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Evaluation of Fracture Toughness for Wood-Epoxy
Adhesive System under External Shear Force*

Kohei KOMATSU**, Hikaru SASAKI** and Takamaro MAKU**

Abstract-Fracture Toughness Gc of Wood-Epoxy adhesive system under external shear
force was evaluated by employing the experimental compliance method based on the Griffith­
Irwin fracture theory.

Invariability of Gc with the different glue line length was tolerably recognized and the
representative value of Gc for the above system was about 0.25 (cm.kgjcm2) throughout the
series of glue line thickness tested.

Fracture mode and stress distribution were discussed with some helps of Finite Element
Method.

Introduction

Raptures of composite structures or members such as stressed skin panel or glulam

are often initiated from the parts of adhesive joints. Therefore, members having ad­

hesive-bonded parts should be designed depending on the reasonable fracture criterion

of adhesive joint.

So called fracture strength obtained from the ordinary adhesive joint tests, in which

the load carring capacity of adhesive joints is evaluated directly by the avarage fracture

load or in many cases with the avarage fracture stress on the joint area, does not

always give the reasonable standards for the fracture of adhesive joint, because these

strength properties often vary with testing factors such as joint area, shape and dimen­

sions of specimens, test speed etc.

When a certain combination of adhesive system is once selected, the material con­

stant which dominates the fracture of the adhesive system is desired to be as consistent

as possible throughout any variation of test fractors so that the adhesive system is used

safely enough to structural members in which various joint configurations may be

claimed.

The well known GRIFFITHl)-!RWINZ) fracture theory may give some hints to discuss

such problems as fractures of adhesive bond, because of the analogus features between

two cases of adhesive bond and homogeneous material with respect to both stress con­

centration at vicinity of geometrical irregularities and energy spent irreversibly through

* Presented partly at the 24th Annual Meeting of the Japan Wood Research Society, Tokyo,
April, 1974.

** Division of Composite Wood.
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separation of the interface as already interpreted by WILLIAMS3).

In the field of adhesive bond, the off-set of adherends has been simulated as the

geometrical irregularrity in many cases and the fracture energy approach has mainly

employed to evaluate the material constant dominating the fracture of adhesive bond.

Many investigations have already verifyed that the Fracture Toughness (sometimes

called as Toughness) Gc is material constant which is invariable through different joint

geometries and test configurations4- 10). Unfortunately, these verifications have almost

been limited in case of cleavage force and adherend of non-woody materials.

In practice, adhesive bonds are often used in parts of wood construction subjected

by shear force. Recently, WALSHll) has discussed strength of the typical lap joint of

wood by employing the approach of stress intensity factor neglecting the thickness of

glue line. No more results have been obtained with respect to wood adhesive bonds

subjected by external shear force.

This study was intended to verify the invariability of Gc for wood-epoxy adhesive

system under external shear force, and was discussed with the GRIFFITH-IRWIN fracture

theory.

Experimental

Preparation of Specimen
Process of preparation of the test specimen is shown in Fig. 1 and 2. In Fig. 1,

block-4

30_:ain~

3rG~

block-I

block-2

(Unitcm~ block-3

block-5

Fig. 1. Wood blocks and the machining process.

Fig. 2. Gluing process.
/'
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block-l was cut from a flitch of air dried Lawson cypress (Chamaecyparis Lawsoniana

PARL.) so that the grain direction always inclined about 2---4° in L-T plane to the edge

of the block. The block-l was cut into two block-2s with a mitre saw. Half numbers

of the block-2 were paired and glued together with epoxy resin adhesives so as to make

book-matched grain. The bonded blocks were called block-3. Then the block-3 and

the rest of block-2 (unbonded) were sawn into 5---6 mm thick with a mitre saw. These

strips were called block-4 and block-5 respectively. Then the block-4 and two block-5s

were bound together so as to make conversing grains from left to right in Fig. 2 along

the glue lines of which thickness and length were controlled with teflon spacers. The

bottom of the glue line was sealed with cellulose tape before the resin was poured.

