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INTRODUCTION

Woody biomass is the most abundant organic resource on the earth and the

total amount of wood is estimated to 1.8 X 1012 ton which almost corresponds to the

estimated amount of fossil deposits!). Besides, the biomass is renewable and especially

forest fixes most effectively the energy of the sunlight. The amount of the fixed

material IS 7.4 X 1010 ton a year which corresponds to almost ten times of the cons­

umption of oil or five times of the consumption of wood a year2). While, recent

annual consumption wood in Japan is about one hundred million m3 of which 70

% is imported. We have entered the energy shortage age and the importance of

wood as a renewable resource of energy and chemicals has increased. Thus, deve­

lopments of useful chemicals, cattle feed, and energy from wood residue are keenl)

demanded.

Woody biomass is a conglomeration of cell wall constituted with polysaccharisde:-.

(cellulose and hemicelluloses) and an aromatic polymer (lignin) which could be

converted to foods, feeds, liquid fuels and raw materials for chemical industry.

Recen tly, chemical industries of wood saccharification 3- 6), preparation of cattle

feeds 7) and wood-refineryS-IO) have promoted the development of technology conver­

ting wood to energy and chemical raw materials. However, cellulose and hemicel­

luloses are strongly associated with lignin in wood, and therefore delignification

has been recognized as the most important step for chemical utilization of wood.

Steam explosion process which was first introduced by DELONG!!) to defibratt'

wood into fiber fragments or even single fibers l2 ) has been developed as a useful

pretreatment of woody materials for enzymatic saccharification 13), preparation of

cattle feeds 7 ,14-16), and wood refinery. The process would be employed as a useful

technique for total utilization of wood in the near future l 7).

The process consists of a combined reaction of chemical degradation and me­

chanical deformation of wood to result in the separation of main wood components,

cellulose, hemicelluloses and lignin. By steam explosion hemicelluloses become

water soluble, lignin methanol soluble, and cellulose becomes very accessible to

hydrolytic enzymes IS) . Incidentally, lignin as one of the most abundant polymers,

has usually been used as fuel to recover chemicals from waste liquor in Kraft pulp

industry. Little attention has been focused on the use of lignin as chemicals or

conversion of lignin to valuable products since these could be produced from inex­

pensive petroleum. However, the recent energy crisis and the scarcity of crude oil

have prompted research activities to develop alternative and renewable feedstock for

polymers and chemicals.

Chemical degradation of lignin has been performed mainly to elucidate its

structure I9 ,20). It is important to elucidate the reaction mechanism of lignin degra-
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dation for understanding chemical conversion of wood and its process. Little

work has been conducted the reaction mechanism of lignin degradation by steam

explosion although chemical characterization of steam-exploded lignin has been

performed by several workers 21 - 25).

The purpose of this work is to elucidate the degradation mechanism of lignin

by steam explosion for possible control of the degradation reaction toward useful

utilization of steam-exploded lignin. The structure and physical properties of steam­

exploded wood have been elucidated in relation to the utilization of woody bio­

mass26), and the chemical properties of main components in steam-exploded woods

are discussed related to the mechanism of chemical changes of cellulose, hemicellu­

loses and lignin by the process27 ,28) (Chapter 1).

The reaction mechanism for lignin degradation by steam explosion has been

elucidated. Comparatively large amounts of syringaresinol and coniferyl alcohol

were obtained from steam-exploded lignin of Sirakanba (white birch, Betula platyphylla

Sukatchev var. japonica Hara) , and the results suggested that the homolytic cleavage

of ~-O-4 ether linkages of lignin by steam explosion occurred27 ,29). The steam

explosion and steam treatment of lignin substructure model dimers, DHP and LCC

have also been made to elucidate the degradation mechanism of lignin by steam

explosion30-34). For the synthesis of highly pOlymerized DHP and LeC, new dehy­

drogenative polymerization method (dialysis tube method) has been also developed35 - 38)

(Chapter 2).

Utilization of steam-exploded wood, enzymatic saccharification, and preparation

of ruminant feed from the steam-exploded wood, were described16 ,l7) (Chapter 3).

1. CHARACTERIZATION OF STEAM·EXPLODED WOOD

1. 1 Introduction

Since we have entered the energy shortage age, the importance of wood as a

renewable resource of energy and chemicals, is increasing. For the continuously

maintained utilization of wood, development of useful chemicals, cattle feed, and

energy from wood residues is keenly demanded.

Steam-explosion process which was developed by STAKE Technology, and

IOTEC in Canada has attracted attention in utilization of woody biomass!). The

present investigation was carried out to characterize the structure and physical

properties of steam-exploded wood in relation to the utilization of woody biomass.

1.2 Structure and Physical Properties of Steatn-Exploded Wood

1. 2. 1 Steatn explosion of wood
The process contains a physical rupture of wood structure by adiabatic expan-
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Table 1. Distribution of the size of fragments of explosion woods.

Weight % of fragment on sieves average

7 on 14 on 28 on 42 on 80 on 80 pass size of
meshes

EXWssample kgf/cm2 min mm 2.830 1. 190 0.590 O. 350 0.117

Shirakanba 28 I 14.0 54. 7 21. 1 5.1 3. I 2. 0 I. 74(mm)

28 2 8.9 55. 0 25.8 6.0 2. 7 1.6 I. 64

28 4 4. I 60.4 16.3 10.7 4.6 3. 9 I. 55

28 8 O. 7 12.5 22. 9 20. I 20. 4 23.4 0.65

28 16 0.0 4. 2 8. 9 17.9 18. 9 50. I O. 34

20 16 8.7 40.9 22.9 12.6 8.9 6.0 I. 38

24 16 2. 3 23.0 25.5 18.3 18. 9 12.1 0.91

28 16 0.0 4. 2 8.9 17.9 18. 9 50.1 O. 34
- -~~~-~------~~

Karamatsu 28 1 16. 1 49.4 22. 7 6. 8 3. 8 1.3 I. 72

28 2 12.5 55. 4 22. 7 5. 3 2.5 1.6 1.72

28 4 5. 2 43.4 31. I 9. 4 5.5 5.4 I. 37

28 8 2.0 27. I 32. 3 13.9 II. 2 13.5 I. 00

28 16 2. 2 28. 3 30.4 14.2 10. 9 14.0 I. 01

20

24

28

16

16

16

9. 8

4. 6
2.2

47. 3

34.8

28. 3

31. 6

29.9

30. 4

7. 2
12.1

14.2

2.8

11. 6

10.9

1.3

7.0

14.0

I. 57

I. 20

I. 01

sion of water in small pores in wood tissues, and autohydrolysis of cell wall com­

ponents. General aspects of the steam-explosion process of wood have been reported

by MARCHESSAULT12,lS). However no detailed investigation has been reported on the

effect of processing conditions. For development of the utilization of steam-exploded

wood and understanding of the process it is required to characterize steam-exploded

woods under different conditons in pressure, temperature and time of the treatment.

In this work, morphological structure and physical properties of steam-exploded

wood were investigated. One of the most important characteristics of explosion

process is that wood chips were finely ruptured to fibers and/or powder. Table I

shows the effect of explosion conditions on the destruction of wood chips. Distri­

bution of the size of fragments of steam-exploded wood indicates the effect of tem­

perature in explosion process. The average size of the fragments and the whiteness

of steam-exploded wood decreased with increase of the reaction time.

1. 2. 2 Morphological characteristics

Fig. I shows the appearance of the steam-exploded woods of Shirakanba and

Karamatsu (Japanese larch, Larix leptalepis Gordon) examined by optical microscopy.

In Shirakanba steam-exploded wood, when the steam pressure was lower and reaction

time was shorter (i.e. 20 kgf/cm2 , 2 min), shivers were frequently observed. At the
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higher pressure (28 kgf/cm2, 2 min) wood chips were mostly defibrillated to single

fibers (Fig. 1), and brown colored oily substances were frequently detected both

inside and outside of exploded cell walls (Fig. 1C-a and 1A-a). These substances

were insoluble in water but soluble in MeOH, and considered to be derived from

lignin, resinous extractives and/or polyphenols. Production of these substances is

one of the important characteristics of steam-exploded wood, because they were

hardly detected in thermomechanical pulp (TMP) and ground pulp (CP). It seems

that lignin both in middle lamellae and secondary walls could be liberated consi­

derably from cell wall polysaccharides by steam explosion. It is concluded con­

sequently that when steaming tIme is longer (28 kgf/cm2, 16 min) fibers are almost

fibrillated (Fig. 1B).

In Karamatsu steam-exploded wood, which is different from Shirakanba steam

-exploded wood, single fibers could scarcely be produced by these conditions.

Karamatsu steam-exploded wood did not form fiber but particles, and the particle

size decreased with the longer steaming time. However, the microscopic structure

of Karamatsu steamexploded wood at different conditions changed a little. Most

of tracheids were not disintegrated to fiburs but ruptured to small particles (Fig.

1D and 1E). Lignin was scarcely eluted from tracheids cell walls. Tracheids

crossed with ray tracheids were particularly difficult to be exploded and remained

as a block.

To investigate the fibers of Shirakanba steam-exploded wood in detail, observa­

tions by scanning electron microscopy was performed (Fig. 2). In Fig. 2A, vessels

(a), fibers (b) and amorphous substances (c) which are considered to be formed

by freeze-drying from hydrolyzed hemicelluloses, and jor lignin were observed. As

shown in Fig. 2A intact vessels (a) were scarcely found. Most of vessels were

found to be destroyed to small fragments. Most of fibers (b) suffered from some

damage, as found in a buckling (Fig. 2A-B) , a cleft along the fiber axis (Fig. 2B),

rupture at the end and middle of a fiber (Fig. 2C), expansion in a dome shape

(Fig. 2D) and tear at middle lamellae and S 1 layers26 ,:J(l). Thus, the exploded fibers

were so deformed and different from fibers in CP and KP40).

A preliminary investigation showed that the filtrate of the water extract of

steam-exploded wood by analytical filter paper contains cellulose4\). Then the water

extract (suspended fine fibrils) was observed by a transmission electron microscope (T­

EM). A similar observation of steam-exploded wood by TEM has recently been carried

out by Marchessault 42). When the explosion condition were weaker than 28 kgf/cm2,

8 min, a few microfibrils were detected. However, when woods were steam exploded

at the conditions of 28 kgf/cm2, 8 and 16 min many microfibrils were observed as

shown in Fig. 3A. Observation at a high magnification showed that microfibrils
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Fig. I. Observation of explosion woods by an optical microscope.
A: Shirakanba EXW (treated at 28 kgf/cm 2 for 2 min.) (a) Lignin-like oily
substance released from fibers. B: Shirakanba EXW (treated at 28 kgf/cm2

for 16 min.) C: Enlargement of A D: Karamatsu EXW (treated at
28 kgf/cm2 for 2 min.) E: Enlargement of D
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Fig. 2. Observation of Shirakanba exploion wood (treated at 28 kgf/cm2 for 2 min.)

by a scanning electron microscope.
A: Observation of EXW at the lower magnification (a) vessels, (b) fibers,
(c) Amorphous substances, (d) Buckling and (e) Expansion of a fiber B: A
cleft along a fiber C: Explosion at a middle of a fiber D: Expansion of

a fiber
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E·

Fig. 3. Observation of EXW by a transmISSIOn electron microscope.
A. Observation of Karamatsu EXW at the lower magnification
B. Shirakanba EXW (treated at 28 kgfjcm 2 for I min.)
C. Shirakanba EXW (treated at 28 kgfjcm 2 for 8 min.)

Width of microfibrils (A)

Width abcdefghi kim n 0
~-----~------- ----------1

A 66 53 40 66 40 26 79 46 92 66 105 53 92 66 33

D. Karamatsu EXW (treated at 28 kgfjcm 2 for 16 min,)
(a) Cellulose microfibrils and (b) Lignin-like substances

E. Electron diffraction diagram of microfibrils from Shirakanba EXW
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were completely separated to each other (Fig. 3B, C and D). Microfibrils were

wider and shorter with increase of the steaming time (Fig. 3C as compared with

B). In Karamatsu steam-exploded wood, the same characteristics were observed

(Fig. 3D). Such fibrillation hardly occurs in the process of GP and KP manufac­

turing, and such liberated microfibrils have not been obtained by other methods.

It is noteworthy that fibrillation of cellulose fibers occurs easily for a very short

time by steam explosion. Small particles as shown in Fig. 3D-b were observed in

some cases. They were stained negatively and insoluble in water, suggesting that

particle is lignin-like substance but not sugar. To confirm this, the methanol soluble

fraction of steam-exploded wood was added dropwise into the excess of water, and

a drop of the mixture solution was observed by TEM. Similar particles were again

detected, suggesting that the particles as shown in Fig. 3D-b were lignin-like subs­

tances. Further investigations are in progress to characterize the substance. The

microfibrils were confirmed to be cellulose I by electron diffraction (Fig. 3E).

1. 2. 3 Crystallinity and micelle width

MARCHESSAULT and co-workers reported that X-ray diffraction analysis of aspen

steam-exploded wood showed little or no loss in the degree of crystallinity of steam­

exploded wood cellulose, and that the cellulose retains its basic crystalline structure12).

