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Studies on the Mechanical Characteristics
of the Orthotropic Plywood Shallow
Shells (D*

——Numerical Analysis——

Minoru Masupa** and Takamaro Magu**

Abstract——It is proved that the coefficients B;; and D;; of the fundamental equations
of the layered orthotropic shells can be calculated from the measured moduli of elasticity
(Exc, Eye,-++) and (Exs, Eys--+), respectively, according to the procedure shown in (3-17)
and (3-18). And this is better than the calculation using the elastic constants of veneers,
because the former include the effects of the adhesion and the pressing.

It is very difficult to solve precisely the fundamental equations when the axes of elastic
symmetry do not coincide with those of coordinates (Bis=0, B20, Dis=x0 or D2=0).
The authers attempted to solve them by the application of the finite difference method
and succeeded in solving them with good accuracy of the approximation (see Figs. 7, 8
and 9). The application to the layered orthotropic shells is more complicated than that
to the isotropic shells, so the unique techniques were needed.

The characteristics of the layered orthotropic shallow shells with roller-supported edges
were made clear by this numerical analysis, that is to say, the influence of the following
problems were analysed, and the results are shown in the figures and the tables; 1) the
curvature, 2) the shape of the shells (H.P., Cyl.,, E.P.), 3) ratio of the side lengths,
4) the moduli of elasticity, 5) the direction of the elastic principal axis, 6) uniform pres-
sure and a concentrated load.

Introduction

Theoretical studies on the mechanical characteristics of layered orthotropic
shells are very important to make clear the mechanical characteristics of plywood
shell roofs!-? (include sandwich construction) and furniture made of curved ply-
wood. But it is very difficult to get mathematically exact solution of the funda-
mental equations of layered orthotropic shells, so an approximate method of the
solution must be used. As the approximate methods, finite difference method,
finite element methods and Ritz-Galerkin’s method are considered to be applicable.
In the present paper, applications of the finite difference methods are attempted
to the problems of layered orthotropic shallow shells with four edges roller sup-
ported, and the solutions with good approximate accuracy are obtained.

* Presented at the 20 th Meeting of the Japan Wood Research Society, Tokyo, Sep. 1970.
** Division of Composite Wood.
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MASUDA, MAKU : Plywood Shallow Shells (I)

Table 1. List of symbols used..

Symbol Definition
C elastic constant
E modulus of elasticity
G modulus of rigidity
I moment of inertia
M bending moment
N membrane stress
Q shearing force
X, Y axes of elastic symmetry
a, b shell dimensions in x and y directions, respectively
d mesh size of the finite difference method
m number of the layers
b applied pressure
t thickness
u, v components of displacement in x and y directions, respectively
w deflection
Xy rectangular coordinates or curvilinear coordinates
z distance from the neutral plane of plates and shells
7 shearing strain v y
& strain
/] angle between x axis and X axis
¢ Poisson’s ratio
g normal stress X
T shearing stress 0
» (subscript) in bending of layered plates and shells 0 *
e ( v ) in compression or tension of layered plates and shells
a C 5 ) in #-th lamina or s-th veneer
ayC ) in x and y directions, respectively
»r( ) in X and Y directions, respectively

Fig. 1. Figures for the derivation of the equilibrium equations (1-3)~(1-7).
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Theory of Orthotropic Plywood Sallow Shells

1. The Fundamental Equations of Orthotropic Plywood Shallow Shells*~®

In this paper following assumptions are used for the theoretical analysis of
orthotropic plywood shallow shells; 1) small and elastic deformation, 2) Navier’s
assumption, 3) symmetrical construction of lamination and perfect adhesion, 4)
uniform thickness.

The fundamental equations are derived by the following procedure :
The shapes of the shells are given by

k k

@&, 3) =52+ 5= Y+ kayXy. a-n
k., ky and k., are the cuvatures.
_ 0%, ) _0fx, ) P iC75))
ko= oxz ky= oy: key=kys= oxoy 1-2)
The equations of equilibrium are
ON. , 0Ny _
o Ty 90, 1-3)
ON. ON.
oy tox =0, (1-4)
0Q. , 0
keNz+2key Noy+ky Ny + é?c +—%’—+p=0 , (1-5)
_0M.  oM,.
oM, | oM.,
Q="5 T ox 1-7
where Mry=Myz, Nry‘—‘Nyx . (1‘8>

As the veneers are symmetrically laminated, the coupling of ‘‘the membrane
stress and the bending moment’’ does not occur. So that the strain-displacement

relations of the neutral plane are

ou
= W —kaw , (1-9)
ey=%§~—kyw : (1-10)
_Ou | Ov ~
And the strain (caused by bending)—deflection relations are
Exp= —2ZW,zx , (1~12)
Eyp="—2W,yy , (1‘13)
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Tayp= —22W,zy , (1-14)
0*w . 0w 0w e
where R T w,g,,———ﬁy2 R w’”_—axay . 1-15)

As the veneer can be considered as an orthotropic material, the stress-strain
relations in the #u-th layer are

( Ozn ( Clln ClZn Clsn €r )
| Oyn = C21n C22n Czen &y } ’ a (1—16)
L Tayn Cein Coan  Ceen Ty \

where C12n=C21n, C16n=cmm C26n=cs2n- (1—17)

The membrane stress resultants and the bending moment resultants are obtained
by the integration of (1-16) over each lamina and totalizing over all laminae.