Then the moderatelly warmed, bubble-free epoxy resin mixed with 11 phr (parts per

hundred of resin by weight) of hardener DETA (Diethylene triamine) was poured

carefully into the narrow cavities. After more than 24 hr. cured at 20°C and 60 %
R.H., specimens were finished with a super-surfacer into 4 mm thick. Splints of birch

were bonded on the strip with same epoxy resin and the bonded strips were cut into

the final form of specimen. Then, the specimens were conditioned at 20°C and 60 %

2P

II
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Ii

steel arm
block, h:

sp

~ ~
2P

o

Fig. 4.

~ : groin direction
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Fig. 3. Schematic diagrams of test specimen.
a: crack length, l: glue line length, B:
width of single adherend (1.2 cm), T:
thickness of glue line, H: thickness of
specimen (0.4 cm), S: splint (2.4 x 2.7 x
0.9cm), (j: grain angle (2_4°), L: total
length of specimen (25 cm)
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R.H. for a month before the test.

Test Specimen Configuration and Test Apparatus

Test specimen configuration is shown in Fig. 3, In which the variables are as fol-

lows.

The glue line lengths denoted by l are 5, 8, 11, 14, 17, and 20 cm.

The glue line thicknesses denoted by Tare 0.01, 0.03, 0.075, and 0.15 cm.

Since the specimen has constant total length of 25 cm (denoted by L in Fig. 3),

length of the unbonded region simulated as crack (denoted by a) is ranged from 5 cm

to 20 cm.

Five same specimens were prepared on each glue line thickness and crack length,

and thus the specimens totalled 120. Another dimentions of specimen were constant

through the all specimens.

The schematic diagram of test apparatus IS shown in Fig. 4. When center ad­

herends are pulled down with tensile force 2P, outer two adherends are pushed up

with two reaction forces 2 x P on the steel bearing blocks b. Thus the symmetrical

shear loading condition in which the rotating moments were vanished each other was

realized. Moreover, the outer two adherends were prevented from buckling by means

of loose holding of steel arm guides ar.

Determination of The Loading Point Displacement

An exsample of extra­
poration of the loading
point displacement.

a = I I em
T =0.15cm

2P = 80 kg

Fig. 6.
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Fig. 5. Schematic diagrams of measurement of relative
displacement.
a: crack length in em, no: number of specimen
arbitrary put from 1 to 5 on the five same
specimens, Us: relative displacement, 00: load­
ing point displacement
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In this study the well-known compliance method originally developed by IRWIN and

his ~ssociates2) was used to evaluate the Fracture Toughness Ge • When the compliance

method is used experimentally, the loading point displacement must be known to obtain

the compliance as function of the specimen geometries.

In case of the specimen used in this study, plastic deformation at the vicinity of

loading points was not small enough, it was, therefore, necessary to eliminate the

plastic deformation from the loading point displacement to calculate the elastic strain

energy stored in the specimen under the external load. For the elimination, the linear

extrapolation of the relative displacement observed at uniform strain region was applied.

In the specimen, the uniform strain was observed over the unbonded part except the

vicinities of crack tip and loading points. Thus the relative movement of crack con­

tours between the center and outer two adherends belonged to the uniform strain field

was directly measured with the optical rule. The measurements were made on the

razor cut marks at three appointed locations along each crack contour as shown in Fig. 5.

The cross head of the testing machine (TOM-200], Shinkoh Communication Ind.

Ltd.) was stopped at intervals of 20 or 25 kg to measure the relative displacement.

The cross head speed was 1 mm/minute throughout the experiments.

The razor cut marks, at which the relative displacements (Us) were measured, were

made at different locations for the same five specimens in accordance with equation-A

in Fig. 5.

For a certain crack length (a), glue line thickness (I), and load (2P) thirty relative

displacements (Us) measured on five same specimens were obtained, and then the

paired values of Us measured at the same horizontal locations but on different crack

contours were averaged. Then, these fifteen averages were plotted against the locations

from the crack tip as shown in Fig. 6. Finally, the least squares technique was em­

ployed to get a regression line from which the idealized elastic displacement (00) at

loading point could be obtained. All these operations were done on a FACOM 230-75

computer.

Compliance Method
The relation between load (2P) and loading point displacement (00) obtained by

the method described above are shown in Fig. 7(a),.....,(d). The compliance (oo/P) was

evaluated from the inclination of fitted lines drawn on the plots, provided that linear

relationship was held at least in the intermediate range of load (i.e., 2P= 50,....., 100 kg).