However, the present investigation is not consistent with their conclusion. Fig. 4

shows the X-ray diffraction curves of exploded (28 kgf/cm2, 16 min) and untreated

woods, both for Shirakanba and Karamatsu. The diffraction patterns showed that

the steam-exploded woods are composed of cellulose I. However, the peak of (002)

diffraction by steam-exploded woods was sharper than that of untreated woods, and

the degree of crystallinity and micelle width increased by explosion treatment. Fig.

5 shows the effect of steaming time at 28 kgf/cm2, on the degree of crystallinity and

micelle width. Within 4 min of explosion the degree of crystallinity increased rapidly

with increase of steaming time, attaining crystallinity after 4 min (Crystallinity ratios

in the steam-exploded wood over untreated wood (E/U) were 1.39 for Shirakan ba

(50.2%~69.8%) and 1.50 for Karamatsu (45.1 %~67.7 %), and then decreased slowly.

Micelle width of cellulose rapidly increased, attaining maximum width after about

8 min (ratios of micelle width in E/U were 1.39 for Shirakanba (34.3 A~57.9 A) and

1.82 for Karamatsu (27.0 A~49.1 A)). The effect of steaming pressure on wood was

tested at 2 min steaming, it was indicated that the degree of crystallinity and micelle

width increased with the higher steam pressure.

HARADA and GOTO found that the width distribution of uranyl acetate-stained

microfibrils observed by TEM was correlated with micelle width of corresponding

sample determined by X-ray diffraction43). The observation of steam-exploded wood

by TEM in the present investigation showed that the average width of microfibrils
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Fig. 4. X-ray diffraction curves of EXW.
A. Shirakanba untreated wood powder
B. Shirakanba EXW (treated at 28 kgf/cm2

for 1 6 min.)
C. Karamatsu untreated wood powder
D. Karamatsu EXW (28 kgf/cm2 , 16 min.)

28 kst/c.·
20 L..L....I..-..L-_........ -.J 20

01 2 4 8 16
Steaming Time (min)

Fig. 5. The effect of steaming time 011

crystallinity and micelle width
of EXW.

of steam-exploded wood treated at the conditions of 28 kgf/cm2 for 8 min was about

63 A. Thus, the degree of the crystallinity and width of micelle increased about

1.5 and 2.0 times, respectively by the explosion. These results suggest that most of

amorphous region of cellulose transformed to crystalline region by the explosion,

resulting in the increase of the crystallinity and micelle width of the explosion

wood.

1. 2. 4 Thermal softening property

Fig. 6 shows the effect of steaming time on the thermal softening behavior of

Karamatsu and Shirakanba steam-exploded woods at 28 kgf/cm2 of steam pressure.

and Fig. 7 shows the differential thermoanalysis curves. In the Shirakanba untreated

wood, there is a shoulder around 200,...,.,.,300°C which is probably attributed to L.C.

c.m. In the steam-exploded wood, on the other hand, the shoulder disappeared

and a new peak at about 125°C was observed (Fig. 7): the methanol extract, which

mostly composed of guaiacyl-syringyl lignin gave the softening point (I20°C) cor­

responding to the new peak. In the Karamatsu steam-exploded wood, the same
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Fig. 8. The differential curves of ther­
mal softening process for Kara­
matsu EXW at 28 kgfjcm2 of
the steam pressure.

Fig. 9. The effect of steam pressure on
the thermal softening process of
Shirakanba EXW for one min.
steaming.
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tendency as in Shirakanba was observed, except that the new peak was shifted at

about 165°C which may correspond to guaiacyl lignin (Fig. 8).

These results suggested that hemicelluloses and lignins were decomposed to low

molecular weight fragments by steam explosion35 ,36). However, the height of the

new peak decreased with the increase of the steaming time (Fig. 7 and 8). It seems

that the depolymerized substance was repolymerized and transformed to the unso­

ftened product. In agreement with this view, the rate of deformation at 350°C

decreased with the increase of the explosion time as shown in Fig. 6. These results

conclusively indicated that the best conditions of delignification from wood is 28 kgf/

cm2, 2 min both for Shirakanba and Karamatsu in the present investigation. Howe­

ver, a considerable amount of lignin remained in Karamatsu steam-exploded wood,

and the total amount of eluted lignin was lower than that of Shirakanba.

In Shirakanba steam-explosed wood, treated at 28 kgfjcm2 for I min, the thermal

softening temperature of the new peak slightly shifted to higher temperature than

that of steam-exploded wood treated for 2 min (Fig. 7). The pattern of the new

peak of steam-exploded wood (at lower temperature) under different pressure for

I min showed that the shoulder which probably attributed to the lignin connected

to hemicelluloses was gradually shifted to the lower temperature up to 130°C cor­

responding to that of liberated lignin36 ,37). The amount of the dissolved substances

increased with the increased steam pressure (Fig. 9).

1. 3 Changes in Chemical Structures of Wood Components by Steam Explosion

1. 3. 1 Separation of wood components

Steam-exploded wood was separated to hemicelluloses, lignin and cellulose

fractions by two methods to characterize the chemical properties of EXW. Fig. 10

shows the procedure for separation of main components of EXW. The yields of

the separated fractions are shown in Table 2. Water extractives (EXS) and methanol

soluble fractions (EXL) were mainly composed of hemicelluloses and lignin, res­

pectively. Dioxane-water (9: I v/v) extractives (EXD) were a mixture of hem i­

celluloses and lignin which were separated by precipitation into water and subsequent

extraction of the water solution with ethyl acetate to high molecular lignin (DL),

water soluble lignin (DWL) and hemicelluloses (DW). Hemicelluloses in wood were

easily hydrolyzed by steaming to oligosaccharides and converted into almost soluble

materials (27.9% of wood) in water by only 1 min treatment at 20 kgf/cm2• Severe

treatments such as 8 min and 16 min steaming at 28 kgf/cm2 decreased the yields of

water soluble fractions and increased those of furfural and 5-hydroxymethylfurfural.

Lignin was more resistant than hemicelluloses (Table 2) and was gradually degraded

by steaming. The maximum yield of lignin was given at 8 min treatment at 28
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Fig. 10. Fractionation of steam-exploded wood (EXW).

Table 2. Contenb of extractives and residual lignin in EXW

Samples

Pressure Time
Species kgf/cm2 min

20- 1

24- I

28- I

Shirakanba 28- 2
28- 4

28- 8
28- 16

Contents/dioxane
extractives

o o

Extractives! EXW

-Water- Methanol-Dioxane·
EXS (%) EXL (%)EXD(%)

27.9 8.5 27. I

25. 8 10. 8 41. 2
29.3 13.7 47.1
29.2 18.3 58. 7
29.4 23.7 58. I

18.8 29.2 56.0
22.0 26.2 54.8

DL
(%)

9.6
12.2
19.4
25. 7
40. I

48. 0

44.9

DWL
(%)

1.6
1.2
1.2

1.5
1.9
1.8
1.9

DW
(%)

88. 8

86.6
78.4
72.8
58.0
50. 2

53.2

Residual
ignin

in EXR
(%)

15. I
12.8
12.2
9. 7

5.0
5.0
2.7

22.3

20
24
28

Karamatsu 28
28
28
28

I

I

I

2

4

8

16

18.7
21. 4
25.2
27.0
23. I

18.8
22.4

4. 2
6.8
9. I

10. 3

II. 0

II. 3

10.4

15.8
28.9
32.8
36. 3
35.9
33. 2
31. 9

19.4
25.8
26.3

1.9
1.8
2.0
2. I

2.7
2.8
3.0

79.5
71. 5

70.9

30. I

27. 2
17. 7
II.5

8.7

o o 34.8

kgfjcm2 and then the yield was decreased by condensation reaction. Dioxane

soluble fractions corresponded to the combined yield of EXL and EXS.

1. 3. 2 Changes of hemicelluloses

At a weak steam explosion condition (20 kgf/cm2, I min) oligosaccharides were
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main components of dioxane extractives but by enhancing steaming conditions the

contents of lignin and monosaccharides were increased (Fig. 11). By 28 kgfjcm2

100

90

I

I

I

i

70

10

80

110

20

50

30

o
steuing tiu : 1 1 1 2 4 8 III (.in)
steam pressure: 20 24 28 28 28 28 28 (kaUem')

Fig. 11. Contents of lignin and hemicelluloses in diOxane soluble fraction of
steam-exploded Shirakanba. _; lignin, 0; water soluble lignin,
§; oligosaccharides, EIH§; monosaccharides.

Table 3 Composition of monosaccharides in water soluble fraction of
steam-exploded Shirakanba wood (EXW)

Sample Unknown Ara. Xyl. Man. Gal. Glc. Total

20-1 0.8 1. 1 1.9

24-1 1.0 3.4 4.4

28-1 1.5 3.9 5.5

28-2 1.0 2.6 8.8 O. 6 O. 7 O. 7 14.4
(%) (6.9) (18. 1) (61. 1) (4.2) (4.9) (4.9) (100)

28-4 1.6 O. 3 28.8 1.9 2.5 5.7 40.8
(%) (3.9) (0.7) (70.6) (4.7) (6. 1) (14.0) (100)

28-8 2. 1 2.6 37.5 2.5 3.0 6.0 53. 7
(%) (3.9) (4.8) (69.8) (4.6) (5.6) (11.2) (100)
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for 8 min steaming more than a half of hemicelluloses were converted to monosac­

charides (Table 3). In 2 min steaming at 28 kgfjcm2 61.1 % of monosaccharides

was composed of D-xylose and the content of D-glucose was only 4.9% of monosac­

charides. The result showed that cellulose in the exploded wood was hardly degraded

to glucose (Table 3)27,44).

1. 3. 3 Changes of lignin in wood

Residual lignin content of EXR was decreased with increasing steam pressure

and reaction time. In 8 min steaming at 28 kgfjcm2 the content of lignin was

decreased to 2.7% of original wood which was caluculated from the data in Table 2

(residual lignin content was 5.0% of residual wood and the yield of residual wood

was 44% of Shirakanba EXW). Then more than 94% of lignin in wood could be

extracted by dioxane. In the case of a softwood (Karamatsu) the yield of extracted

lignin was lower than in hardwood (Shirakanba) (Table 2). Recondensation of

EXPLOSION WOOD A

l r
G E~. D;\:

0 HEMI- LIGNIN LIGNIN CELLULOSE
CELLULOSE . .

CELLULOSE HEMI-

F

I CELLtLOSE

0

~~- E
CELLULOSE LIGNIN HEMICELl1JLOS

I--~ 0

D

0

C

0

B

0

A

0

0

T (OC)

Fig. 12. Thermal softening analysis of the fractions of steam-exploded
shirakanba (28 kgfjcm2 , 2 min. steaming).
A to G on respective curves denote the fractions separated
from EXW shown in the upper right figure. (l' (T): rate of
deformation at each temperature (T)
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Table 4. Average molecular weight of steam-expoded lignin (EXL)

Sample Pressure Time
Mw Mn

--

kgf/cm 2 min. Mw/Mn
-----------

Shirakanba 28 1 2200 780 2.8
28 2 2110 800 2.6
28 4 1890 880 2.1
28 8 1870 900 2. 1
28 16 1130 780 1.5
20 4 2300 860 2.7
24 4 1900 730 2.6
28 4 1890 880 2.1

Karamatsu 20 4 1630 740 2. 2
24 4 1330 690 1.9
28 4 1460 690 1.2

28 16 1220 630 1.9

the degraded softwood lignin would be the cause to decrease the yield of methanol

and dioxane-water extractives and to disturb enzyme saccharification of the steam­

exploded softwood.

The extracted EXWs with water, methanol and dioxane were subjected to the

analysis of thermal softening properties (Fig. 12). The softening points of EXW

(28 kgfjcm2, 2 min) which was a mixture of steam-exploded cellulose, lignin and

hemicelluloses appeared at 328°C, 160°C and 123°C, respectively (Fig. l2-A) 37,45).

By water extraction hemicelluloses (E) were extracted and the residue was composed

of cellulose and lignin (B). By dioxane extraction a mixture of hemicelluloses and

lignin (D) were extracted, and cellulose remained as residue (C). Lignin fraction

(G) was extracted with methanol from water extracted residue (B), and hemicellu­

loses fraction (F) was separated from dioxane extractives (D) by precipitation from

water. The fractions (D, E, F and G) gave two peaks of softening and melting

points. The softening point (Ts) and melting point (Tm) of exploded lignin were

138°C and 169°C, respectively and these of exploded hemicelluloses were 7rC and

100°C, respectively. However, the fraction (D) which was a mixture of exploded

hemicelluloses and lignin, was melted at 100°C. Molecular motion of lignin seems

to become easy in melted hemicelluloses solution, and the softening and melting

points of lignin would be shifted to lower temperature at 123°C. If both hemicel­

luloses and lignin were more higher molecular weight polymers and not melted,

these lower shift of softening points would not be observed37).