Thus:

moch nop
Na:'_“ n2=1 Shn-lgxndZ, MJ,‘= "E=l Shn_lgrnzdz’
moch, n
Ny= 3§ oudz, My= 5 (" opads,
™ ch, S
A Moy= 21, tonzdz,  (118)~(1-23)

where %, denotes distance from the neutral plane to the lower face of »-th lamina
(numbering from upper face lamina).
Using the following notations Ai;, D;;:

Aij= §1 Cijn(hn" hn—l) = gl Cz]ntn ’ (1'24)
1 m m
Dij=77§1 Cijn(hn® —hny®) = = Cijnln (1-25)
where I,= %Chna —har®), (1-26)

the stress and moment resultants are expressed as follows by substitution of (1-
16) into (1-18)~(1-23):

mocep
Nz"_‘ 2 §h l<cllnez+cl2n5y+ClGnTxy)dz

n=1 n—

=E&r 21 Clln(hn"hn—l) +é&y Zl C12n(hn_hn-1) +7zy % Clen(hn—hn_l)
n= n= n=1

=Ane+ Avsey+ AreTzy, a-27
N, Au A AIG &x
Ny | = | Az A A &y } (1-28)
N, J As A Aes Tzy
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M.=3% 1 S (CllnEzb+C12n5yb+CIG"TW’Dde

(substitute (1-12)~(1-15))

™ ch,
3 g —22(C3ut, 52+ Crontlyy + 2C 00,2, d2z

n=1 hn—l

m ]
=— 2] [?(hna—hn—ﬁ) (Cunw,xx+ Clan,y,,+ZCxenW,xy)]

n=1

=— (Dut,ze+ D1,y + 2Dy s,z , (1-29)

{55’,;\
M,,)

Combining the all above equations (1-1)~(1-30) with the following stress function

1-30)

D,y Dy Dy (( W,z
Dy, Dy Dy W,yy }
Dy Dys Des J 20,2y

¢, the fundamental equations can be derived in the more simply form.

o N _ 0 N 0
Ne=Tyes Nv=Tr> No=—%

ayz ’ axz ’ (1_31)

This stress function satisfies the equations (1-3) and (1-4). Because the terms
k.Q. and k,Q, can be neglected when the shells are shallow.
From the equations of equilibrium (1-5)~(1-8), the following differential equa-

tion is obtained:

0*M, 0*M o*M
o +2 6x6y” + 6y2~” +kyNo+2kyNoy+ kN, +p=0 (1-32)
The substitution of (1-30) and (1-31) in (1-32) yields the equation of equilibrium :
otw otw o'w
Dll ax4 +4D16 6x36 + (2D12+4D66) a zay 4D26 axay
otw 0% o6 , 0, _
+D22 6y4 ky Ox2 +2kry 6356_)’ ks ayz p—o (1—33)
And the compatibility equation is derived from (1-9)~(1-11):
. | 0%y 0Ty o'w 0w ow
o + o oxdy +k, o 2k .y x5y + 4, P =0 (1-349)

Substituting eq. (1-28) and (1-31) into this equation, the compatibility equation is
expressed by ¢ and:

4 4
Buy 0% —2Buy bt @Buat Buo) gy —2Bus oo+ B
0w 0w o’w B
+hym T —2kzy %0y At ke oy =0, (1-35)
where (Bi)=[Ai17 (1-36)
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2. Relations between the Coefficients (B;;, D;;) and the Moduli of Elasticity

In this chapter, the following problems, about the relations between the coeffi-
cients (B;;, D;j) and the moduli of elasticity, are given the proof. Coefficients D;;
in the equilibrium equation (1-32) can be obtained by using the moduli of elasticity
of “‘bending” (Exs, Evs, Gxy» and uxys) of the plywood strips which have the same
veneers and adhesives and the same construction of lamination as the plywood
shells, whose lamination is symmetric with respect to the middle plane. And the
coefficients B;; in the compatibility equation (1-35) can be obtained by using the
equations shown in (3-17), and the moduli of elasticity of ‘‘compression’’ (or tension)
(Exe, Eye, Gxyve and pxve) of the same plywood strips. When the axes of elastic
symmetry (directions of the grain) do not coincide with the axes of coordinates
(directions of the edges), B;; and D;; are obtained by the application of the equa-
tions of the coordinate transformation (3-10)~(3-13) as if the plywood strips were
veneers which have the same elastic constants as those of the plywood strips (Exs,
Exe, ).

It is better to get the coefficients B;; and D;; by the above-mentioned method
which uses the moduli of elasticity of ‘‘the plywood’’ strips than by the calculation
according to the equations (1-24), (1-25) and (1-36), which uses the moduli of
elasticity of ‘“‘the veneers’’. Because the former method gives the coefficients B;;
and D;; which include the effect of the adhesion and the effect of the change of
the specific gravity of the veneers by pressing. :

Considering that the plywood shells and plywood strips are constituted by not
only veneers but also ‘“‘adhesive layers’’, the problems mentioned above can be
given the proof as follows:

The elastic constant Ex. (nominal Young’s modulus of the plywood strip which
has the same construction of lamination as the plywood shells) is the ratio of Nx/
t to ex when Nxx0 and Ny=Nxy=0, i.e.