The values of compliance obtained experimentally are shown in Table 1. The com­

pliance for thick glue line (T=0.15 cm) was also calculated by numerical analysis of

the Finite Element Method (F.E.M.) and is also shown in the table for comparison

with the experimental value.
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Fig. 7 (a)-(d). Relation between load (2P) and loading point displacement (00).

From preliminary consideration, we recognized that in the specimen used it did

not lead to reasonable results to use the compliance which was related only to the crack

length. Therefore the glue line length (I) was combined with crack length (a) so as

to make the effects of deformation of bonded region involve in the whole compliance

ostensibly. A dimensionless ratio of a/I was selected as the most simplest combination.

Fig. 8 shows the relation between compliance (oo/P) and dimensionless ratio (a/I).

After the iterative fitting operations for all of glue line thicknesses, the most simplest
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Table l. Values of compliance (00/P) for different crack lengths (a) and
glue line thicknesses (T).

~"~'~ (em)
5 8 11 14 17 20

.T (em) ~

0.15 23.0 33.4 42.8 57.2 57.2 66.8

0.15 25.0* 34.0* 42.4* 51.1* 59.8* 68.8*

0.075 22.2 27.8 38.0 45.2 58.4 58.4 x 10-5 (em/kg)

0.03 21. 6 26.0 34.4 43.2 58.0 63.4

0.01 19.2 34.0 38.0 46.8 50.4 62.4

* Values obtained by F.E.M.

5 1 ~-) _________6

?i:-"-(0) Ii

; <r ~P~Cotk(OIQ)" I
I- ~/o

{I/O
T (em)

y~ o 0.15

~
" 0075
c 003
<r 0.0 I
• 0.15(FEM)

20

00 ~ 1V14 14/11 I~ 2Q!5
Dimensionless Rotio olD

~ 40
'2

~
o

U

Fig. 8. Relation between compliance (00/P) and dimensionless ratio (a / 1).

regression equation was determined as follows.

oo/P=C(a, I) =Co+k(a/I)n ............ (1)

Since the compliance C is a function of a and I, the compliance derivation is:

where,

dC/da=aC/aa+ (aC/al). (dl/da) =aC/aa-aC/al

I=L-a

............ (2)

Substituting equation 1 in equation 2

............ (3)

Then the Fracture Toughness Ge can be written:

G = Pez (de) nkPez .~. (a/l)n
e 2H da 2H L

............ (4)

where H is thickness of specimen, Pc is half value of critical tensile force acting on

center adherends, and nand k are coefficients determined by the iterative fitting, and

in this study nand k were 0.4, 35.148 x 10-5 respectively for all glue line thicknesses.
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Results and Discussion

Invariability of Gc

The Fracture Toughness Gc calculated from equation 4 for different crack lengths

are shown in Fig. 9. It is recognized that the Fracture Toughness estimated are in­

variable for all different crack lengths tested. Thus the application of Fracture Mech­

anics to the adhesive system under external shear force is tolerable. The effects of

glue line thickness on the Gc are scarcely recognized in the extend of this test. From

these results, we adopted the value of 0.25 (cm o kg/cm2) as the Fracture Toughness of

wood (Lawson cypress)-Epoxy resin (ftexibilizer free) adhesive system under external

shear force. These results may not be compared with any other results directly, be­

cause no investigations have been done with respect to the system having the same

loading conditions and materials.

0.35 T~0075cm

~ 8

~ 0.25 o-8-~-o-- :i,-mean
-g, ~ 0 0 ~ 0.25

~ 0.15 a
Q)

~o 0.35 0 0 '"

., .. ""
~ 0251-o--~-0--",-~e~~

Gc
0.15 T~0~03cm

0.35 T~OOlcm

0.25 0_00__0_0_ §-a-mean
., 0 dl> 0 '" 025

0.1 5 '*5--::-8---:-171--c'-14:--~17-----:2~0-----:(-cm.....,)--.l

a crack length

Fig. 9. Fracture Toughness Gc for different crack lengths and glue line thickness.