Molecular weight distribution of steam-exploded lignin (EXL) was measured by

GPC, and weight average molecular weight (Mw) , number average molucular weight

(Mn) and a factor of dispersion (Mw/Mn) were calculated using a series of poly-
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styrene standards. Molecular weights (Mw) of exploded lignin were decreased with

increasing steam pressure and increasing period (20 kgf/cm2 : Mw=2300, 28 kgf/cm 2 :

Mw= 1900, in constant steaming time for 4 min, and 1 min: Mw=2200, 4 min: Mw

= 1900, 16 min: Mw = 1100, in constant steam pressure at 28 kgf/cm2) (Table 4). The

molecular weight of softwood exploded lignin was lower than hardwood exploded

lignin in contrast to that of their native lignin and MWL. It seems that in the

case of hardwood almost all exploded lignins were extracted by methanol but the

extraction of exploded softwood lignins was rather difficult, and probably only lower

molecular weight fraction of the exploded lignin was extracted with methanol.

13C-NMR spectra of EXLs were shown in Fig. 13. EXL of 1 min steaming at

28 kgf/cm2 of Shirakanba gave a similar spectrum to that of MWL. However, ether

linkages of lignin (152, 110, 86, 72, 60 ppm) were gradually degraded with increasing

steaming time and the spectrum of 16 min steamed EXL showed that aryl ether

bonds were almost degraded but intensity of the carbonyl groups in the spectrum

of EXL was very weak. If lignin degradation by steam explosion occurred through

acidolysis reaction, carbonyl groups would be more increased followed by increasing

of phenolic hydroxyl groups in EXW. The spectrum of the lignin from 16 min

steamed EXW showed the increase of resinol (Ca; 86.9 ppm and C(3; 54.8 ppm) and

phenylcoumarane structures (Ca: 88.1 ppm and C(3: 51.1 ppm) compared with the

amounts of both structures in 1 min steamed EXL.

Water soluble lignin (DWL) was a mixture of low molecular weight lignin

(A) S-28-1-M

iree ,.la

ill
CI

()l

,..
T

~'a

c...

a
j

(B) S-28-16-M

,
:::; ..en
In :r.a •ru.. lI'l,..

a

Fig. 13. 13C-NMR spectra of methanol soluble fractions (EXL) from steamexploded
Shirakanba. (A): I min, and (B): 16 min steaming at 28 kgfcm2 •
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degradation products, phenolic extractives, 5-hydroxymethylfurfural and organic

acids. From this fraction vanillin, syringaldehyde, vanillic acid, syringic acid,

coniferyl aldehyde, sinapaldehyde, coniferyl alcohol, sinapyl alcohol and a mixture

of d, l-epi- and d, l-syringaresinols were separated by TLC and determined by IH-N

MR. However, acidolysis monomers were not detected from DWL, and therefore

the degradation of lignin by steam explosion would not occur through acidolysis46 - 49).

We supposed that the degradation of lignin by steam explosion occurs through

homolytic cleavage of aryl ether linkage of lignin. Detailed study of the degradation

mechanism of lignin by steam explosion will be discussed in chapter 2 with results

on the steam explosion of lignin substructure model compounds (guaiacylglycerol­

and syringylglycerol-~-guaiacyl ethers) 30).

1. 4 Transformation of Cellulose Crystals and Changes of Crystallinity by

Steam Explosion

1. 4. 1 Microfibril width and length

After the steam explosion of the wood, individual microfibrils of cellulose

could be observed clearly by TEM (Fig. 14-1, 2, 4, 8 and 16), whereas cellulose

microfibrils of untreated wood could be seen only after some mechanical treatment

such as homogenization (Fig. 14-0). It was observed that the microfibrils were cut

longitudinally for the widths to be shortened by the steam explosion process. The

values of microfibril widths are summarized collectively in Fig. 15. The increases of

the widths, judged by the mean values of microfibril widths, were similar to those

of the micelle widths by X-ray diffraction. Fig. 16 shows an electron micrograph

of large microfibrils of exploded wood as indicated by the arrow heads. Large

microfibrils more than 100 Ain width compared to those of untreated wood (20"'40 A)
were observed, and some microfibrils were observed to be fused together as indicated

by the double arrow head. In most cases, the microfibrils were cut short in length,

but their widths rather increased.

The steam explosion process could be divided into three stages: 1) the eleva­

tion of the temperature of the digester, 2) holding steamed conditions of high tem­

perature and pressure, and 3) the release of the pressure (explosion). The present

investigation focused on the effect of the pressure release (the third stage) on the

transformation of cellulose. Thus, Shirakanba wood was heated to 230°C under a

pressure of 28 kgf/cm2 ; the pressure was held for 8 min, and then the digester was

cooled overnight to room temperature without opening the valve. Samples obtained

by this process were referred to as being" anneeled " . As an experiment to eliminate

hydrolysis at a high temperature and an explosion, wood chips were treated as In

the annealing process, and the digester was cooled rapidly by the slow release of

- 68-



TANAHASHI: Degradation Mechanisms of Wood Components by Steam Explosion

Fig. 14. Electron micrographs of cellulose microfibrils of steam-exploded
white birch (Shirakanba).

Note: 0, homogenized white birch. The numbers indicate the steaming
times (min) at 230°C.

Sh1rakanba 28 kgf/em •
90

O"G micelle
80 H microfibril

70

60
.~

.c 50...
'C

ii
40

30

0

20
T

012 4 8 16
Steam1ng t1me (m1n)

Fig. 15. Changes of micelle width and microfibril
width of exploded white birch (Shirakanba)
with steaming time.

Note: 0 min, unexploded original wood.
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Fig. 16. Electron micrograph of steam-exploded white birch (Shirakanba) (28 kgf/cm2,

2 min steaming).
Note: Arrowheads indicate large microfibrils, and some fibrils are fused with other

microfibrils (double arrowhead).

4035

untreated wood

exploded wood

dioxane-extracted
exp1oded wood

10'5

>....,....
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c:
~
c:
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Fig. 18. X-ray diagrams of steam-exploded white
birch (Shirakanba) compared with untreated
wood.
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Fig. 17. Changes of micelle widths
and crystallinity indices of
steam-exploded white birth
(Shirakanba) caused by the
explosion proces<;.
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the steam for 10 min. The samples produced were referred to as being" quenched" .

The micelle widths and crystallinity indices of the exploded wood, the above trea­

ted wood, dioxane-extracted exploded-wood, and untreated wood were compared

(Fig. 17). The results indicated that the increases of micelle widths and cellulose

crystallinity were caused only by the high temperature and steam pressure inde­

pendently of the explosion.

1. 4. 2 Crystallinity and micelle width

X-ray diagrams of Shirakanba wood before and after the explosion process and

of dioxane-extracted exploded-wood are shown in Fig. 18. The peak of (002) spacing

indexed by a Meyer-Misch model was remarkably sharper after the explosion, and

this feature was strengthened further after the dioxane extraction.

Changes of micelle widths were observed with varying steaming times at a cons­

tant steam pressure (Fig. 15). The micelle widths changed with increasing steaming

times, and the maximum value was observed after 8 min of steaming. The micelle

width of the exploded wood (52 A) was more than twice that of the original materials

(25 A).

Thus, to examine the possible influences of other wood constituents on the

increased crystallinity of cellulose, several cellulose materials were subjected to

steam explosions. Figs. 19 and 20 show the differences of crystallinity indices and

of micelle width, respectively, of Shirakanba, Karamatsu, NBKP, LBKP and filter

paper before and after the explosion process. Cellulose of the wood preparations

(Shirakanba and Karamatsu) were increased in both crystallinity and micelle widths,

whereas the crystallinity and micelle widths of the pulps and filter paper were

70

90 Fl1ter peper-o
Of----- 60

IIIKP

80 A.·······t
UIKP-1/l 70--~60

u

50 20

Untreated Exploded
28 kg/CII". 16 .1n. lkItreated Exp1oded

28 kg/CII' • 16 .1n.

Fig. 19. Crystallinity indices of steam-explo­
ded cellulose materials before and
after the explosion treatment.

Fig. 20. Micelle widths of steam-exploded cel­
lulose materials before and after the
explosion treatment.
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constant or increased only slightly.

1. 4. 3 Changes of cellulose crystalline form

For both hardwood (Shirakanba, white birch) and softwood (Sugi, Japanese

cypress, Cr;'jJlomeria Japonica D. DON), CP/MAS 13C-NMR spectra before and after

steam-explosion are shown in Figs. 21 and 22, respectively. Cellulose crystallinity

was calculated by measuring each crystalline and noncrystalline area of carbons C 4

and C 6• The C 4 and C 6 areas at 82'"'-'93 ppm and 61 '"'-'69 ppm, respectively, of the

entire spectra in Fig. 21-(1) show two peaks, but these areas in the crystalline com­

ponent spectra show only one lower field peak. Then it was decided to be separated

crystalline and noncrystalline components, of both C 4 and C 6, into lower and upper

fields, respectively50). Crystallinity of the wood polysaccharide was calqdated from

these peaks in the entire spectra. After steaming, the noncrystalline areas of C 4 and

C 6 in the entire spectra decreased (Fig. 22). Because the signals from the hem ice

lluloses overlapped in these spectra, crystallinities were expressed as relative values

for the effect of the steam explosion treatment. However, from the results of

X-ray and 13C-NMR analysis, the crystallinity of cellulose was seemed to have

been increased by the steam explosion.

There are two types of crystalline forms in 13C-NMR spectra for native cellulose:

a cotton-ramie type (Cellulose Ia) (Fig. 23) and a bacteria-valonia type (Cellulose

(8) Japanese cypress

(A> White birch

(1) Ent1re

Ar-OCH)

.r-

I I I--..........L.
60 50 40

ppm

C6

I
70

I
BO

I
90

I
100

I
110

I
120

I
130

(1) Ent1re

Fig. 21. CP MAS 13C_NMR spectra of wood cellulose, (A): white birch
(Shirakanba). (B): Japanese cypress (Sugi), (l): Entire spectra,
(2): crystalline component spectra.
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Ib) (Fig. 24)5)). However, wood cellulose could not be assigned to Types la or Ib

because the spectra of the crystalline component of the original celluose have broad

peaks in the respective species' carbon regions (Fig. 21-(2)). From a comparison

of the peak widths of Cr, C 4, and C 6 in the crystalline component spectra of the

woods with those of valonia and cotton cellulose, the crystalline form of intact

wood-cellulose would be identical with Cellulose Ib rather than la. However, the

spectra of the crystalline component showed that the crystalline form clearly changed

after the steam explosion. Steam-exploded cellulose had fine, doublet peaks (C l :

104"-" 109, C 4 : 87"-"90, and C 6 : 64,,-,,68 ppm, Fig. 22--(2)), and these spectra were

similar to cotton-cellulose crystalline (Cellulose la). Horii and others showed the

transformation of the cellulose crystalline form by a high-pressure saturated-steam

treatment at a high temperature by CP/MAS 13C-NMR51). The crystalline form,

Type Ib, of valonia and bacteria cellulose was transformed to Cellulose la' which

was almost identical to Cellulose la, by increasing the steam temperature. For

valonia cellulose, 30 min of steaming at 260°C was required for complete transfor­

mation, and for 30 min of steaming at 230°C, only half of the transformation

occurred (Fig. 24). However, the present investigation showed that only 4 min of

(A I Ste.-ellPloded vtl1te b1reh

(1) EnUre

(2) Crystall1ne

(]) Noncrystllll1ne

I I

120 110 100 90 80 70 60
ppm

so

(81 Ste.-ellPloded Japanese cypress

(1) EnUre

(2) Crystall1ne

ppm

Fig. 22. CPjMAS 13C-NMR spectra of steam­
exploded white birch (Shirakanba)
and Japanese cypress (Sugi) woods.
(A): steam-exploded white birch
(Shirakanba), (B): steam-exploded
Japanese cypress (Sugi),
(l): Entire spectra, (2): Crystalline
componen t spectra, (3): Noncrystal­
line component spectra.
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C2,3,5

(a)

Ib)

C4

(c) Fig. 23. CP/MAS 13C-NMR spectra, 50 MHz,
of the crystalline components of cot­
ton cellulose treated with steam at

, I
80 60 different temperatures: (a) original,

ppII froll TMS (b) 230 C, (c) 260 C.
100

.1
120

Cl
C2,3,5

C4
C6

120 100
I I

80 60

ppII froll TIIS

la)

Ibl

Ic)

1c!1

leI Fig. 24. CP!MAS 13C-NMR spectra, 50 MHz,
of valonia cellulose treated with steam
at different temperatures: (a) origi­
nal; (b) 230°C; (c) 245°C; (d) 260°
C; (e) 280° C.

steaming IS enough for complete transformation of the crystalline form of wood

cellulose to Cellulose la'. Thus, the crystalline form of original wood-cellulose was

considered to be of a less-ordered orientation and was tranfsormed to Cellulose la'
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by increasing the order of orientation and crystallinity by the steam explosion. In

the case of the filter paper which was made of cotton linter, the crystallinity of tht>

cellulose increased in the entire spectra after washing it with water, and the crys­

talline form changed only slightly from la to la'.

1. 4. 4 Thermostability of cellulose crystals

Thermal softening or the degrading temparatures of original cellulose in Shira

kanba and Karamatsu woods were 330°C and 332°C, respectively. On the other

hand, those of steam-exploded woods were shifted to higher temparatures in the case

Table 5. Crystalline structure of native and steam-exploded cellulose.