EXc = NX
Ext

When the fiber directions (axes of elastic symmetry) coincide with the axes

when Nxx0 and Ny=Nxy=0. (2-1)

of coordinates, the equation of stress resultant (1-28) is expressed as follows;

(NX fAll Alll 0 Ex
Ny — Ay, A 0 er (2-2)
{ Nxy 0 0 Agg) Txy -

Substituting the stress conditions (2-1) i.e. Nx*0 and Ny=Nxy=0 in this equ-
ation, ex, under that stress condition, is eXpressed as follows ;

Ex= Ay
ArtAnni—42

Nx 2-3)
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So the Young’s modulus of compression (or tension) Ex. can be expressed using
only A;y and ¢ by the substitution of eq. (2-3) in (2-1):

_AuAn—An®

Ex. Ajqyt

-9

In the same way, Eye, Gxve, pxve and prx. are also expressed using only Ars
and ¢ as follows:

Ey¢= AI IA]HI_AIHZ <Ey¢;=& when Nny, N1=ny=0>, (2-5)
A[ It eyt
GXY(:=”I‘{LtV[L <GXYC=% when NXY:O, Nx=Ny=O>, (2—6)
Uxye= ﬁ;i <ﬂXYc=”_—:j? when Nx=0, NY=NXY=0>, @2-D
A A
My xe= Allli =A—I]I[ (ﬂXYc‘:—z—: when Ny=0, NX’—“NXY=0>. 2-8)

Denoting Crsc and Cisn as follows:

Cllﬂz EX'n’ Cl[]lnz_E_YZL—’ Clﬂnzmy CVIVM:GXYn’
An An An
].n:l—,uXYnﬂYXn, (2‘9)
Crie= EXC, C”c=—€’-’”—, Cuc=M—EX—C—, Cyvie=Gxve
Ac Ae Ae
and Ac=1-—pxveptrxe (2-10)
A;; are expressed in only ¢ and Cis. by substitution (2-5)~(2-8) in (2-9) :
_ A A -An? ~
Ae A AL 2-11D
Ciie= At” , Crie= A}H , Ci nc=~4%, Cuve= A;m , (2-12)
i.e. Arr=Crst. (2-13)

Then, Ars can be obtained from Exc, Eyc, Gxyc and pxye which are measured
by ‘“the tension (or compression)” of the strips made of the same construction
of lamination as the plywood shallow shells. And it is now given the proof that
the coefficients B;; of the compatibility equation (1-35) can be obtained from the
measured moduli of elasticity Ex., Evc, Gxy. and pxy.. Because B;; values are obtained
by inverting the matrix A;;, Ay values are obtained by the coordinate transforma-
tion of A;s, which is expressed in the next chapter, A,s values are obtained from
C:s. by using the equation (2-13), and Cjs. is obtained from the measured value

EXc, EYc, GXYc and HUXye o
(Exey - )—>Crope—>Afr—>Aij—>By; . 2-19

i
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In the same way, it is also given the proof that the coefficients D;; of the equi-
librium equation (1-33) are obtained from Exs, Evs, Gxvs and pxy» which are mea-
sured by ‘‘the bending” of the same plywood strips:

(Expy ) —>Cri—>Diy—>Dy; . (2-15)

In this case it is necessary only to change t—I, e&x, ev, Txr—W,xx, W,rv, 2W,xv,
N—M, and subscript . —> subscript , and use eq. (1-30) instead of eq. (1-28).
For example, instead of eq. (2-1), following equation is used;

Ex,= when Mxx0, My=Mxy=0, (2-16)

My

w,Xxl
where w,., (see eq. (1-15)) is equal to curvature (1/px) given by the bending of
the plywood strips.

3. The Coordinate Transformation of the Elastic Constants

To complete the proof of last chapter, it is necessary to give the equations of
the coordinate transformation™® for the layered plates (or the plywoods), whose
laminae are orthotropic and are laminated parallel or perpendicular to the adjacent
ones.

The equations of the transformation for the not laminated orthotropic plates
(or the veneers) can be expressed as follows:

Clln =C 11 2costf+ C][ I Sintf+ 2 (C [ 1ot 2Cv| V[n) coszﬁsinzﬁ, (3— 1)
Cion=(C1 12+ Cy 12— 4Cyyn) cos?Gsin®f+ C yn(cos*d+sin'd), 3-2)
Cien=(Cy 1nc08?0—Cy 1nsin’f) cosfsing— (C 1a+2Cyyn)
x (cos*@sing— cosfsin®g), / (3-3)
Ca2n=C1 1n8in*d+ Cy 1nc0s*0+2(C1 [+ 2Cyyn) cosfsin?f, 3-4
N Cren=(C| 148in*0— Cy 1ac0s’@) cosfsing+ (C pn+2Cyyn)
x (cos?@sinf— cosfsin’f), 3-5)
Coon=(C 12+ C112—2C 1) cos?fsin?f+ Cyyr(cos?f—sinZf)?, 3-6)

where, Ci» are elastic constants at coordinate direction (see eq. (1-16)), and
Crn are elastic constants parallel to the axes of the elastic symmetry (parallel or
perpendicular to the fiber direction), which are inclined § rad. to the coordinate
axes. Substituting eq. (3-1) in eq. (1-24), the following equation is obtained :

