dimension of A is less than or equal to m.
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