TEM

Sample

Crystallinity

(%)

X-ray l3C-NMR

Crl C4 C6

Microfibril

Width(A) Length(A)

X-ray
(002) TEM

Thermal

Crystalline softening

form temperature
(OC)

Shirakanba

(original)

28 kgf/cm2 , I min

2

4

8

16

Karamatsu

(original)

28 kgf/cm2 , 1 min

2

4

8

16

Sugi

(original)

28kgf/cm2, 4min

51

64

67

70

70

67

50

65

68

69

69

65

48

63

43

66

68

51

62

58

69

64

46

59

25

42

44

51

54

52

24

42

41

45

44

43

32

53

59

58

48

50

00

1900

2000

2000

? (Ib)

la'

? (Ib)

la'

330

335

330

330

329

330

332

338

340

337

336

337

332

336

Filter paper

28 kgf/cm 2, 16 min

88

89

75 67 60

83** 74** 67 80

00

1000

la

la'

88** 70** 61**

Cotton*

49kgf/cm2,30min*

77 72 70 47

62 76

00

1200

la

la'

337

334

Valonia*

28 kgf/cm2 , 30 min*

49 kgf/cm 2 , 30 min*

90 87 90 143

90** 89**

95** 90** 99** 108 140 1400

Ib

la+lb

la'

* : These data were taken partially from 11) and the reaction conditions were only steaming
without explosion.

**: These data were observed on the sample after washing it with water.
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of short-time steaming (335°C and 340°C, respectively). However, in the case of

longer steaming times, they were shifted to lower temparatures again. These data

are summarized in Table 5. The maximum softening temperature (338°C) of exp­

loded Shirakanba was obtained with 1 min of steaming at 24 kgf!cm2 of steam

pressure.

1. 4. 5 Discussion

The increases of microfibril or micelle widths of cellulose caused by a steam

explosion can be explained by the following three main reactions: 1) rearrangment

or reorientation of cellulose molecules inside and near the crystalline region of

microfibrils by relaxation caused by high temparatures and pressures or 2) by

removal of other components such as hemicelluloses and lignin, and 3) crystalline

fusion with adjacent microfibrils by removal of hemicelluloses and lignin.

Steam at ligh temperatures and pressures is greatly ionized to H+ and OH­

([H+J [OH-J !CH20J = 10-7)52). The activated steam reacts rapidly with polysaccha­

rides and hydrolyzes them to smaller molecular-weight sugars. In addition, acetic

acid formed from the acetyl groups of hemicelluloses, and levulinic and formic

acids partially formed by degradation of the hemicelluloses, catalyze the hydrolysis

of carbohydrates. On the other hand, lignin is degraded by steam explosion mainly

through the homolytic cleavage reaction of the aryl ether linkage as discribed 10

Chapter 2. By these reactions the wood constituents were degraded partly to

become mobile, and then the inner stresses in the crystalline region of cellulose

would be loosened. Under such a condition, the crystallinity of wood cellulose

could be increased by rearrangement or reorientation of the cellulose molecules of

the paracrystalline regions during steaming. On the other hand, in relatively pure

cellulose materials such as NBKP, LBKP, or filter paper, almost constant crystalli­

nity was observed independent of steam explosions. This is ascribed to the fact

that original materials do not contain hemicelluloses which affect the rearrangement

of paracrystalline regions.

The fusion of microfibrils to become greater fibrils observed by TEM (Fig.

16) can be ascribed to the fact that lignin in intermicrofibril spaces becomes soluble

or mobile by heating and is removed. Softening temparatures of native 1ignin and

hemicelluloses complexes are 220-----300°C26,37,53) and those of isolated lignin and

hemicelluloses are 153----- l86°C 36) and 167----- 181 °C54), respectively. However, the ap­

patrent melting point of steam-exploded lignin is 150----- 190°C27) in a dried condition

and is assumed to be less in a wet condition. Steam-exploded lignin was observed

to be eluted from its original inter-microfibril location as oil droplets26 ,30). On the

other hand, hemicelluloses were hydrolyzed rapidly and their bondings with cellulose

or lignin could be cleaved, and then steam-exploded hemicelluloses were almost
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soluble in water. The mobility of these components caused by steaming make

cellulose free from other constituents in wood. The free cellulose can be fust'd

together under high pressure to make larger microfibrils or crystallines (Fig. 16).

The fact that the width of cellulose crystallites of steam exploded wood increased

much greater than that of pure cellulose (Fig. 19 and Fig. 20) suggests that the latter

contains less paracrystalline region, and that the increase of crystallinity may depend

on the quantity of amorphous cellulose. The quenching and annealing experiments

(Fig. 17) indicated that the increase of crystalline width was caused by heating up at

steam pressure but not by the explosion process. The present experiment showt'd

that microfibril width has a maximum peak at a steaming time of 2 min, and that

further steaming causes a decrease of the crystalline widths of microfibrils by a

gradual hydrolysis of the cellulose at the surface of the crystallites. The same result

was obtained in the thermal softening temperature of cellulose. The softening

temparature produced a mobility of the molecule which is related to molecular

weight and the strength of the hydrogen bond of the crystallites. The increase In

the softening temperature of cellulose suggests that the width of the crystallites

increased in the early steaming, and the softening temperature gradually decreased

with the decrease of crystalline size.

On the other hand, the lengths of the cellulose microfibrils were decreased by

the steam explosion. The lengths of original cellulose microfibrils of woods and

other materials were to long to be measured. However, the lengths of steamed

cellulose microfibrils were almost 1000'"'-'2000 A under TEM. The earlier decrea~e

in thermal softening temperature than the decreases in micelle width and in crys­

tallinity would be caused by the decrease in the molecular weight of the cellulost~.

The crystalline form was changed gradually from Cellulose Ib to la' in valonia

cellulose during steam treatment. However, the cellulose crystallites of the original

wood was of a less-ordered orietation and easily transformed to Cellulose la' crys­

talline form by the steam explosion (Fig. 21 and Fig. 22).

These results suggested that there were three stages in the reaction of cellulose

to a steam explosion. In the first stage of steaming, hemicelluloses and paracrys­

talline cellulose were hydrolyzed partially, and the inner stress in the crystalline

region of the cellulose was loosened. Then paracrystalline cellulose was relocated

to the crystalline region, and the widths of cellulose microfibrils increased. In the

second stage, microfibrils were cut at some nodes of the cellulose crystallites to

give microcrystalline cellulose, and the lengths of the microfibrils decreased to 1000

'"'-'2000 A. In the third stage, the surfaces of cell~lose crystallites gradually were

hydrolized. Then the microfibril widths and crystallinity of the cellulose decreased.

In addition to these reactions of cellulose during steaming, transformations from
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Cellulose Ib or la to la' of cellulose crystalline form were accomplished.

1.5 Summary

Wood chips of Shirakanba and Karamatsu were treated with a high pressure

steam (12'"""-'28 kgf/gm2) for 1'"""-' 16 min, and the steam pressure was released instan­

taneously to result in steam-exploded wood. When the treating time was longer

more fibrillation of cell walls of Shirakanba occurred. Fibers of the exploded woods

were observed to be vigorously ruptured.

Chemical changes of main components In wood (cellulose, hemicelluloses and

lignin) by steam explosion process have been elucidated by 1H- and 13C-NMR, gas

chromatography, GPC and thermal softening property. By steam explosion hemi­

celluloses were rapidly hydrolyzed to lower molecular weight products. Almost all

hemicelluloses (27.9%) in Shirakanba wood were hydrolyzed to oligosaccharides to

be extracted with water by only one min steaming at 20 kgf/cm2, and by 8 min

steaming at 28 kgf/cm2 53.7% of hemicelluloses were converted to monosaccharides.

Monosaccharides obtained by 2 min steaming of Shirakanba wood were composed

of 61.1 % of xylose and only 4.9% of glucose, and the yields were in acord with

original composition of hardwood hemicelluloses. Lignin was degraded slower than

hemicelluloses. The yield of lignin was 29.2% in maximum by 8 min steaming at

28 kgf/cm2, and the molecular weights of lignins obtained were decreased to Mw =

2100 and 1100 by 2 min and 16 min steaming, respectively. A mechanism of lignin

degradation by steam explosion was presumed to be homolytic cleavage of aryl

ether linkage. Chemical changes of cellulose caused by steam explosion were exa­

mined by X-ray diffraction, transmission electron microscopy, and CP jMAS 13C_

NMR spectroscopy. Cellulose in non-crystalline area was partially hydrolyzed, and

micelle length was decreased to about 2000 A by 8 min steaming at 28 kgf/cm2 •

However, cellulose was not hydrolyzed to glucose, and non-crystalline cellulose

would be annealed and transformed to crystalline cellulose. Thus the crystallinity

and micelle width of cellulose were increased by steam explosion. By a steam

explosion (28 kgf/cm2, 230°C, 16 min) cellulose in Shirakanba wood was increased

in crystallinity (Cd: 51% to 67%), micelle width (25 A to 52.A) , and microfibril

width (32 A to 50 A..). The crystalline form of cellulose clearly was changed by the

steam explosion: broad peaks in the CP/MAS 13C-NMR spectrum of the crystalline

component of the wood cellulose assigned at CI, C 4, and C 6 of the pyranose ring

changed to fine double peaks of crystal form, Cellulose la. It also was found that

the crystallinity of cellulose is increased by steaming the wood at high tempera­

tures and pressures without explosion. However, purified, greatly crystalline cellu­

lose, such as filter paper, was influenced less in crystallinity by steaming, and the

results suggested that other constituents accompanying cellulose were involved in
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the incease of crystallinity of the cellulose by the steam explosion.

2. MECHANISM OF LIGNIN DEGRADATION BY STEAM EXPLOSION

2. 1 Introduction
Morphology, physical properties, and chemical changes of steam-exploded wood

(EXW) were discussed in chapter I. Carbon 13 nuclear magnetic resonance (13C­

NMR) studies of steam-exploded lignin (EXL), and solid state cross-polarization

magic-angle spinning (CP /MAS) 13C-NMR studies of steam-exploded woods wert'

reported by MARCHESSAULT and others13), BARDET and others54), HEMMINGSON22-W,

and TEKELY and VIGNON25). These studies partly characterized chemical and physical

structures of EXL. However, the mechanism of lignin degradation by steam explosion

has not been well elucidated.

The present author showed III the previous chapter that comparatively large

yields of syringaresinol and coniferyl alcohol were obtained from the ether-soluble

fraction of EXL of Shirakanba possibly through the homolytic cleavage of ~-O-4

ether linkages of lignin by steam explosion27).

This chapter describes the mechanism of lignin degradation by steam explosions

using ~-O-4 lignin substructure model compounds30).

2. 2 Degradation Products of Lignin and fi-0-4 Lignin Substructure Model

Dimers

2.2.1 Chemical and morphological changes of lignin in wood

By steam explosions (230°C, 28 kgf/cm2), rapid chemical degradation of wood

components occurs accompanied by physical ruptures of wood by the adiabatic

expansion of water in wood and by machanical destruction of the wood chips when

passed through the narrow nozzle of a blow valve. By the explosion, wood chips

were defibrillated mostly to single fibers. An electron micrograph (Fig. 25) showed

that cellulose and lignin were oriented alternately parallel to lumen surfaces, and

that lignin droplets were arranged parallel between the cellulose lamellae, although

the lamella structure was enlarged twice to three times the thickness of the original

fibers by swelling of the cell walls in the steam explosion. Lignin in the secondary

walls of fibers was degraded easily to low-molecular weight fractions by cleavage

of the aryl ether linkages after only 4 min of steaming, and melted by high-tempera­

ture steam. While, middle-lamella lignin was resistant to steaming, the major part

of the lignin melted and transfered from the middle lamellae and secondary walls

to give small oily droplets. Differences of reactivities of the lignins can be ascribed

to the differences of the chemical structures and the concentrations of lignins between

the secondary walls and middle lamellae.
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Fig. 25. Photograph of steam exploded Shirakanba wood under a transmission
microscope.

Notes: Steam explosion (28 kgfjcm2 , 16 min.). KMn04-stained.

Table 6. Yields of extractives from exploded wood.

Fractions

Exploded wood (oven dry) (EXW)

Waer extract (EXS)

Dioxane extract (EXL)

(
Ether insoluble fraction (EXL-EP)

Ether soluble fraction (EXL-ES)

Water soluble (EXL-ESW)

Acid fraction (EXL-ESA)

Phenolic fraction (EXL-ESP)

Neutral fraction (EXL-ESN)

Weight
(g)

192.5

42. 6

56.0

34.1

21. 9

4 64

1. 46

3.25

1. 78

%/dry wood
(%/fractions)

100

22. 1

29.0

17.7(60.9)

13.4 (39. 1)

2.41 (41. 7)

O. 76 (13. 1)

1. 69 (29.2)

0.92 (16.0)

The EXSs were composed mainly of hemicelluloses and

water-soluble lignin degradation products, EXLs were mainly

products after these extractions (EXRs) were mainly cellulose.

fractions are shown in Table 6.

a small amount of

lignin, and residual

The yields of these

2.2.2 Characteristics of steam-exploded lignin

The degradation rate of the lignin by steam explosion was smaller than that

of hemicelluloses27). Dioxane extracted lignin (EXL) was analyzed by 13C-NMR.