A= f;‘l (C1 1atnc0s*@+ C 1atnsin®@+2(C o+ 2Cyyn) ticos?Psin2d). 3-7D

As @ is same in all laminae when the lamination is parallel or perpendicular
as expressed above, this equation can be rewritten as follows :
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A =cos'f ilcl [ nln+sintf %1 Cy ][ntn+2(:05208in20< i Crint2 ‘E CV[V[n). (3-8)
n= . n= n=1

n=1

And as A;s can be written from eq. (1-24) as follows:
A= 3 i, 3-9)

the following relation is obtained :
A=A cos*f+ Apisintd+2(A | 1 +2Avv)cosfsing. 3-10)

In the same manner, A, A, Az, A and Ag are expressed in the same form,
that is, C is replaced by A, subscripts » and s by :; and s, respectively, in egs.
B-1)~(3-6). 3-11)

So the transformation equations of the elastic constants of the orthotropic
layered plates, i.e. Aj,—>Ai; are obtained.

And the transformation equations of the elastic constants for bending, i.e. D,y
——D;;, are also obtained in the same manner, for example ;

Dy, =D cos*@+ Dy sin*d+2(D; 1 +2Dyy)coshsin®g. (3-12)

D5, Dyg, Dyy, Dys and Des are also expressed by the replacement, C—D, subscripts
iin—1 and re—rs in egs. (3-1)~(3-6). (3-13)
Expanding the range of the application of eq. (2-12), Ci; is denoted as fol-

lows :

Az‘j

Ciro="5L (3-14)

Substituting these relations (2-12) and (3-14) in the transformation equation
(3-10) and (3-11), the following relation is obtained:

Ci1e=C1 108!+ Cy1esint@+2(Cy 1o+ 2Cyye) cos®@sin?g, (3-15)
and the same relations as egs. (3-2)~(3-6), whose subscript » is changed to sub-
script .. (3-16)

So the route-----—shown below can also be given the proof.

Ay (3-10)
(2—V Nﬂ (310

(E.\'(',"') ———e CIJc A P
B A K 36y 3-17)
(3-15) < 7 (1-36)
and (3-16)"~ . _-~ G710

ije
And the following relation for the bending elastic constants are also given the

proof :
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Dir - (3-100
2-13)*
(/ w\(&n)*
(E,w,,"-) W Cth o - Dij (3_18)
(3-15)% >« _ e
and (3-16)* \\\ C .- -7 (B-14)*

* change the notations of the equations to the
bending type according to the manners ex-
pressed between (2f15) and (2-16).

Then, it is now proved that the coefficients of the fundamental equations of
the layered orthotropic shells i.e. B;; and D;; can be calculated from the measured
moduli of elasticity i.e. (Ex., Eve, Gxve, ptxve) and (Ex», Evs, Gxvs, pxvs), respec-
tively as shown in (3-17) and (3-18). And this means that the coefficients can be
calculated as if the shells were the not layered orthotropic shells with the nominal
moduli of elasticity, Ex», Eys,---for the bending moments and Ex., Ey.,--for the
membrane stresses.

Procedure of the Numerical Analysis by means of the
Finite Difference Method

1. The Finite Difference Equations of the Fundamental Equations

As it is very difficult to get the mathematically exact solution of the funda-
mental simultaneous equations (1-33) and (1-35), the finite difference method is
applied to solve them approximately. The fundamental equations are replaced by
the corresponding finite difference equations shown in Figs. 2 and 3 in the same

tg|Eq| Es
-Eq| E4 E5| E5|Eq -0,]0,] 0, \
E7 E3 E| E.3 E? + D3 D| D3 = pk dx s
Eg E5 E2 E4 'Eg D4 Dz "Dq

where, E1=6D11+ (8D12+16D¢s) 272 +6D22 1™
E;=—(16D12+32766) 2172 —4D22d™*
Es=—4D11—(4D12+8D¢s) A2
Es=2D1627'+ (2D12+4Dss) 2772 +2D2 i~
Es=—2D127 4+ (2D12+4Dgs) 772 —2D26 273
E¢=D3:1™*, E;=D1, Es=D32i™%, E¢=DA™!,
D1:2k12"2+2ky, D= —kxl"z Ds;= _ky,
D4:%k1yz—-1, A= ZZ .

Fig. 2. The finite difference equation of the equilibrium equation (1-33)

at the nodal point k.
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gl Cq| Cg
"Cg C4 CZ C5 Cg D4 "Dz 'D4
C7 C3 C| C3 C7 + —D.’)-D| '03 = O’
Col Cs| Cof Cal-G ~04|-05| Dg

C -

where, Ci=6Bs2+ (8B12+4B¢s) A 2+6B1;14™4
Ce=—(4B12+2Bgs)A"*—4Bn1™*
Cs= —4Bs2— (4B12+2Bses) 272
C4= —B2A™'+ (2B12+ Bes) A2 — B1gA™®
Cs=B2sA™ 4+ (2Bi2+ Bes) 272+ B1gA™
Ce=Bui™*, C;= B2,

1 1
Co=—"75"B1sd™, Co=—"5 Bzed™\
Fig. 3. The finite difference equation of the compatibility equation (1-35)
at the nodal point k.

manner as written in the previous report ‘‘Numerical Analysis of Orthotropic
Plates’?.