The only one which is narrowly possible to compare with respect to material con­

dition under similar category of loading condition is the results of RIPLING et al. 4), in

which test was done on Aluminum-Epoxy system. From simple comparison between

the present results and theirs, it is recognized that GIIc for the Aluminum-Fpoxy system

with natural sharp crack inbeded in adhesive layer is at least one order of magnitude

larger than Gc for wood-Epoxy system with narrow cavity simulated as crack. Results

obtained by RIPLING et al. are shown in Table 2 with comparison of the present results.

On the other hand, the comparison with respect to the loading condition under the

same adhesive system is possible. SASAKI10) obtained G]C for wood-epoxy system under

cleavage force with double cantilever beam specimen. The average values of G]C was

- 17-
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Table 2. Values of Fracture Toughness for various adhesive bonding systems.

RIPLING et al. 4)

MALYSHEV, SALGANIKS)

SASAKI10)

neglected

GIIe

System I. Fracture Toughness I Glue line thick-I
I k I Investigators: em· g/cm2 ness em

. I

0.24 0.15 I

0.25 0.075 II Present test
0.28 0.03
0.25 0.01 I

4.5 0.04
4.9 0.045
2.5 0.07
6.8 0.12

0.18 0.0125
0.24 0.075
0.19 0.15
0.19 0.30
0.19 0.45

0.04
0.017
0.06

2024-T4 Aluminum-(Budd Photos­
tress Type A) Epoxy resin-same
Aluminum

Lawson cypress (12 % M.C.)­
(Cast Type) llD/20 Epoxy*-same
wood

Mountain ash (13 % M.C.)-(Cast
Type) llD/20 Epoxy-same wood

Plexyglass- (ED6) 8--10P/50--60
Epoxy-Stell

2024-T351 Aluminum-(Dow 332)
lOT/82 Epoxy-same Aluminum

Aluminum- (DER 332) 12.5T/132
Epoxy-same Aluminum

0.06

O. 12
O. 19

0.0254

0.0127
0.0635

TRANTINA6)

MOSTOVOY et aI.9)

* Adhesives are identified as follows;
Bracket: general or commercial name of base resin.
First number: phr of hardner.
Letter: hardners' capital i.e. T=TEPA, D=DETA, P=PEPA.
Second number: post-cure temperature in °C.

0.2 ranging from 0.18 to 0.24 in cm.kg/cm2 as shown in Table 2. This previous re­

sults indicate that the Fracture Toughness of wood-epoxy system is scarcely different

in two cases of external shear and cleavage force conditions. About this, discussion

will be made later with relation to the stress distribution at the vicinity of crack tip.

25 (cm)2.0151.0

~ )'-------r---:::------.-~ wood

1<-0=5 glue line~o;, r T=015
... <-- x-J r~

P=IOkg tnC--WOOd lxy

<- (unit:cm) 0 y

05

5

-5

-15 '-- '--__'--__'-- '--__L-~
o

x Distance trom crack tip

Fig. 11. Distribution of ay and Txy along the
interface between adhesive and cen­
ter adherend.

'b" 0 ,

0-0

-\0-0_0o f----- ---->'C==o~o-o-o__=_o=o

~ 0_0_0-0-0-0-0

o O~\

Of"CL ~.o,--
6"".0··'0· 7,y

-10

(kg/em')
15 :,

o
10

o

2.5 (cm)2.015100.5
-15 '--__'--__'--__'--__'--__L-----'

o
x Distance from crack tip

Fig. 10. Distribution of ay and Txy along the
center of bond.

0=0-0 -<>-=0

(kg/cm") I
15~·

q
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(kg/cm2)

15

10

-10

O-o=o~

2.5 (cm)2.01.51.00.5
-15 L-__L-_----''---_----'__-'-__-'-_----'

o
x Distance from crack tip

Fig. 12. Distribution of Oy and 7:xy along the interface between adhesive
layer and outer adherend.

As another comparison, some representative values of Fracture Toughness for various

types of adhesive systems are also shown In the table.