The ether linkages of lignin (67'"'-'73 ppm: CO'; 82'"'-'86 ppm: C~; 61'"'-'64 ppm: Cr;

105 ppm: S2,6; 112'"'-'115 ppm: G Z,5; 138ppm: Sl,4; and 152 ppm: S3,5) were degraded

gradually with an increase in steaming time and were degraded mostly by 8 min

steaming. The amounts of resinol and phenylcoumarane substructures (56 and 54

ppm: Cb; respectively) and free phenolic hydroxyl groups (147'"'-' 148 ppm) in the

lignin increased. 1H-NMR spectrum of the ether-soluble phenolic fraction of the
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Table 7. Contents of phenolic hydroxyl groups and conjugated carbonyl groups in

exploded wood lignin (EXL) and acidolyzed MWL.

Sample Phenolic hydroxyl

(%/C6-C3 )

MWL 8.7

MWL (after acidolysis) 32. 3

EXL-EP 22. I

EXL-EP (after acidolysis) II. 6

EXL-ES 43.5

EXL-ES (after acidolysis) 30.9

Conjugated carbonyl

(%/C6-C3 )

Nonphenolic Phenolic Total

5. 6 2.2 7.8

II. 0 8.0 19.0

1.3 2. 7 4.0

3.8 3.5 7.3

1.0 4.6 5.0

1.6 4.4 6.0

lignin showed that a- and ~-protons of d,l-syringaresinol (4.7 ppm: a-CH; and 3.2

ppm: ~-CH), d,l-episyringaresinol (4.3 and 4.9 ppm: a-CH; and 2.9 and 3.4 ppm:

~-CH, respectively), a-proton of phenylcoumarane (5.5 ppm), and the double bond

(Ca-C~) structure of the side chain increased during the steam explosion (6.2'"'-'6.7

ppm). The result suggested that syringaresinol, phenylcoumarane, cinnamyl alcohol,

and cinnamyl aldehyde structures in steam-exploded lignin could be produced from

the ~-O-4 ether bond of the original lignin. The molecular weight of the THF­

soluble fraction of EXL decreased to about 2000 by the explosion at 28 kgfjcm2 ,

16 min. More than 90% of the lignin in the wood was converted to the dioxane

soluble fraction. The fraction was separated into ether soluble (EXL-ES) and

insoluble (EXL-EP) fractions, and the phenolic hydroxyl groups of these fractions

were estimated to be 44 and 22%jC6-C3, respectively. The EXL-ES fraction am­

ounted to 40% lignin. The average value of free phenolic hydroxyl groups of EXL

was about 30%!C6-C3, almost the same as that of the acid degradation products

of MWL (Table 7). These results suggested that the degradation of lignin by steam

explosion is apparently similar to acidolysis reaction which includes cleavage of the

a- and ~- ether linkages followed by an increase of phenolic hydroxyl groups.

However, the result showed that the content of carbonyl groups of the steam-exploded

lignin were very much smaller (4 and 6%/C6-C3 in the EXL-ES and EXL-EP

fractions, respectively) than in the acidolysis of MWL (l9%/C6-C3) (Table 7).

Therefore, the cleavage reaction of lignin by explosion is different from that in

acidolysis.

2. 2. 3 Separation of steam-exploded lignin

The EXL-ES was separated into the four ESW, ESA, ESP, and ESN fractions.

The yields of these fractions are shown in Table 6. ESP was the main fraction of

EXL-ES. From the ESP fraction, vanillin (5), syringaldehyde (5'), coniferyl alcohol

- 81-



WOOD RESEARCH No. 77 (1990)

Table 8. Degradation products in the ether-soluble fraction (EXL-ES) of explodeed

Shirakanba.

Fractions Products

Phenolic d,l-syringaresinol (9'), d,l-episyringaresinol (10'), dehydrodiconiferyl alcohol (11),

(EXL-ESP) sinapaldehyde (4'), coniferyl aldehyde (4), coniferyl alcohol (2), sinapyl alcohol

(2'), vanillin (5), and syringaldehyde (5').

Acid vanillic acid (7), and syringic acid (7').

(EXL-ESA)

Water sol.

(EXL-ESW)

Neutral

(EXL-ESN)

furfural (29), and 5-hydroxymethylfurfural (30).

betulin (31).

(2), coniferaldehyde (4), sinapyl alcohol (2'), sinapaldehyde (4'), d,l-syringaresinol

(9'), d,l-episyringaresinol (10') and dehydrodiconiferyl alcohol (11), from the acid

fraction (ESA) vanillic acid (7) and syringic acid (7'), and from EXL-ESW furfural

(29) and 5-hydroxymithylfurfural (30) were isolated and identified by 1H-NMR,

13C-NMR, and GC-MS. The NMR and GC-MS spectra of isolated compounds

were identical to those of authentic compounds. Betulin (31) was crystallized from

the neutral fraction (ESN) (Table 8). These degradation products indicated that

the mechanism of lignin degradation accompanied by steam explosion is different

from acidolysis but similar to mild hydrolysis.

2.2.4 Steam explosion of guaiacylglycerol-,B-guaiacyl ether

Guaiacylglycerol-p-guaiacyl ether (1) was treated under the same explosion

conditions described above: namely, 28 kgfjcm2 for 16 min. However, 80% of the

starting material remained intact, and the major degradation products were coniferyl

alcohol (2), its r-methyl ether (13), and guaiacol (3). Coniferyl aldehyde (4), va­

nillin (5), vanillyl alcohol (6), vanillic acid (7), dehydrodiconiferyl alcohol (11),

d,l-pinoresinol (9), and d,l-epipinoresinol (10) were separated by TLC from chloro­

form extractives and identified by NMR in comparison with the spectra of authentic

compounds (Fig. 26). Guaiacylglycerol (8) was identified from the water-soluble

fraction. A large amount of 5-hydroxymethylfurfural (30) derived from the cellulose

used as a matrix for model compound (1) by a steam explosion was detected. Large

amounts of cellulose (100'"'-'200 g for 200 mg samples) as a matrix were required for

the steam explosion by using a 21 digester for our explosion device. A sample

compound was set at the top of the cellulose matrix. Because the lower part of

the digester was filled with drained water during steaming, the degradation reaction

of the sample by the steam hardly was effected. Nevertheless, 80% of the starting
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Fig. 26. Degradation products of guaiacylglycerol- and syringylglycerol-p-guaiacyl
ethers resulting from a steam explosion.

material remained without degradation because the sample was dissolved in hot water

condensed from steam. The methyl derivative of the starting material (12) and r­
methyl coniferyl alcohol (13) were produced when methanol was used as a solvent

for the starting material. The result suggested that the degradation reaction

occurred via the quinonemethide intermediate (21), which could act effeciently in

the degradation of the p-ether linkage by a resonance effect.

Mainly coniferyl alcohol and guaiacol were obtained by the steam explosion of

guaiacylglycerol-p-guaiacyl ether, but acidolysis monomers were scarcely detected.

The acidolysis products of the compound (I) mainly were composed of p-oxyconi­

feryl alcohol (14), which was separable into keto (l4a) and enol types (l4b) by

acetylation, I-propanone (16), 2-propanone (15), guaiacylacetone (18), vanilloyl

methyl ketone (17), and guaiacol (3) (Fig. 27), However, coniferyl alcohol (2),
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H
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Fig. 27. Acidolysis products of guaiacylglycerol-~-guaiacylether.

H

dehydrodiconiferyl alcohol (11), and pinoresinol (9, 10) which were the main pro­

ducts by steam explosion, were hardly detected in the acidolysis products of Com­

pound (1). Thus, the mechanism of lignin degradation acccomanying steam explo­

sion is entirely different from acidolysis.

Coniferyl alcohol could be produced by a one-electron reduction of the coniferyl

alcohol radical derived from the ~-ether linkage of the structure (1) by homolytic

cleavage or a two-electron reduction of ~-ether linkage by enediol forms of reducing

sugars derived from polysaccharides as in alkaline pulping. However, it has been

known that phenylcoumarane and resinol are not detected by alkaline pulping of

the compound (1). Based on these results, the present author proposed that by

steam explosion, lignin is cleaved mainly homolytically to produce cinnamyl alcohol

radicals which couple to give C~-C~ or C~-C5 linkages, that a disproportionation

of the radical produces cinnamyl alcohol and cinnamyl aldehyde, and that cinnamyl

alcohol radical also can be reduced by sugar to give cinnamyl alcohol.

2.2.5 Steam explosion of syringylglycerol-j9-guaiacyl ether

Syringylglycerol-~-guaiacylether (l') was subjected to a steam explosion under

the same conditions. Forty percent of the starting material remained intact, and

major degradation products were identified as sinapyl alcohol (2'), d,l-syringaresinol
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(9'), and d,l-episyringaresinol (10'). Syringaldehyde (5'), syringic acid (7'), and

sinapaldehyde (4') also were identified (Fig. 26). These results well agreed with

the previous experiments with compound (1) and hardwoods. Parts of d,l-syringa­

resinol and d,l-episyringaresinols obtained from steam-exploded hardwood lignins

can be derived from the original resinol substructure in lignin but mainly from

p-ether of syringyl-type lignin by homolytic cleavage to give synapyl alcohol radicals,

which are coupled to give Cp-C,B and C
1
B-C5 linkages.

2. 2. 6 Degradation mechanism of P-O-4 type lignin substructure model

compounds.

Syringaresinol (9', 10') is a symmetrical compound linked by the Cp of the

side chains of two molecules of the sinapyl alcohol radical (22'). These couplings

can occur only by radical reaction. Although dehydrodiconiferyl alcohol (11) is

not a symmetrical compound, it can be formed by the coupling of the Cp (22) and

C-5 radicals (24) derived from the coniferyl alcohol radical (22). The pairs of

sinapyl alcohol (2') and sinapaldehyde (4'), and of coniferyl alcohol (2) and coniferyl

aldehyde (4) could be formed by dismutations of sinapyl alcohol radicals (22')

and coniferyl alcohol radicals (22), respectively. r-Methyl ether of coniferyl alcohol

(13) can be formed by the addition of methanol used as solvent to the quinone­

mathide intermediate (27) derived by the disproportionation of coniferyl alcohol

(9) (9 ') H

(0) 00') H

H

(11)

(211)

(4)

(4 ')

(2)

(2 .)

(3)

Fig. 28. Possible degradation mechanism of lignin resulting from a steam explosion.
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radicals (22). Guaiacylglycerol (8) can be formed by the addition of water to the

quinone methide intermediate derived from coniferyl alcohol radical. Thus, we

proposed the possible mechanism of lignin degradation by steam explosion as shown

in Fig. 28. It is conceivable that under the current steaming conditions, the ioni­

zation of water is 10-7 mol which is about 107 times greater than under normal

conditions52 ). Therefore, hydroxyl groups or ether linkage of the fl'-position of

lignin side-chains could be protonated easily and converted to the quinone methide

structure (21). Thus, 13-0-4 ether linkage can be homolytically degraded to produce

coniferyl alcohol- and sinapyl alcohol radicals (22, 22'). These radicals then could

react as described in Fig. 28.

It is very likely that syringaresinol (9', 10') is produced by the conversion of

the 13-0-4 syringyl substructure (19'). In hardwood lignin the amount of syringyl

unit is estimated to be more than half of that of monomeric units, and that the

13-0-4 substructure is the major linkage of syringyl units followed by the 13-13 linkage

in hard-wood lignin. Therefore, we consider that a remarkable amount of syringa­

resinol could be formed from these syringyl units by steam explosion.

The present investigation indicated that the steam explosion of wood IS a good

method for converting lignocelluloses to useful products.

2.3 High-Pressure Steam Treatments of Guaiacylglycerol-,8-Guaiacyl Ether

and Shirakanba Wood

2. 3. 1 Comparison of the degradation products by steaming at different

conditions

Degradation products of guaiacylglycerol-j3-guaiacyl ether (1) by steam explosion

was described in section 2.2. Homolytic cleavage of IS-ether bond was proposed

as the main degradation reaction of lignin by steam explosion based on the identified

degradation products. However, a considerable amount of degradation products

of cellulose used as matrix were contained in the degradation products of model

compound, and hampered the determination of quantitative analysis. Therefore,

guaiacylglycerol-j3-guaiacyl ether was steamed in a small autoclave without "explo­

sion", and degradation products were analyzed by GC-MS.

Steam treatments were carried out by two methods, (1) gradual heating of the

reactor by an electric heater from outside, and (2) high pressure steam injection

into the reactor. In the former method, about 20,--..,30 min was required to increase

the temperature and the pressure, and a part of sample would have already reacted

at the lower temperature. Under such a condition ,S-ether could be cleaved by a

mixed reaction of hydrolysis and homolysis and the degradation products were

more complicated than the steam-exploded products.
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Acidolysis reaction was proposed by WAYMAN and others and MARCHESSAULT and

others for the degradation of lignin by steam explosionI 2 ,55,56). Acidolysis would

be involved in the cleavage of IS-ether by steam and/or drained water at lower

temperature. However, in the steam injection, temparature and pressure were

immediately reached to 230°C and 28 kgf/cm2, and the sample was degraded by high

temparature and high pressure steam to prod uce mainly coniferyl alcohol (2) and

guaiacol (3) in agreement with steam explosion.