2. The Finite Difference Equations of the Boundary Conditions

In this paper, the application of the finite difference methods to the problems
of the layered orthotropic shallow shells with ‘““four edges simply supported by
means of rollers’’ is discussed. This roller-support boundary condition can be ex-
pressed as follows:

on the edges parallel to the y axis, i.e. x=+a/2,

w=M,=N,=¢,(or v)=0, 4-D
on the edges parallel to the x axis, i.e. y=+0/2,

w=M,=N,=¢,(or u)=0. 4-2)

These boundary conditions are also expressed by using only w and ¢. The
bending moments and the membrane stresses are expressed by using the equations
(1-30) and (1-31), respectively. And the membrane strains are expressed as fol-
lows from egs. (1-28), (1-31) and (1-36) :

. 2
Exw (Bn B12 Bls qu:

2
e | = | Bu Bu Bu| | Z¢ “-3)
\ 2
LT“’ By By Bes k— ﬁaxgy

These equations can also be replaced by the corresponding finite difference
equations as shown in Fig. 4.
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R11=4D11+4D1217?

| Ria R|2 - R|4 Riz=—2Di12172
— Ris=-2D
Ml = 2@ X [BefBulRe | 0o o
X -Ria | Riz | Ria -
W A= dy/d::.
| [
= X |2
Nyl GES |
b
I Poo | Pop | ~Ppa) D7 —2Bud™o2Be
— D1
Ey |k = 7 X | Pa3s | Pai | Pes Poi=Bos
x —P2a | P22 | Pas ® Pﬂ:% Baod-!

Fig. 4. The finite difference equations of the bending moment M., the membrane
stress N; and the membrane strain &, at the nodal point k.

3. Computation Procedure

In order to solve the simultaneous linear equations consist of the above finite
difference equations of ‘‘the fundamental equations and the boundary conditions”,

y

!

D

o
o

|~ dx

Fig. 5. An example of the meshes of the finite difference method.
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the number of the equations must be equal to that of the unknowns. Taking
advantage of symmetry with respect to the central point C, for example, wi=w4’,
wr=wxz'---, only the half of the shell is considered as shown in Fig. 5.

1D The finite difference equations of the equilibrium equation and the com-
patibility equation hold at each nodal point of symbol O in Fig. 5.

2) The finite difference equations of the boundary conditions (4-1) and (4-2)
hold at each nodal point of A and x, respectively.

3) On the corner points [J, w; and w: are equal to zero.

The number of the finite difference equations is smaller than that of the un-
knowns by four and six about w and ¢, respectively. To equalize these, the follow-
ing relations are used:

Wy =w, =ws=we=0, 44D
$1=co=d3=bs=dps=p7=0. 4-5)

The relations (4-5) are equivalent to ‘“N,=N,=0 at the corners”’. And the
relations (4-4) means that the deflections of the imaginary nodal points on the
extended lines of the edges are equal to zero. These are equivalent to “M,=M,=0
at the corners’” when the axes of elastic symmetry coincide with the axes of coordi-
nates, but are not equivalent when those do not coincide.

As the imaginary nodal points 4 and 8 in Fig. 5 are not used, the values of
M., M,, M., and N., at the corners are calculated by means of the extrapolation.

Thus, the simultaneous linear equations i.e. the finite difference equations are

obtained in the following form:

eqilibrium equations 1 \/wk W‘ ’( D 1

............................ I | o
compatibility equations I -------- = l 0 (4-6)
boundary conditions J Pr J L0

As the matrices of these simultaneous equations are large and complicated (for
example, 86x86 for 8x8 meshes and 128x128 for 10x10 meshes), the authers
designed the computer programs not only to solve the linear equations but also to
make the matrices. So the accuracy of the approximation is easily examined by
changing the input data card for the mesh sizes. Thus, the distributions of the
deflection w and the stress function ¢ are obtained by the computation, and then
those of the bending moments and the membrane stresses are also calculated by

using the equations shown in Fig. 4.
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H-P- O° shel | H-P- 45° shell
Fig. 6. Figures of the orthotropic plywood cylindrical shells and the H. P. shells,
whose face grain (principal elastic axis) is parallel and/or inclined at 45° to
the edges.

Results and Discussions

1. Accuracy of the Solutions by the Finite Difference Method

As the finite difference method is one of the techniques to get approximate
solution, it is necessary to examine the accuracy of the solution. The influence
of the mesh sizes is shown in Figs. 7, 8 and 9. These figures show that the finite
difference method mentioned above gives good approximate solutions to the pro-
blems of the roller-supported plywood shallow shells. The finer the mesh becomes,
the more accurate solution can be obtained. But the capacity of the memory and
the computation time give the limitation to the mesh sizes. So it is effective to
apply the extrapolation method (see authors report” p23 eq. 16-2), when the more
accurate solutions are needed.