Eftects of Stress Component on Fracture
Numerical stress analysis by the usual Finite Element Method (F.E.M.) was done

to determine the stress distribution near the crack tip (see Appendix-I). Fig. 10",12

show typical pattern of stress distribution at a certain crack length and glue line thick­

ness. From these, it is shown that the most significant stress components which will

participate in fracture are a y and 'rXy distributing along the interface of adhesive layer

and center adherend, and the pattern of stress distribution along the interface of two

T

(em)

T
c 0.15
• 0.075
• 0.03
o 0.0 I
A 0.02

1j.\I
! ~~cQ

Gb~~

(unit:cm)

10

(f)

(f)

a>

0.1

Distance from crock tip x

Fig. 14. Singularity and intensity of Oxy dis­
tributing along the interface between
adhesive layer and center adherend.

(em)

c 0.15
x 0.075
• 0.03
o 0.0 I
A 0.02

w ad crock tiPl

glue line~x

wood y­
cry

(f)

(f)

a>

(unit: em)

(J)

0.1 ~-'---'--.L-1.....L...L.L.U..----'--L...J.--l-.J...L.l.l..!.-~~.-J
0.01 0.1

Distance from crock ti P x

Fig. 13. Singularity and intensity of Oy dis­
tributing along the interface between
adhesive layer and center adherend.
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different materials at the vicinity of a right angle corner is not similar to that of

homogeneous materials12 , 13).

Fig. 13 and 14 show the effects of glue line thickness on the stress concentration

of (]y and 'fXy. In these graphs, "a" indicates the singularity of stress concentration

from which the magnitude of participation of stress components in fracture might be

deduced, if the stress distribution at vicinity of the crack tip could be assumed as

equation 5 similar to that of homogenious materials12).

Stress = K· (1/xa ) ........... , (5)

where, x is distance from the crack tip, K is stress intensity factor.

From this simplifying, in case of thick adhesive layer cleavage stress (]y along the

interface of adhesive layer and center adherend is the most dominant component, while

in case of thin adhesive layer both cleavage (]y and shearing stress 'fXy cope with each

other. In reality, it was observed that fracture of 97........,98 % specimens tested initiated

at the interface of adhesive layer and center adherend. It seems that the scatter of Gc

for relatively thick adhesive layer was caused by the occasional contribution of cleavage

mode of fracture. It was, however, not evident from the experiment that which mode

of fracture, cleavage or shear would be more dominant throughout the test series on

glue line thickness. At any rate, the combined mode of fracture would occur throughout

all specimens.

Conclusions

1) The Fracture Toughness Gc of wood-epoxy system under the external shear

force could be evaluated by employing the experimental compliance method. Although

the values of Gc obtained were slightly variant through the series of glue line thickness

tested, there were no essential distinctions.

In consequence, the value of 0.25 in cm.kg/cm2 was taken as reasonable value of

Gc with respect to the wood-epoxy resin adhesive system used in this study.

2) It seems that almost fractures of specimens tested were caused by combined

contribution of cleavage and shearing stress components distributing along the interface

of adhesive layer and center adherend.

Appendix-l

Finite Element Method

The finite element representation used in this study is shown in Fig. AI. In this

figure, three kinds of element having different mechanical properties are used, i.e., wood

element, epoxy resin element and crack element and their mechanical properties are

- 20-
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shown in Table AI. In Fig. AI, when a certain crack lengt~ is desired, the finite

element group near the crack tip was automatically exchanged by that of part ® in­

cluding part ® so as to fit the center of part ® to the crack tip changing the mechani­

cal properties of elements.

Fig. Al.l Finite element represention=of~thetest
specimen used in this study (symbols
to be refered to Fig. 3).
CD : coarse mesh region
® : semi fine mesh region
® : fine mesh region
number of element: 674
number of nodal points: 372

Table Al. Mechanical properties of materials used in F.E.M.

Modulus of elastisity Modulus of rigidity Poisson's ratiokg/cm2 kg/cm2

EL ET GLT flLT flTL

WOOD I 15 x 104 85 X 102 84 X 102 0.37 0.021

EPOXY 25 x 103 86.5 x 102 0.445

GRACK 0 0 0

The displacement method which has a shape function of first order was used and

stress at a certain nodal point was calculated by averaging stresses in all elements

which relate to the nodal point.

The linear simultaneous equations were resolved with the Gauss-Seidel B.S.O.R.

technique. All computations were done on a FACOM 230-75 computer at the computer

center of Kyoto University.
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