2.3.2 Steam treatment of guaiacylglycerol-,B guaiacyl ether

In steam explosion, the yield of guaiacol was smaller than that in steaming,

suggesting that a part of guaiacol was steam-evaporated. In steam treatment.

guaiacol (3) was produced mainly and the amount was comparable to that of coni­

feryl alcohol (2). The result indicated the p-O-4 ether linkage was cleaved homoly­

tically to produce coniferyl alcohol radical (22) and guaiacol radical (34). These

radicals formed were converted to coniferyl alcohol (2) and guaiacol (3) by one

electron reduction, respectively. The reducing reagent could be reducing end

groups of glucose derived from cellulose used as matrix of model compound.

Small amounts of pinoresinols (9, 10) and phenylcoumaranes (II, 32) which could

be produced by radical coupling reaction were also produced by steam treatment

of compound (I). Pinoresinols (9, 10) were only produced by homo-coupling of

OCII.
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Fig. 29. GC-MS chromatography of degradation products of guaiacylglycerol-j3-guaiacyl
ether by steam treatment.
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Cp-radicals of coniferyl alcohol (22). The results showed that radical reaction

occurred during steam treatment of lignin substructure model compound. Other

degradation products were vanillin (5), vanillyl alcohol (6), and coniferyl aldehyde

(4). However, acidolysis products such as p-oxyconiferyl alcohol (keto and enol

forms) and other Hibbert's ketones could not be detected (Fig. 29). Thus, it is

evident that the reaction of steam treatment of lignin was neither acidolysis nor

hydrolysis, but homolytic cleavage.

The compound (32) could be produced by two mechanisms, rearrangement of

ether oxygen to quinonemethide (33) or coupling of coniferyl alcohol radical (22)

and C 5 radical of guaiacol after homolytic cleavage of p-O-4 ether. The com­

pound (32) could be converted to trans and cis stilbenes (31, 30) by elimination

of formaldehyde. On the other hand, the formation of a-methyl etherated com­

pound (12) suggested that quinonemethide structure (33) is an essential intermediate

of degradation pathway, and that methanol remained, as solvent was added to the

quinonemethide. In the same manner, the formation of r-methyl etherated coniferyl

alcohol (13) suggested the involvement of an extended quinonemethide intermediate

(27) derived from coniferyl alcohol radical (22) by disproportionation or one electron

reduction. Vanillin could be formed by one electron oxidation of p-hydroxyphenyl

alcohol to its phenoxy radical and followed by Ca-Cp cleavage of side chain (Fig. 30).

Fig. 30. Degradation mechanism of guaiacylglycerol-p-guaiacyl ether by steam treatment.
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2. 3. 3 Effect of concentration of a model compound

Among the degradation products of lignin from steam-exploded Shirakanba

wood, a considerable amount of syringaresinol was yielded 30). However, from steam­

exploded or steam-treated model compound (l), only a small amount of pinoresinol

and phenylcoumarane were detected (Fig. 31-a, b). The results suggest that the

low yield of pinoresinol and phenylcoumarane depends on the concentration of

model compound used. In steam explosion of guaiacylglycerol-~-guaiacylether,

when the ratio of model compound / cellulose was 3/1000 pinoresinol was hardly

detected in the degradation products (Fig. 31-a). In steam treatment of sample at

low concentration (l/20) , only a small amount of pinoresinol was detected (about

1/7 of the amount of coniferyl alcohol) (Fig. 31-b). And in steam treatment of

HgHO0~
~.

OCH,
H

/

t
*

*

I

(b) l(--......_f\Jo,Jo-"""--.J ....--"_---.J''-/'o"'''''"'~ ~''"---- ~_--;--_--

\

(el

5 1'0 1'5 20 25 30 35 (min)

Fig. 31. GC-MS chromatography of degradation products of guaiacylglycerol-.B-guaiacyl
ether by steam explosion and by steam treatment.
a: steam explosion (200 mg of substrate/IOO g of linter cellulose), b: steam treat­
ment (20 mg of substrate/400 mg of linter cellulose), c: steam treatment (200
mg of substrate/ 400 mg of linter cellulose).
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sample at high concentration 0/2), the yield of pinoresinol was increased to a

twice amount of coniferyl alcohol (Fig.31-c). These results indicate that the yield

of pinoresinol was dependent on the concentration of model compounds used, and

the coupling reaction competed with reduction of radicals by sugar or other redu­

cing reagents.

It seems that even if the concentratiotion of model compound was increased

to that of lignin in wood, a partial concentration of radical formed in the lignin

would be considerably higher than that of model compound, because many radicals

would be formed closely in a certain area of lignin polymer. Thus, we concluded

that homolytic cleavage is the major reaction in the degradation of lignin and model

compound by steam treatment. The difference in the yield of degradation products

was ascribed to the differences of molecular weight, oxidation level and solubility

of the substrates, model compound and lignin.

2. 3. 4 Steam treatment of Shirakanba wood

The results of steam treatment of Shirakanba wood chips were shown in Fig.

32. The yield of syringaresinol was almost 50% of analyzable degradation product

by gas chromatography, and amounted to 9.6% of phenolic fraction by using ligno-
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Fig. 32. GC-MS chromatograph of degradation products of Shirakamba
wood by steam treatment
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lide diacetate as an internal standard. The yield corresponded to about 0.93% of

extractive free wood. The phenolic fraction contained vanillin (1.4%), syringalde

dyhe (4.3%), coniferyl aldehyde (0.4%), sinapaldehyde (2.5%), coniferyl alcohol

(0.8%), sinapyl alcohol (0.7%) etc. The fact that hard wood lignin which contains

less than;) % of syringaresinol substructure (Fig. 33) gave a considerable amount

of syringaresinol by steam treatment suggested that coupling of sinapyl alcohol

radical obviously occurred during steaming. Cinnamyl alcohols were mainly ob­

tained from model compounds, whereas by steam treatment of lignin, more cin­

namyl aldehydes were produced than cinnamyl alcohols. Such difference in the

amounts of the degradation compounds could be derived from the difference of

oxidation levels at C 6-CS unit of model compounds and lignin. The present inves­

tigation showed that the degradation reaction by steam explosion mainly occurred

during steaming but not at the explosion process. The results indicat that 13-0-4

ether linkage is cleaved homolytically to give cinnamyl alcohol radicals which is

reduced by sugar to cinnamyl alcohols. On the other hand, cinnamyl alcohol radical

is coupled to give resinols and phenylcoumaranes, and that the reaction depends on
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Fig. 33. GC-MS chromatograph of degradation products of Shirakanba
wood by acidlysis

- 91 -



WOOD RESEARCH No. 77 (1990)

the concentration of radical. In these reactions, quinonemethide structures might

be involved as an essential intermediate and contributed to a stability of radicals.

Lignin and phenolic low molecular weight products of lignin were easily ext­

racted and separated from exploded wood. Purification of syringaresinol was easy,

and a half of acetone soluble fraction of acetylated phenolic fraction was syringare­

sinol. Syringaresinol glucoside contained in the root of eleuterococus is known

to be a stimulant and tonic substance, and syringaresinol itself has some physiolo­

gical acti vities such as an inhibitor for blood-coagulation.

Syringaresinol is contained only 0.02% in special plants such as eleuterococus

and tulip tree, but hard woods generally contain about 20% of guaiacyl-syringyl

lignin and syringyl moiety is mainly connected by ~-O-4 ether linkage. The ~-O-4

ether substructure is easily cleaved by steam explosion homolytically to produce

sinapyl alcohol radical which could be coupled to give syringaresinol. Thus, medical

use of syringaresinol will open up total utilization of wood by biomass conversion.

2. 4 Steam Treatments of DHP and LCC

2. 4. 1 Preparation of high molecular weight coniferyl alcohol DHP

In lignification of plant cell walls, dehydrogenation of monolygnols occurs not

III a dilute aueous solution which is usually used in the preparation of DHP by the

"Zutropfverfahren" methods but proceeds on a matrix of cellulose and hemicel­

luloses by the cell wall bound peroxidase. Lignin formed in the matrix cannot

be diffused from the vicinity of peroxidase. When coniferyl alcohol and hydrogen

peroxide are supplied continuously to the cell walls on which previously formed

DHP and peroxidase are present together, the DHP would grow up to high mole­

cular weight materials such as natural lignin. High concentrations of enzyme and

intermediary DHP should be necessary for the formation of a highly polymerized

DHP. For this purpose a cellulose dialysis tube was used in the present investi­

gation.

Coniferyl alcohol and HzOz can pass thro~gh membrane of the cellulose tube,

but peroxidase and oligolignols should be impenetrable. When the sealed cellulose

dialysis tube containing a concentrated peroxidase was put into the solution of

coniferyl alcohol and HzOz, these compounds penetrate into the tube and react

with peroxidase to form phenoxy radicals. These monomeric radicals are coupled

rapidly to give oligomers inside the tube which cannot pass through the membrane

to the outer solution. In fact, precipitated DHP was found only inner side of the

tube. The amount of the precipitate in the tube increased in the early stage of

the reaction, but after 24 hr the formation of the precipitate was scarcely observed

in spite of the presence of coniferyl alcohol and HzOz in outside solution of the
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dialysis tube. The stop reaction seems to be ascribed to that the mner surface of

the membrane was coated with the precipitate of DHP formed and that penetration

of substrates was interfered. When a new tube containing peroxidase was replaced

m the same solution reaction was continued. The amounts of the DHPs obtained

m the first and the second tubes were 58 mg and 32 mg, respectively and total

yeld in the two reactions was 30%. When the reaction was continued further using

new tubes in the same solution more precipitates were produced in each time,

and when five tubes were put into the solution at once, total yield was amounted

over 50% for 48 hr. The DHP obtained by this method was almost insoluble in

any solvents of lignin (e.g. dioxane, THF, acetone, methanol, ethyl acetate, acetic

O~;;:;:;:;j:::;;;;:;::=- ---,

<Io.S

1.0t:::----~:----~~~ ....-~.._--__1

M-l

Fig. 34. Thermal softening curves for dialysis membrane method
DHPs
0: peroxidase content= 10.0 mg (M-l)
6: peroxidase content= 1.0 mg (M-3)
D: peroxidase content= 0.1 mg (M-6)
v: peroxidase content= 0.05 mg (M-7)

The deformation function 6' was normalized in such a way that a
maximum deformation= I.
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acid, 2 % NaOH and aqueous dioxane). In highly polar solvents such as formamide,

DMF, DMSO and pyridine, a part of the DHP was dissolved but major part was

only swelled about three to five times of the initial volume without dissolving.

As the dialysis method DHPs were insoluble in any organic solvents usual

methods used in determination of molecular weight could not be applied. Then

thermal softening temperature (Ts) of the DHP was measured to determine the

molecular weight. Ts of the DHPs were measured to elucidate the effect of enzyme

concentration in preparation on the molucular weight of insoluble DHPs. The

Ts raised when enzyme concentration was increased as shown in Fig. 34. The presu-
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Fig. 35. Calibration curves for thermal softening temperature (Ts) against log Mw
determined by GPC using standard polystyrenes
e: polystyrenes, @: MWL, 0: MWL fractions, V: Zutropfverfahren DHPs,
6: Zulaufverfahren DHP and 0: dialysis membrane method DHPs.
-0- and -0-: insoluble MWL fractions and insoluble dialysis membr­
ane method DHPs.
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med molecular weight of the DHP from the Ts peak at 175°C was 83,000 as com­

pared with Goring's data of dioxane lignin53). The molecular weight of MWL

calculated by the same method was about 50,000. These facts indicated that C-DHP

(dialysis method) is a highly polymerized and widely dispersed material than MWL.

For determination of the molecular weight and the molecular weight distribu­

tion of soluble lignins, gel permeation chromatography has usually been used57 - 60).

However, for insoluble lignins no good methods have hitherto been established.

Thermal softening behavior is related to the micro-Brownian motion which reflects

molecular weight and structure of the molecules. This experiments to measure the

Ts was applicable to determine the molecular weight of insoluble lignins. In order

to prepare the calibration curve of Ts vs. molucular weight, the molecular weights

of soluble fractions of MWL and DHPs were measured by GPC with p-styrage]

500 A using standard polystyrenes. DMF was used as a solvent and the solution

was diluted twice with THF. The results obtained from GPC well agreed with those

of gel filtration chromatography on Sephadex LH-60 with DMF as a solvent35).

However, for the insoluble lignin samples, Ts was measured to determine the rela­

tion between Ts and the molecular weight. The Ts of polystyrenes linearly went

up to the high temperature range with increasing of the molecular weight (log Mw).