As is evident from the figures, the results with the 8 x 8 grid give the sufficiently
accurate solutions to make clear the mechanical characteristics of the orthotropic
plywood shallow shells. So the results computed with the 8 x8 meshes are used
in the following discussions.

2. Effect of the Curvature

Deflection

The effect of the curvature on the deflection of the orthotropic plywood cy-
lindrical shallow shells is shown in Fig. 10, and that of the hyperbolic paraboloidal
(H.P.) shells is in Fig. 11. And the effect of the rise on the central deflection'® is
shown in Fig. 12. As is evident from the figures, the effect of the curvature or
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Fig. 7. Influence of mesh sizes on the deflec-
tion along the central curved line of the
orthotropic cylindrical shells* (£,=0.01 or
rise/span=0.075) under uniform pressure. 0°,
30° and 45° denote the shells whose principal
elastic axes are inclined to the edges at 0°,
30° and 45°, respectively.

* The dimension of the shells is 60 cm X 60
cm X0.9cm. The moduli of elasticity are
equal to those of C in Table 2.

** When the case **** ijn Table 2, the unit
of the scale is x107% cm/(kg/m?).

Fig. 9. Influence of mesh sizes on the mem-
brane force Nx along the central curved line
of the orthotropic cylindrical square shells
(the same shells as shown in Fig. 7).

* When the case **** in Table 2, the unit
of the scale is x10 (kg/m)/(kg/m?2).
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Fig. 10. Effect of the curvature on the deflec-
tion (along the central line parallel to x axis)
of the orthotropic cylindrical shells under
uniform pressure. See * in Fig. 7 and 8.
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Fig. 11. Effect of the curvature on the deflec-

tion (along the central line parallel to x axis
of the H. P. shells under uniform pressure.
See * in Fig. 7and 8.

Fig. 12. Effect of the rise (or the curvature)
on the central deflection of the shells (cylin-
drical, H. P. and E. P.) under uniform pres-
sure. See * in Fig. 7 and 8.

Cyl.— k.0, ky=Fksy=0, “k;=0.01" is
equal to ‘‘rise=4.5cm”
ka=ky=0, kay>0, “‘kz=0.005"
is equal to ‘‘rise=4.5cm”’
E.P.—ks=ky*0, kay=0, *‘ky=hy=0.005"
' is equal to ‘“‘rise=4.5cm”

H.P.
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rise on the deflection of the cylindrical (Cyl.) shells with four edges roller-supported
is much larger than that on the deflection of the H.P. shells. And the effect of
rise on the deflection of the cylindrical shells is almost the same as that of the
elliptic paraboloidal (E.P.) shells.'” As is shown in Fig. 10, the central part of
the deflection curve is depressed when the rise increases.

Bending Moment and Membrane Stress

The effect of the curvature on the bending moment and the membrane stress
of the cylindrical shell is shown in Figs. 13 and 14. The bending moment pararélI
to the face grain decreases as the curvature increases. The membrane stress is
equal to zero when the curvature is equal to zero (i.e. the plates), and it increases
as the curvature increases. But it begins to decrease when the curvature becomes

larger than a certain amount, as shown in Fig. 14. This phenomenon can be ex-
plained by the increase of the stress component against the external force.

The average face-strain caused by the bending moments is almost the same
as that caused by the membrane stresses when the curvature %, is about 0.01.

3. Influence of ‘‘the Direction of the Axes of Elastic Symmetry”’ and ‘“‘the Moduli
of Elasticity’’.

Direction of the Axes of the Elastic Symmetry

The central deflection of the square plates and shells under uniform pressure
is shown in Table 2.

The deflection of the square shells becomes smallest when the direction of the
axes of elastic symmetry inclines at 45° to that of the edges, except the case of
A (parallel laminated shells). This is one of the interesting characteristics of the
orthotropic plates and shells. ‘

The deflection of 0° shell (the elastic principal axis is. parallel to the edges or
to the x axis) is almost the same as that of 90° shell except the case of A-Cyl. in
Table 2.

Examining Table 2 with consideration that ‘‘the bending elastic constants of
cases B and C and/or D and E” and ‘“‘the compression (or tension) elastic con-
stants of cases B and D and/or C and E”’ are equal to each other, it becomes clear
that the effect of the membrane stress to the deflection becomes larger than that
of the bending moment as the rise increases. _

Except the extreme case of Ex>Ey as case A in Table 2, the deflection curves
of the orthotropic plates and shells are similar to each other (in the casesof
B,C,D and E). The deflection of the ‘“‘isotropic’’ plates and shells, whose elastic
constants are equivalent to the orthotropic plates and shells, is shown in :F),iof
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Table 2. Influence of ‘‘the moduli of elasticity’’, ‘‘the curvature’” and ‘‘the direction of the
axes of elastic symmetry’’ to the central deflection under uniform pressure.*

Moduli of elasticity Central deflection (we/p) X107°cm/(kg/m?)****

of the plates and 0 Plate Cyl. | Gyl Cyl. kE_. 15' H-P
= = = = et L y: = =

shells o — ke=hy= kz=0.001 kz=0.005 | kz=0.01 | 305 be=Fky=0
boy=0  |ky=Fey=0 ky=key=0 by=key=0/| kzy=0  |ky=0.005

