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Studies on Hemicelluloses in Tension Wood
II. Structural Studies on Xylans from Tension,

Opposite and Side Woods of Japanese Beech

(Fagus crenata Blume)

Jun-ichi AzuMA*, Machiko FUJu* and Tetsuo KOSHIJIMA*

Abstract--Structural differences in three 4-0-methyl-glucuronoxylans from tension,
opposite and side woods of Japanese beech (Fagus crenata Blume) were investigated. Each

4-0-methyl-glucuronoxylan was isolated from the I% potassium hydroxide extract and purified
by gel filtration on Sepharose 4B. The weight average molecular weights of three xylans were
similar and estimated to be in the range of20,000-25,000 by gel filtration. A structural analysis
by the methylation method and 13C-n.m.r. spectroscopy showed that no substantial differences
were detected between these three xylans. 13C-N.m.r. spectroscopy was used in determination
of the ring size, anomeric configuration, the position of O-glycosidation and the purity of these
xylans, suggesting the effectiveness of this technique for characterization of polysaccharides
in woad.

1. Introduction

Tension wood is peculiar in its low lignin and high cellulose contents1- lD . As

for hemicellulose, tension wood contains much more galactose than does normal

WOOd12- 15). Kuo and Time11l6), and Meier17) have shown that the origin of galactose

in tension wood is exclusively ascribed to galactan which is unique among wood

polysaccharides both in its structural complexity and its high degree of branching.

The structural studies on hemicelluloses in tension wood are, however, confined

to the galactan. The problem of the structure of the other hemicelluloses in tension

wood is remained to be solved. We have previously shown the similarity in the

molecular weights of the hemicelluloses extracted from three different types of woods,

tension, opposite and side woods ofJapanese beech (Fagus crenata Blume), particularly

those included in the Sepharose 4B gel matrices18). We have also shown that the

extracts with 1% and 24% potassium hydroxide solutions are rich in xylan and are

attractive source for elucidation of xylan.

In this work, we extended the previous studies on hemicelluloses in tension

wood. We isolated and characterized three xylans from the 1% potassium hydroxide

extracts of tension, opposite and side woods of Japanese beech (Fagus crenata Blume).

The 13C-n.m.r. spectroscopic analysis of these xylans was also undertaken.

* Research Section of Wood Chemistry.
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2. Experimental

2.1 Materials

Japanese beech (Fagus crenata Blume) having several bands of tension wood

III the 130-150th growth rings from the pith was obtained from Kyoto University

Forest and separated into tension wood (T), opposite wood (0) and side wood (S)

as previously described18). Dextran T fractions (T-IO, T-20, T-40, T-70 and T-500),

FITC Dextran (FITC-3) and Sepharose 4B were obtained from Pharmacia Fine

Chemicals. Xylo-oligosaccharides were obtained by gel filtration of the partial

acid hydrolysate of normal beech 4-0-methyl glucuronoxylan on Toyopearl HW40-S.

An aldobiouronic acid (2-0-(4-0-methyl-a-n-glucopyranosyluronic acid)-n-xylose) was

prepared following the procedure of Roy and TimeIP9). All other reagents used

were analytical reagent grade.

2.2 General methods

Total carbohydrate and urOnIC acid contents were determined by the phenol­

sulfuric acid method20) and the modified carbazole method2D , respectively. The

neutral sugar compositions were analyzed after hydrolysis with I N H 2S04 for 6 hI'

at 100°C. The hydrolysate was neutralised with barium carbonate and deionised

with Dowex 50 W X 8 (H+) and Dowex I X 8 (AcO-). The neutral sugars were

converted into corresponding aldito1 acetates and separated by g.1.c. on a column

(2 mxO.3 em) of 3% ECNSS-M on Gas Chrom Qat 180a C using methyl /'-n-gluco­

pyranoside as an internal standard22). Configurations of the monosaccharides were

determined by g.l.c. on a S.C.O.T. column of SP-1000 at 200°C after conversion

into acetylated (+)-2-octyl n- and L-glycosides23 ). Partially methylated alditol

acetates were separated by g.1.c. on a column of ECNSS-M as described above at

170°C and 150aC, and analyzed by g.1.c.-m.s. with a Shimadzu LKB-9000 system,

using a column of 3 % OV-225 on Gas Chrom Q at 170°Cw. The ionization

potential was 70 eV, the ionization current was 30 pA and the temperature of the

ion-source was 210a C. The purity of xylo-oligosaccharides was analyzed by high

performance liquid chromatography on Toyo soda HLC-803B with a Toyo soda

RI-8 and a JASCO Finepac Sil NH2 (25 em X 4.6 mm I.D.) using 75% aqueous

acetonitrile as an eluent. 13C-N.m.r. spectra were obtained at 80a C for solutions

in deuterium oxide with a Varian XL-200 spectrometer operating at 50.3 MHz.