The results of these investigations are summarized in Fig. 35. For polystyrenes,

an approximately linear relationship was found between the log Mw (up to 104) and

the Ts, and the curve was levelled off in further higher molecular weight, which is

a general characteristic of macromolecules. All lignin preparations used in the pre­

sent investigation gave linear plots for this relation. However, different from linear

polystyrene, the calibration curve of lignin related compounds shifted to higher

Ts side, which may reflect a three dimensional structure of lignin polymer, conne­

cting by hydroxyl groups via hydrogen bonds. Ts of lignin did not give the saturation

in the present experimental conditions, suggesting that Ts saturation of lignin would

occur at the more higher temperature range. The symbols with horizontal line

show insoluble fractions of MWL (2-1; 186°C) and dialysis membrane method

DHPs (M-l; 175°C, M-2; 172°C and M-3; 158°C), the molecular weights of which

cannot be measured by GPC method. The precipitate (2-1) of a DMF soluble fra­

ction of lignin in dialysis against water became insoluble in DMF. The molecular

weights of these preparations were estimated to be 8000, 5600, 5000 and 3000, res­

pectively from the calibration line (Fig. 35). Since the molecular weights were

calculated from GPC calibration curve for polystyrenes the values would be lower

than the true value. Actually, they were estimated to be 160,000, 84,000, 70,000 and

30,000 by calculating on the basis of Goring's experiment with dioxane lignin53) as

shown in Fig. 36. The DHP obtained by double dialysis membrane method with

- 95-



WOOD RESEARCH No. 77 (1990)
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Fig. 36. Calibration curve for thermal softening temperature (Ts) against log Mw
prepared from from Goring's data (1963)
0: Goring's data for spruce dioxane Iignins (D-I, D-2, D-3 and D-4)

a high speed supplying of substrate (DM-I) showed a Ts at 210°C. By extrapolation

of the calibration curve, the molecular weight of the DHP was estimated to be

20,000 (on the basis of polystyrene's calibration) and 670,000 (on the basis of Goring's

data), respectively. The molecular weights of DHPs (M-I and M-2) would be higher

than that of MWL. The result indicated that highly polymerized DHPs can be

synthesized by dialysis tube method. In spite oflower Ts than those of MWL fractions

(I-I and 2-1), DHPs (M-I, M-2 and M-3) were insoluble in organic solvents. It

could be ascribed to the more branched and/or more bridged structures.

The peaks of the acetylated lignin preparations, by GPC slightly shifted to

higher molecular side, but the peaks of Ts shifted to the lower temperature (30""'-'

50°C). This may be due to that hydrogen bonds via hydroxyl groups in lignin

were broken resulting lower Ts by acetylation. The result suggested that Ts is

remarkably affected by hydrogen bonding via hydroxyl groups in lignin.

2. 4. 2 Steam treatment of C DHP

The C-DHP degradation product (88%) was mainly obtained from DMF insoluble

fraction. However, in this study water soluble fraction, which was a major fraction

of soluble degratation products of steamed C-DHP, was mainly analyzed. These

degradation products were analyzed by GC-MS, separated by preparative TLC

and identified by IH-NMR and GC-MS.
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The major products of the fraction were coniferyl aldehyde (2) and pinoresinol

(6). Other products identified were vanillin (I), dihydroconiferyl alcohol (3), coni­

feryl alcohol (4) and phenylcoumarane (r -aldehyde, (5)) (Fig. 37).

In addition to the C-DHP degradation products described here, similar pro­

ducts on degradation of lignin substructure model compound were also found.

However, the GC-MS data showed obvious differences in the formation of coniferyl

alcohol (4), coniferyl aldehyde (2) and pinoresinol (6). In the degradation of

lignin substructure model compound, coniferyl alcohol (4) was the major degrada­

tion product and the amount of pinoresinol was much smaller than that from degraded

C-DHP. On the other hand, the major product obtained from steamed C-DHP

was coniferyl aldehyde (2). The major difference of the degradation product is

possibly due to the difference in oxidation level of C 6-C 3 unit of the substrate

molecule. In the steaming of C-DHP, the oxidation level of the C 6-C 3 units dedu­

ced from the elementary composition is equivalent to that of coniferyl aldehyde.

By the steam treatment, the cleavage of interunit linkage in lignin occurred to give

a high concentration of radicals which resulted in the coupling to form dimers.

This hypothesis was confirmed by the experiment to change the amount of sample

in the treatment (Fig. 31, 37-B). Fig. 31-C and Fig. 37-B showed experimental

results with the same amount of guaiacylglycerol-p-guaiacyl ether and C-DHP (400
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Fig. 37. GC-MS chromatogram of the degradation products (acetates) of C-DHP by
(A): acidolysis (B): steaming (20 kgf/cm2 , 230°C, 4 min)
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mg). 'Pinoresinol peak, compared with others, became more intense In spectra of

steamed C-DHP than that of steamed guaiacylglycerol-~-guaiacylether, suggesting

that the amount of pinoresinol increased by coupling of the radicals formed.

On the other hand, the oxidation level of C 6-C 3 unit in lignin substructure

model compound was similar to that of coniferyl alcohol. In production of coniferyl

alcohol in high yield, two reductive reactions might be important. In the steaming

of lignin substructure model compound, ~-aryl ether linkage was homolytically

cleaved with the formation of coniferyl alcohol radical. Disproportionation of this

radical gave rise to coniferyl alcohol and coniferyl aldehyde respectively. Howe­

ver, it is conceivable that glucose derived from cellulose, reduced coniferyl alcohol

radical to coniferyl alcohol.

On acidolysis of lignin (reflux temperature in dioxane/2N HCI 9: 1,4 hr), the

~-ether linkage was cleaved leading to the formation of ~-oxyconiferyl alcohol (e)

which converted to the corresponding r-methyl isomers, l-propanone (c) and 2-pro­

panone (d) (Fig. 37-A). These acidolysis monomers were scarcely detected in

degradation products of C-DHP by steam treatment. On the other hand, coniferyl

aldehyde and pinoresinol which were main products in the steam treatment, were

not detected in acidolysis product of C-DHP. Because resinol was not detected In

the acidolysis products, it is evident that the proportion of resinol component In

the C-DHP was low, and that most of the pinoresinol was produced by conversion

of 18-0-4 linkage of guaiacyl unit in C-DHP by steam treatment.

As for the production of pinoresinol from ~-ether linkage of C-DHP by steam

treatment the homolytic cleavage mechanism of ~-ether linkage was rationalized.

However, the yield of ether soluble fraction from steamed C-DHP was very low,

suggesting that phenoxyl radical formed by the steam treatment, repolymerized to

form more condensed polymer which was insoluble in lignin solvent. It was difficult

to determine differentially the amounts of pinoresinol newly produced and originally

existed in lignin.

Then, S-DHP which will scarcely be repolymerized and mainly produced syrin­

garesinol as a dimeric product. However, on the normal dehydrogenative polymeri­

zation method (Zutropfverfahren) of sinapyl alcohol, syringaresinol content in the

S-DHP was high. To elucidate the degradation mechanism, S-DHP which is com­

posed mainly of ~-0-4 linkage and contain less syringaresinol substructure was

needed. Hence, in the next section several new synthetic methods of S-DHP were

developed and their steam treatment was carried out.

2.4.3 Preparation of sinapyl alcohol-DHPs and LCC
The membrane method was performed using a dialysis tube (Fig. 38). By this

procedure the syringaresinol mainly formed in early stage was excluded from the
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Fig. 38. Synthesis of S-DHP and S-LCC by the dialysis-membrane method.
Legend; I: dialysis tube, 2: silicon microtube, 8: Teflon tube, 4: binding

with a thread,S: rotor, 6: petri dish, 7: stirrer, 8: stopper,
9: horseradish peroxidase solution or mixed solution of mannan
and peroxidase, 10: H202 solution, II: sinapyl alcohol solution,
12: distilled water, 13: additional peroxidase solution, 14: low
molecular weight products, IS: S-DHP or S-LCC, M: moter.

reaction system through the dialysis membrane, and the DHP with higher molecular

weights mainly connected by p-aryl ether linkage remained in the tube. The inter­

mediary low molecular DHPs were oxidized to their radicals and gradually con­

verted to a high polymer by their couplings and the couplings with monomer

radicals derived from newly added sinapyl alcohol. The DHP thus produced was

mainly composed of p-aryl ether linkage with a less amount of syringaresinol

substructure. In polar solvent (water) the electron density at Cp of sinapyl alcohol

radical was increased by the E-effect of the methoxyl group6D. Hence, the produced

dimers in dehydrogenation of sinapyl alcohol in aqueous solution (polar solvent)

were composed of syringaresinol 91% and the p-aryl ether 9 % indicating the elec­

tronic effect of methoxyl group on the coupling reaction62). FREUDENBERG and

others proposed the effect of steric hindrance on polymerization55). However, native

hard wood lignin is composed of higher amount of p-0-4 ether linkage of syringyl
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unit with a small amount of syringaresinol substructure, In disagreement with the

steric effect on polymerization.

Our previous investigation showed that the dehydrogenation of sinapyl alcohol

in dioxane (non-polar solvent) gave dimers, the ratio of syringaresinol to the sy­

ryngylglycerol-p-sinapyl alcohol ether was 4: 9662) (Table 9). While, in non-polar

solvent ionization of a lone pair of methoxyl group would be limited, and then the

E-effect was suppressed by the I-effect of the methoxyl group to result in the increased

electron density at the phenoxyl group than at Cp position. Then the amount of

p-aryl ether increased on dehydrogenation of sinapyl alcohol in non-polar solvent.

Besides the intermediary DHP was soluble in dioxane and their radical polymerization

continued easily to lead a higher molecular DHP of sinapyl alcohol through couplings

with sinapyl alcohol radical.

We investigated the dehydrogenation of sinapyl alcohol with FeCh in dioxane

solution by Zutropfverfahren method and the dialysis tube method, respectively.

The DHPs formed were analyzed by 13C-NMR and by chemical degradation such

as acidolysis. The spectra showed a very low content of syringaresinol substructure

In the DHPs, and this was confirmed by the formation of very little syringaresinol

In acidolysis.

It has been known that syringyl lignin in hardwoods mostly consist of ,S-aryl

ether substructure and that the amount of syringaresinol substructure is less than

5 %56,63). The present experiment suggested that the polymerization of sinapyl alcohol

to give syringyl lignin occurs in non-polar and hydrophobic reaction site in plant

cell wall.

It is generally considered that hemicelluloses have hydrophilic but not hydro­

phobic property. However, it has been known that the inside of cyclodextrin64- 66)

and helical amylose67) is hydrophobic, and easily incorporate hydrophobic compounds.

While cellulose also forms inclusion compounds with some hyd(ophobic compounds

such as cyclohexane68). In the hydrophobic region I-effect of the methoxyl group

is dominant as in non-polar solvent. This suggests that in plant cell wall monolignols

would be introduced into hydrophobic region of hemicellulose molecules, and de­

hydrogenatively polymerized by cell wall bound peroxidase there. In order to

examine this hypothesis we studied the dehydrogenative polymerization of mono­

lignols in the presence of hemicelluloses.

The obtained S-LCC was dissolved in d6-DMSO and analyzed by 13C-NMR.

The spectrum showed that the content of syringaresinol was remarkably low, and

sinapyl alcohol LCC formed was mainly composed of p-aryl ether linkage.

The analysis of low molecular weight fraction in the dialyzate showed that I)

the low molecular weight fraction in dehydrogenation of sinapyl alcohol in water
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Substructures in various S-DHPs and low molecular products formed by different dehydrogenative

polymerization of sinapyl alcohol
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Table 9.

Dehydrogenative

oxidation methods

Zuraufverfahren

Zutropverfahren

Dialysis method

Solvent

(pH or ratio)
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dioxane! water
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dioxane
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(pH 6.0)
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water
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mannan / water

(2 g/5 ml)
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FeCh

FeCh

peroxidase
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peroxidase
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peroxidase
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91: 7

73:27

15:85

4:96
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was mostly composed of syringaresinol, 2) the low molecular weight fraction in

dehydrogenation of the alcohol in dioxane, mainly contained 2,6-dimethoxybenzo­

quinone, and 3) the low molecular weight fractionin dehydrogenation of sinapyl

alcohol with mannan in water also gave 2,6-dimethoxybenzoquinone but not syrin­

garesinol (Table 9). The result suggested that I) the reaction in aq. solution of

hemicelluloses proceeded as did in dioxane and 2) dehydrogenation of the alcohol

in the presence of hemicelluloses in water was favorite to the formation of j3-aryl

ether linkage to lead high polymers. The analytical results of the DHP by 13C-NMR

and acidolysis were in good agreement with this hypothesis.

It is therefore concluded that dehydrogenative polymerization of monolignols

in plant cell walls could occur in hydrophobic region of hemicelluloses, by cell

wall bound peroxidases. Hence, syringyl lignin is composed mainly of 13-0-4 ether

linkage and that the hemicelluloses are easily connected to a-position of lignin via

quinonemethide intermediates to give LCC37).

2.4.4 Steam treatment of sinapyl alcohol DHp33)

In order to elucidate the reaction mechanism of lignin degradation by steam

explosion, 13-0-4 lignin substructure model compounds were used in the previous

study. The result of the study clearly indicated that j3-aryl ether linkage, which is

the most abundant linkage connecting the phenylpropane units in lignin, was clea­

ved with the formation of p-hydroxycinnamyl alcohol radicals. In addition, the

concentration of guaiacylglycerol-p-guaiacyl ether subjected to the steam treatment,

significantly influenced on the yield of dimers formed.

In the present study a comparison was made with the experiment for lignin

polymer in wood. S-DHP resembles to syringyl lignin in secondary wall of hard­

wood. For this reason, S-DHP was synthesized and used to elucidate the mechanism

of lignin degradation by steam treatment. In the degradation of S-DHP by steam

treatment, sinapyl alcohol, sinapaldehyde and syringaresinol were formed as major

products (Fig. 39-B). Syringaresinol obtained from the steamed S-DHP could be

derived from p-ether of syringyl type lignin. The p-ether linkage could be homoly­

tically cleaved to give sinapyl alcohol radical which was coupled to give Cp-C1B

linkage.