Exy=145  Ex.=145 0° 1.859 .815 .120 0.498 0.477 1.692

Eyy= 5 Ey.= 5 30° 1
Gxyp= 5 Gxye= 5 45° 1.734
1

1

.813 | 1.787 .337 0.767 0.747 .620
1

rxys=0.55 pxy.=0.55 | 90° .859 1

1

1 1
.710 1.277 0.718 0.709 1.539

1 1

.804 .029 0.393** 0,477 .692

Ex»=100 Ex.=100 0° 1.981 1.884 0.864 0.313 0.308 1.707
B Eys= 50 Eyc.= 50 30° 1.342 1.237 0.419 0.125 0.121 1.054
Gxyp= 5 Gxye= 5 45° 1.191 1.064 0.283 0.069 0.068 0.865
rxy>=0.055 1xye=0.055 90° 1.981 1.884 0.858 0.302 0.308 1.707
Ex,=100 Ex.= 75 0’ 1.981 1.883 0.856 0.309 0.304 1.703
C Eys= 50 Eye= 75 30° 1.342 1.227 0.390 0.112 0.109 1.039
Gxyy= 5 Gxye= 5 45° 1.191 1.048 0.250 0.057 0.056 0.842
#xy»=0.055 pixy.=0.037 90° 1.981 1.883 0.851 0.299 0.304 1.703
Exy= 75 Ex.=100 0° 1.984 1.888 0.864 0.310 0.309 1.711
D Eyy= 75: Eye= 50 30° 1.303 1.204 0.415 0.123 0.121 1.041
Gxyr= 5 Gxye=5 45° 1.142 1.026 0.281 0.069 0.068 0.851
1xy»=0.037 pxy.=0.055 90° 1.984 1.888 0.863 0.309 0.309 1.711
Exy= 75 Exe= 75 [0°&90° 1.984 1.887 0.857 0.306 0.305 1.708

Eyp= 75 Eye= 75 30° 1.303 1.194 0.385 0.110 0.109 1.022
Gxys= 5 Gxye.= 5 45° 1.142 1.009 0.248 0.057 0.056 0.822
‘thyb=0.037 ﬂxyc=0.037

Ey=E;=54.3 — 1.441 1.289 0.352 0.095 0.096 1.062
F |Ey=FE,=20.8
/—lb:‘Uc:O.sog

* The dimension of the plates and shells is 60cm X60cm X0.9cm (thickness).
** Tn this shell the deflection becomes maximum (0.441) near the mid point between the not
curved edge and the center of the shell.
*+* except for u
#++* When the sizes of the plates and the shells are 6m X6m X9cm and the curvatures are 1/10
of this table i. e. the same rise/span ratio, the unit is X10™2 cm/(kg/m?).

Table 2. These isotropic elastic constants are calculated with consideration that
‘“the lamination and the adhesion of the infinitesimally thin veneers in every direc-
tion”’ make isotropic plates and shells. The values of the deflection of these iso-
tropic plates and shells are between those of 0° and those of 45° of the orthotropic
plates and shells (B,C,D and E in Table 2) except the case A.
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Table 3. Rectangular plates and shells.*

Central deflection (w./p) x10~*cm/(kg/m?)
Curvature 0 square rectangular rectangular
1:1 1:1.5 1:2
(60cm x 60cm)**| (60cm X 90cm )**|(60cm X 120cm)**

Plate 0° 1.981 2.818 3.012
ke=ky=kzy=0 30° 1.342 2.516 3.345
45° 1.191 2.423 3.531
90° 1.981 4,295 5.522
Cyl. 0° 0.856 1.569 2.112
kz=0.005 30° 0.390 1.028 1.995
ky=ksy=0 45° 0.250 0.858 2.028
90° 0.851 1,942 3.031
Cyl. o 0.309 0.669 1.089
kz:=0.01 30° 0.112 0.363 0.890
ky=key=0 45° 0.057 0.278 0.873
90° 0.299 0.720 1.278

* the moduli of elasticity are the same as those of type C shown in Table 2.
**% Gee **** in Table 2.

Rectangular Plates and Shells
The central deflection of the rectangular cylindrical shells under uniform pres-

sure is shown in Table 3. When the ratio of the side lengths is 1:2, the minimum
central deflection is obtained at smaller angle than 45°.

4. Distributions of the Deflection, the Bending Moments and the Membrane Forces
under Uuiform Pressure

Deflection

Distributions of the deflection, the bending moments and the membrane forces
of the “‘cylindrical’”’ shells with the moduli of elasticity of type C (Table 2) “‘under
uniform pressure’”’ are shown in Figs. 15~21.

The deflection distributions of the cylindrical shells (k.=0.01, rise/span=0.075
are shown in Fig. 15. The deflection curves of the 45° shell (face grain is inclined
at 45°) and that of the isotropic shell (F in Table 2) are flat except near the
edges, and those deflections are much smaller than that of the 0° shell.