Chemical shifts in p.p.m. are given as relative values to that of internal 1,4-dioxane,

which was taken as 67.40 p.p.m. downfield from tetramethylsi1ane. Coupling con­

stants (1 j13c_1H) were determined by the gated-decoupling technique. 1.1'. spectra

were determined for KBr discs, using a JASCO IR-S spectrophotometer.
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2.3 Isolation of xylan

Each wood area was milled to 42-60 mesh, extracted stepwisely with ethanol­

benzene (1 :2, v/v), cold water, hot water and 0.25 %potassium acetate, and delignified

as previously described18). The delignified wood meal was subjected to fractional

extractions with dimethylsulfoxide, hot water, 1% potassium hydroxide and 24 %
potassium hydroxide as previously described18). The fractions E and F extracted

with 1% potassium hydroxide and 24% potassium hydroxide, respectively, were

rich in xylan. Since all E fractions, however, had lower molecular weight than

the F fractions and contained only a small amount of substances which were eluted

at the void volume by analytical gel filtration, it seems relatively easy to isolate xylan

from these E fractions. Purification of xylan was performed on a column of Sepharose

4B (6 X 100 cm) equilibrated with 0.25 M sodium phosphate buffer (pH 6.8). About

200 mg of each fraction E was solubilized in the same buffer and applied on the

column. Twenty ml fractions were collected at a flow rate of 60 ml/hr at room

temperature. The sugar content of each fraction was monitored by the phenol­

sulfuric acid method. The carbohydrate-containing fractions were combined and

dialyzed throughly against distilled water and lyophilized.

2.4 Methylation analysis

The sample (20 mg) was methylated by the method of Hakomori25 ) followed

by the method of Kuhn26 ). The product showed no absorption for free hydroxyl

groups in its i.r. spectrum. The fully methylated xylan was treated with 90%

formic acid for 2 hr at 100°C followed by 0.5 N H 2S04 for 12 hr at 100°C27). The

partially methylated monosaccharides were analyzed by g.l.c. and g.l.c.-m.s. after

conversion into the corresponding alditol acetates.

3. Results and Discussion

3.1 Purification and chelllical properties of xylans

The E fractions from three parts of woods, tension wood (T), opposite wood

(0), and side wood (S), were separately subjected to gel filtration on Sepharose

4B. The elution profiles were shown in Fig. 1. Each fraction E was separated

into three subfractions (I, II and III). These three fractions were pooled and

throughly dialyzed against distilled water and lyophilized. The yields and chemical

properties were listed in Table 1. A trace amount of contaminating rhamnose, man­

nose and glucose residues in the original E fractions were concentrated in the fractions

I and II, and removed effectively by gel filtration. Although the fraction III is

almost free from these sugars, a small amount of arabinose and galactose residues

are still remained especially in the tension wood (TE-III). Since these contaminating
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Fig. 1. Preparative gel filtration of the E fractions on Sepharose 4B.
The arrow indicates the void volume determined with Blue
Dextran. Each fraction was analysed for carbohydrate in
tension wood (--), opposite wood (- - -) and side wood
( ). The fractions designated by the double arrows were
pooled to obtain I, II and III fractions.

Table I. Chemical properties of the purified fractions.

TE OE SE
I II III I II III I II III

Y ie ld (%) 19. 1 15. 4 61. 6 21. 6 10. 4 66. 2 9.1 20.2 73.1

/ -63.6° /

/ 9.18 /

Neutral sugar

composi tion*

L - Rhamnose

D -Mannose

L -Arabinose

D - Galae tose

D -Xylose

D -Glucose

Uronic acid

content**

(a) ~O

4.2

3.8

0.8

1.0

82.5

7.8

/

/

9.1

0.6

2.9

33.9

51.1

2.5

0.9

0.0

1.8

15.9

81. 4

6.6

4.8

78.4

10.2

6.5 0.0 1.0

2.3 O. 7

0.8 0.0 3.5

9.5 3.3

77.7 96. 7 87.5

3.2 7.4

/ 9.21 /

/ -71.3° /

0.0 0.0

3.2 0.0

3.3 3.6

3.6 0.0

84.3 96.4

5.6 0.0

/ 9.56

/ -69.4°

*Values in per cent of neutral sugars. **Values in per cent of purified materials.

sugars could not be removed by rechromatography, we used the fractions III for

further structural analyses. The weight average molecular weights of all III fractions
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were similar ranging from 20,000 to 25,000. Timell has reported that tension wood

may contain less uronic acid than normal wood, assuming that the chemical structure

of xylan in tension wood is the same as that of xylan in normal wood12). Present

results supported this posturation. The differences between tension and normal

wood xylans were not so evident as in the case of compression wood xylan28).

3.2 Methylation and i.r. spectroscopic analyses

The fully methylated all III fractions were individually converted into partially

methylated alditol acetates and analyzed by g.l.c. and g.l.c.-m.s. as shown in Table

Table II. Methyl ethers from the hydrolysate of the methylated xylans*

Methylated sugars** TE-III OE-III SE-III

2,3,4,6-Gal 1.5

2,3,5-Ara O. 7

2,3,4-Xyl 0.9 1.0 1.0

2,3,4-Gal 6.6

2,3,6-Gal 5.7

2,3-Xyl 75.3 88.8 90.0

3-Xyl 9.3 10.2 8.8

*Values in molar per cent of partially methylated sugars.
**2,3,4, 6-Gal=2, 3, 4, 6-tetra-O-methyl-D-galactose, etc.

c
o
Vi
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E
til
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III
~

c
C1l
u

&

4000 2000 1500 1000 600

Wave Number (cm-1)

Fig. 2. Lr. spectra of the E-II1 fractions. Details of the procedure
are given in the Experimental section.
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II. 2,3-Di-O-methyl-D-xylose was the most prominent partially methylated mono­

saccharide in each III fraction. This result indicates the backbone structure of

all xylans is composed of (1~4)-xylopyranosidic linkages. The negative specific

rotations of all xylans and i.r. absorption at 895 cm-1 (Fig. 2) indicate that the

principal mode of linkage is fi-D-glycosidic bond. This was further supported by

13C-n.m.r. spectroscopic analysis as described later. The 2,3,4-tri-O-methyl-D-xylose

must be derived from, terminal, non-reducing residues of xylose. The 3-0-methyl­

D-xylose must be derived from branching residues of xylose. The major branching

sugar may be 4-0-methyl-D-glucuronic acid. The xylans in tension, opposite and

side woods are found to contain one 4-0-methylglucuronic acid side chain per 9,

10 and 11 xylopyranose residues. These results are consistent with differences in

uronic acid content as shown in Table 1. It was suggested that xylans of tension,

opposite and side woods might contain a similar number of 4-0-methylglucuronic

acid side chains. The fraction III in tension wood (TE-III) contains an appreciable

amount of partially methylated galactose residues. Presence of 2,3,6-tri-O-methyl­

and 2,3,4-tri-O-methyl-D-galactopyranoses indicates that galactan is composed of

rO~
HO~

OH

(11

n
n=O-3

OH

HOH

CO~HOHH0'f7
CH3~

'\-01' (21
HOOC

X-I

X!1 U-I

Gal-l

X-4 X-3 X-5

X-2

TE-III
X.!. 2 U-3 X.!. 5U-2 5U-4 /

OCH 3

100 90
I I

80 70
~ [ppm 1

60

Fig. 3-(a) 13C-N.m.r. spectrum of the TE-III fraction. X, U and Gal
indicate xylose, 4-0-methylglucuronic acid and galactose
residues, respectively. X' indicates xylose residue substituted
at C-2. S indicates 1,4-dioxane as an internal standard.
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(1 ~4)- and (1 ~6)-galactopyranosidic linkages. 2,3,4,6-Tetra-O-methyl-D-galacto­

pyranose residues may be derived from non-reducing terminal or branching points

in galactan. Kuo and Time11l6), and Meier15) have previously reported the presence

of a highly branched galactan having a backbone of (1~4)-,B-D-galactopyranbse

residues with (1~6)-linked ,B-D-galactopyranose oligomers as major side chains.

Present results suggest the existence of similar galactan in tension wood of Japanese

beech. I.r. spectra of all III fractions (Fig. 2) were similar and had adsorptions

at 895, 990, 1040-1050, 1100, 1150, 1160, 1205, 1250 and 1375 cm-1. These results

together with chemical analysis are in good agreement with those of xylan from

normal beech wood29 ,30).

3.3 13C-N.:m.r. spectroscopic analysis

13C-N.m.r. spectra of the three fractions (TE-III, OE-III and SE-III) at 52-108

p.p.m. are shown in Fig. 3, and the 13C-chemical shifts of the individual carbon atoms

are listed in Table III. Signals due to xylopyranose residues could be readily as­

signed based on comparisons with the chemical shifts of ,B-D-xylo-oligosaccharides

(1) (Table III) and 2-0- (4-0-methyl-a-D-glucopyranosyluronic acid)-D-xylose (2)31)

X-I X-4 X-3
X-5

X-2

X.!. 5

X.!.2 U-3
DE-III5

XlI U-l

SE-III

I] \ I II ,\ J

607090 80
Ii [ppm I

13C-N.m.r. spectra of the OE-III and SE-III fractions.
X and U indicate xylose and 4-0-methylglucuronic acid,
respectively. X' indicates xylose residue substituted at C-2.