Bending Moments

The distributions of the bending moment parallel to the elastic principal axis
of the orthotropic shells (Mx) are shown in Fig. 16 with the distribution of the
maximum bending moment of the equivalerit isotropic shell (Mnez). The bending
moment of the 45° shell and that of the isotropic shell are smaller than that of
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Fig. 15. The distribution of the deflection of the cylindrical
shells (£:=0.01 or rise/span=0.075) under uniform pressure.
See * and ** in Fig. 7. The moduli of elasticity of the
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The distribution of the bending moment of the cylin-
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Fig. 18. The distribution of the membrane force Nx of the
orthotropic cylindrical shells under uniform pressure. These
are the same shells as those shown in Fig. 15. See * in
Fig. 9.

Fig. 17. The distribution of the bending moments of the H. P.
shells (k:y=0.005) under uniform pressure. See * in Fig. 7.

The moduli of elasticity of the isotropic shell are shown in
Tahle 2.F
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Fig. 20. The distribution of the membrane shearing force Nxy
of the orthotropic cylindical shells under uniform pressure.
These are the same shells as those shown in Fig. 15.
See * in Fig. 9.
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concentrated load P.. See * in Fig. 7 and Table 4.
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the 0° shell. And the curves are depressed near the central parts. The depres-
sion of the 45° shell and that of the isotropic shell are much larger than that of
the 0° shell. Particularly, the bending moment value of the 45° shell becomes
negative near the center (cf. Fig. 13). The bending moment curves on the edges
of the 45° shell are complicated, and two of the diagonally opposite corners have
the negative bending moment value as shown in Fig. 16. The similar phenomenon
is also observed in the H.P. 45° shell (see Fig. 17). The central depressions in
the H. P. (45° and isotropic) shells are smaller than those of the cylindrical shells.
The bending moment value of the H. P. shells are about 7 times as large as that
of the cylindrical shells as shown by the scales of Figs. 16 and 17.

The figures of the distribution of the bending moment perpendicular to the
elastic principal axis are omitted. The values are about half of My, and the dis-
tribution curves are similar to those of My.

The figures of Myy (the torsion moment parallel to the elastic principal axis)
are also omitted, because the values of the orthotropic shells are much smaller
than those of My. The Myy of the 45° shell is nearly equal to zero.

Membrane Forces

The distribution curves of the membrane forces (Nx, Nxy) of the H.P. shells
are more complicated than those of the cylindrical shells (see Figs. 18 and 19).

The shear membrane forces of the 45° shells are much smaller than those of
0° (see Figs. 20 and 21). This is an advantage of the 45° shells.

The average of the membrane forces of the H. P. shells are nearly equal to
or a little larger than those of the cylindrical shells, but the moments of the H. P.
shells are much larger than those of the cylindrical shells. This is a disadvantage
of the roller-supported H. P. shells, and an advantage of the cylindrical shells.

5. Central Concentrated Load

The distributions of ‘‘the deflections, the bending moments and the menbrane
forces’” of the cylindrical shells “‘under a concentrated load’ are shown in Figs.
22~24. And the central deflection of ‘‘the plates, the cylindrical shells and the
H.P. shells” are shown in Table 4. The deflection of the plates and the H.P.
shells under the concentrated load, which is equal to the total of the uniform
pressure, is ‘‘about 3 times’ as large as that under uniform pressure. With respect
to the cylindrical shells, the ratio becomes larger as the curvature increases. And
when k. equals to 0.01, the ratio is about 4.5 for the 0° shell and about 14 for 45’
shell. Nevertheless the deflection of the 45° shell is much smaller than that of O’
shell (about 60% of that of 0° shell).
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Table 4. Central deflection of the shells and plates under a central con-
centrated load*: w./p (mm/36kg).

Cyl. Cyl. H. P.

4 Plate k2=0.005 ks=0.01 kzy=0.005
0° 5.828 2.884 1.368 5,009
30° 4.201 1.712 0.894 3.236
45° 3.821 1.372 0.786 2.672
90° 5.828 2.935 1.474 5.009

‘

Ratio of the central deflection of the shells and plates ‘‘under a central
concentrated load’’ to that of ‘‘under uniform pressure’”*: we/wy.

Cyl. Cyl. H. P.
0 Plate k»=0.005 £s=0.01 Fey=0.005
0° 2.94 3.37 4.43 2.94
30° 3.13 5.08 7.98 3.11
45° 3.21 5.49 13.87 3.17
90° 2.94 3.45 4.96 2.94

* The moduli of elasticity are the same as those of C in Table 2. The
dimension is 60cm X 60cm X0.9cm. The concentrated load (36kg) is equal
to the total of the uniform pressure (100kg/m?).

The distribution curves of the bending moments have steep ascent near the
center of the shells (compare Fig. 23 with Fig. 16). And the bending moments at
the center are infinite, so the center 7.e. the loaded point is a singular point for
the elastic analysis.

The distribution curves of the membrane force Ny have the mountain range
which runs parallel to each principal elastic axis as shown in the both figures of
0° shell and 45° shell (compare Fig. 24 with Fig. 18 with consideration of the scales).
The distribution curves of Ny of ‘“0° shell’’” have not such a mountain range but
those of Ny of “45° shell” have a similar mountain range which runs diagonally

(parallel to Y axis).
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