100

Fig. 3-(b)
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Table III 13C-N.m.r. spectral data for xylans from tension, opposite
and side woods, and aldobiouronic acid (2) *.

Component Tension Opposite Side ( 2 )
TE-III OE-III S E-III

4-Q-methyl C-l 98.42 98.45 98.45 98.42

glucuronic C-2 72.29 72 .58 72.34 72.27

acid C-3 73.26 73.58 73.28 73.36

residue C-4 83.01 83.06 83.08 83.15

C-5 70.10 70.42 70.30 70.23

C-6 177.01 177.35 177.03 173 .16

Q-CH 3 60.24 60.57 60.23 60.32

Unsubs tituted C-l 102.47 102.49 102.50

xylose C-2 73.55 73.57 73.55

residue C-3 74.59 74.62 74.60

C-4 77.27 77.30 77 .26

C-5 63.87 63.89 63.89

a 13
Substituted C-l 101.99 101.99 101.99 90.63 97.30

xylose C-2 77.71 77.91 77.77 77.32 79.97

residue C-3 74.13 74.10 74.08 72 .92 76.30

C-4 76.95 77.08 77 .16 70.39 70.28

C-5 63.59 63.69 63.68 61.75 65.90

*Chemical shifts in p.p.m. relative to that of l,4-dioxane.

(Table IV). Beta-n-(1~4)-linked n-xylopyranan from wood32) and 4-0-methyl­

glucuronoxylan from red lauan33) were previously measured in deuterium oxide

at 70°C and in 0.3 N NaOH. In the present experiments, however, we selected

80°C in deuterium oxide to enhance the sharpness of peak, since all III fractions

were soluble in deuterium oxide. The chemical shift of carbons shifted dependent

on temperature and solvent. The 13C-n.m.r. spectra of OE-III and SE-III were

essentially identical, indicating the similarity of their structures. The 13C-n.m.r.

spectrum of TE-III, however, gives a number of small signals other than the spectra

of OE-III and SE-Ill. On the basis of the 13C-n.m.r. spectra of f3-n-(1~4)-linked

galactopyranan and galactan from gum arabic34), these small signals were assigned

to be n-galactopyranose residues as shown in Fig. 3-a. Anomeric configurations

of the glycopyranosidic nature of the xylopyranose, galactopyranose and 4-0-methyl­

glucuronic acid residues were determined to be 13, 13 and a, respectively by the coupling

constants IJ13C_ 1H since a difference of about 10 Hz was observed between a and 13
anomeric pairs for these pyranoses32). Beta (I ~4) -glycosidic structure of xylo-

- 19-



WOOD RESEARCH No. 69 (1983)

Table IV. 13C-N.m.r. spectral data for xylo-oligosaccharides (1)*.

n = 0 n = 1 n = 2 n = 3
( 1 ) (Xyl) 2 (Xyl) 3 (Xyl) 4 (Xyl) 5

a /3 a /3 a /3 a /3
Reducing C-l 92.86 97.36 92.88 97.41 92.89 97.41 92.91 97.42

residue C-2 71.92 74.86 71.91 74.86 71.91 74.86 71.93 74.82

C-3 72.33 74.95 72.33 74.96 72.34 74.94 72.36 74.93

C-4 77.40 77.39 77.34 77.34 77.34 77.34 77.31 77.31

C-5 60.01 63.92 59.97 63.90 59.96 63.89 59.97 63.89

Internal C-1 102.46 102.47 102.50

residues C-2 73.53 73.55 73.56

C-3 74.62 74.62 74.63

C-4 77.34 77.34 77.31

C-5 63.90 63.89 63.89

Non- reducing

residue C-1 102.63 102.69 102.69 102.71

C-2 73.63 73.69 73.63 73.65

C-3 76.58 76.57 76.58 76.60

C-4 70.13 70.11 70.11 70.12

C-5 66.08 66.10 66.08 66.10

*Chemical shifts in p.p.m. relative to that of 1,4-dioxane.

pyranose residues in xylan was in agreement with the results of optical rotation and

lor. measurements, and methylation analysis.

Thus, 13C-n.m.r. spectroscopy was found to be useful in determination of the

ring size, anomeric configuration, the position of O-glycosidation, and the purity of

the specimens. This technique must be an indispensable tool in elucidation of the

structure of other polysaccharides in wood cell-walls. The details of these experiments

will be published elsewhere.
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