On the other hand, the acid hydrolysis of S-DHP with dioxane - HCl (9: I) in

reflux temperature for 4 hr, mainly yielded syringyl acetone, syringyl methyl ketone,

and syringyl-I-hydroxy-2-propanone which were not found in the degradation pro­

ducts of S-DHP by steam treatment (Fig. 39-A). This result suggested that the

degradation of lignin by steam treatment is different from acid hydrolysis reaction.

These results were in good agreement with the degradation mechanism of lignin

by steaming proposed in section 2.3.5.
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Fig. 39. GC-MS chromatogram of degradation products (acetates) of
sinapyl alcohol DHP and LCC by steam treatment
A: acidolysis of S-DHP (membrane method)
B: steam treatment of S-DHP (membrane method)
C: steam treatment S-LCC/mannan

2. 4. 5 Steam treatment of sinapyl alcohol LCC

The presant study was carried out in order to confirm, whether hemicelluloses

reduce sinapyl alcohol radicals formed by steam treatment to sinapyl alcohol. Lignin

carbohydrate complexes (LCCs) which represent the association between lignin and

carbohydrate in plant cell walls were synthesized and subjected to the steam treatment.

S-LCC was prepared by dehydrogenative polymerization of sinapyl alcohol with

peroxidase and H 20 2 in concentrated solution of glucomannan. Modified dialysis

membrane method was employed in order to obtain the highly polymerized DHP.

Degradation products formed from the steamed S-LCC were also identified by

IH-NMR and GC-MS. The GC-MS analysis was conducted by monitoring the mass

chromatogram of the products. The major products of steamed S-LCC detected

were sinapyl alcohol, syringaresinol and 5-hydroxymethylfurfural. Other products
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identified were syringaldehyde and sinapaldehyde.

It was shown that a large amount of 5-hydroxymethylfurfural was formed from

the steamed S-LCC. By steam treatment, mannan of LCC was degraded to mannose,

which was converted to 5-hydroxymethylfurfural by loss of two molecules of water.

Under the conditions used, the homolytic cleavage of p-ether linkage of LCCs to

produce sinapyl alcohol radical occurred. Mannose derived from mannan possibly

reduced sinapaldehyde to sinapyl alcohol radical and the radical to sinapyl alcohol.

Then the yield of sinapaldehyde was decreased, and sinapyl alcohol and syringare­

sinol were increased (Fig. 39-C). The idea was confirmed by the 13C-NMR spectrum

of the steamed DHP. The 13C-NMR data of S-LCC showed that a small peak

corresponding to syringaresinol. In dehydrogenative polymerization of sinasyl alco­

hol in water, syringaresinol was formed in a large amount by the p-p coupling.

However, in mannan solution, the formation of syringaresinol was restricted by the

presence of mannan, and only a small amount of syringaresinol was found in the

S-LCC. While, the 13C-NMR of steamed S-LCC showed the intense peaks of syrin­

garesinol 54.8 ppm (Cp), 72.4 ppm (Cr), 86.4 ppm (Ca), respectively. The results

suggested that the increase of syringaresinol by steam treatment of S-LCC mannan

is ascribed to homolytic cleavage of p-ether of syringyl type lignin to sinapyl alcohol

radical, which coupled to give Cp-Cp linkage

2. 4. 6 Degradation machanism of lignin by steam explosion

Based on the product identified, the present author proposed Fig. 30 for degra­

dation mechanism of lignin by steam treatment. By steaming conditions at 28 kgf/

cm2-230°C for 4 minutes, the hydroxyl group or the ether linkage of a-position of

lignin side chain could be protonated and loses a molecule of water or phenol to

give the quinonemethide-like structure. Then p-aryl ether linkage could be homoly­

tically cleaved to produce its intermediate radicals. Reduction and oxidation of

these intermediates occurred and followed by the homolytic cleavage of the ether

linkage at 4-position, to give sinapyl alcohol and coniferyl alcohol radicals, respecti­

vely. Disproportionation of these radicals produced cinnamyl alcohol (2, 2') and

cinnamaldehyde (4, 4'). On the other hand these radicals could be coupled together

at Cp of the side chain to produce syringaresinol and phenylcoumaranes. The ho­

molytic cleavage of a-p side chain could produce vanillin.

2.5 Summary

The ether soluble fraction of steam-exploded wood lignin of Shirakanba mainly

contained d, l-syringaresinol, d, l-episyringaresinol, dehydrodiconiferyl alcohol, coni­

feryl alcohol, sinapyl alcohol, vanillin, syringaldehyde, vanillic acid, syringic acid,

furfural, 5-hydroxymethylfurfural, and betulin.
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By steam explosion, guaiacylglycerol- and syringylglycerol-j3-guaiacyl ethers

gave coniferyl and sinapyl alcohols, respectively, as main products with small amounts

of dehydrodiconiferyl alcohol and syringaresinol, respectively. The results indicated

that the 13-0-4 ether linkage of the substrates mainly was cleaved homolytically to

produce cinnamyl alcohol radicals which were converted to cinnamyl alcohol and

their dimers.

A lignin substructure model compound (guaiacylglycerol-j3-guaiacyl ether and

syringylglycerol-j3-guaiacyl ether), DHPs (coniferylacohol DHP and sinapylalcohol

DHP) and sinapylalcohol-mannan LeC were treated with high pressure steam (at

28 kgf/cm2, 230°C for 4 min). The degradation products obtained were identified

and compared with those by steam explosion to characterize the degradation mecha­

nism of lignin by steam explosion. The degradation products of guaiacylglycerol­

j3-guaiacyl ether by steam treatment were almost the same as those by steam

explosion. Coniferyl alcohol and guaiacol were major products, and followed by

vanillin, vanillyl alcohol, coniferyl aldehyde, d,l-pinoresinol, d,l-epipinoresinol, and

dehydrodiconiferyl alcohol. In addition, 2- (3-methoxy-4-hydroxyphenyl)-7-methoxy­

coumarane, trans-3-methoxy-4-hydroxy-2'-hydroxy-3'-methoxystilbene, cis-3-methoxy-4­

hydroxy-2'-hydroxy-3'-methoxystilbene, catechol, cis-coniferyl alcohol, dihydroconi­

feryl alcohol, homovanillyl alcohol, 1- (2-hydroxy) ethoxy-2-methoxybenzene were

formed. The formation of pinoresinol and phenylcoumarane from guaiacylglycerol­

j3-guaiacyl ether was consistent with the homolytic cleavage of Cj3-0 ether linkage

to produce coniferyl alcohol radical and guaiacol radical followed by their coupling

to derive the dimers. The formation of coniferyl alcohol and coniferyl aldehyde

suggested that disproportionation of coniferyl alcohol radical occurred. Furthermore

one electron reduction of the radical by sugars led to a higher yield of coniferyl

alcohol than coniferyl aldehyde.

On the other hand, by steam treatments of DHPs and LCCs coniferyl aldehyde

and sinapaldehyde were produced in larger amounts than coniferyl alcohol and

sinapyl alcohol, and that the yields of dimer fractions were larger than these in the

steaming of dimeric lignin substructure model compounds.

It was thus concluded that a homolytic cleavage reaction of 13-0-4 ether linkage

occurred as main degradation reaction of lignin in wood by steam treatment and

steam explosion.

By dialysis membrane mathod coniferyl and sinapyl alcohols were dehydroge­

nated to highly polymerized DHPs which were insoluble in any solvents. The

molecular weights of insoluble lignin-related polymers could be determined by mea­

surement of their softening point (Ts) which has a linear relation with the log Mw.

This method is very useful to estimate the molecular weight of insoluble polymers.
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Dehydrogenative polymerization of monolignols in plant cell wall would occur in

hydrophobic region of hemicelluloses by cell wall bound peroxidases, and in the

hydrophobic condition sinapyl alcohol could be polymerized mainly through ~-O-4

ether linkage connected to hemicelluloses at a-position.

3. UTILIZATION OF STEAM-EXPLODED WOOD FOR ENZYMATIC
SACCHARIFICATION AND RUMINANT FEED

3. 1 Introduction

Wood including bamboo is by far the most abundant biomass on the earth,

and it can be endlessly renewed. The need to develop renewable alternatives to

petroleum, coupled with the world's growing requirements for fuel and food, will

guarantee the more wide-spread use, and more efficient conversion of wood. Howe­

ver, because of chemical and structural heterogeneity of wood the wood-conversion

process is still not economically feasible.

Several papers on the conversion of wood to ruminant feed have been repor­

ted69 ,70). It has been known that for enzymatic saccharification and digestion of

wood by ruminant, delignification or cleavage of the lignin-carbohydrate linkages
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Fig. 40. Saccharification of EXWs with cellulase: -0-:
Shirakanba EXW (steaming pressure: 28kg/cm2 ); -/j,-:

Shirakanba EXW (steaming pressure: 24 kg/cm2
); -0-:

Shirakanba EXW (steaming pressure: 20 kg/cm2
); -e-:

Karamatsu EXW (steaming pressure: 28 kg/cm2
); -.-:

Reducing sugars (%) of Shirakanba EXWs (28 kg/cm2 ) incu­
bated in the same condition without cellulase; -.-:
Reducing sugars (%) of Karamatsu EXWs (28 kg/cm2 )

incubated in the same condition without cellulase.
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Fig. 41. Saccharification (%) of cellulose of
Mosochiku EXB
0: steam pressure, 28 kg/cm2

D: steam pressure, 24 kg/cm2

0: steam pressul e, 20 kg/cm2

.: unexploded bamboo powder

Fig. 42. Saccharification (%) of cellulose of
exploded materials

0: Chishimazasa (steam pressure, 28 kg/cm2 )

D: Shirakanba (steam pressure, 28 kg/cm2 )

(>: Karamatsu (steam pressure, 28 kg/cm2 )

IS prerequisite71 ), We have investigated the steam explosion of woods and bamboos

to accomplish economically feasible separation of cellulose, hemicelluloses and lignin

of woody materials for chemicals, pulp and enzymatic saccharification I7 ,26,40,42).

This section reports on the enzymatic saccharification and ruminant digestion

of the steam-exploded wood (EXW) and bamboo (EXB), and nutritional improve­

ment of EXW for ruminant feed by microbial protein of Peacilomyces varioti8 ,9).

3. 2 Enzymatic Saccharification

EXWs of Shirakanba and Karamatsu, and Mosochiku and Chishimazasa EXBs,

were subjected to enzymatic hydrolysis using a Trichoderma cellulase (Meiselase).

The results are shown in Figs. 40, 41 and 42. Untreated wood and bamboo powder

gave less than 5 % saccharification with the enzyme, whereas Mosochiku EXB, Chi­

shimazasa EXB and Shirakanba EXW gave 59%, 44%, and 68% saccharification of

the sample, corresponding to 95%, 87%, and 98% of cellulose, respectively. Howe­

ver, Karamatsu EXW (28 kgf/cm2 , 4 min.) gave 37% saccharification of the sampple.
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The poor saccharification of the Karamatsu EXW with the cellulase could bu ascribed

to anatomical differences of wood, higher lignin content, and structural differences

of lignin: coniferous woods are composed of mainly tracheids, and the lignin is

composed mainly of guaiacyl lignin which is more condensed than guaiacyl-syringyl

lignin in hardwoods and grasses. However, we recently found that pretreatment

of electron beam irradiation of conifer wood chips or after ball milling of conifer

EXWs gave almost the same saccharification as in hardwood EXWS72). Hence, it

was indicated that EXBs and Shirakanba EXW were suitable for enzymatic saccha­

rification and ruminant feed.

3.3 Characterization and Nutritional Improvement as Ruminant Feed

3.3.1 In vitro digestibility of steam-exploded woods

Bamboo, wood and rice straw contain large amounts of cellulose and hemicel­

luloses but are low value as ruminant feed, because of their low digestibility due

to physical and chemical linkages between polysaccharides and lignin in the mate­

rials. However, by steam explosion these linkages were cleaved and these materials

were converted to easily digestible materials in a mixture of the rumen fluid fo a

sheep and artificial saliva of McDougall. Steam-exploded Mosochiku and rice straw

gave 50% and 75% digestibility of organic matter (OM) in comparison with 8.0%

and 44% of those in the unexploded samples, and 39% and 64% digestibility of

organic cell wall (OeW) (unexploded samples, 3.2% and 21%), respectively.

Thus, digestibility of Shirakanba EXW and Mosochiku EXB comparable to

that of standard feeds, orchard-timothy mixed hay (68.5%) and alfalfa (64.4%)

(Table 10, II and 12).

In vitro digestibility of Shirakanba EXW by cattle and goats in a preliminary

investigation also showed better value (90%) than that of hay cube (73%). Body

weight of the goats fed with Shirakanba EXW were the same to those of controF3).

Table 10. Nutritional analysis and digestibility of white birch exploded woods

Wood sample

(Shirakanba)

Unexploded

Wood powder

Exploded

woods

Steaming
Nutritional analysis in vitro digestibility

DM OM CM OCW Ash DM OM OCW
time

(%) % of (%) (%) (%)DM
~--- -~---~------~--------~-----------

Omin. 94. 9 93.7 85. 2 83.5 1.2 13.3 13.4 2. 8

1 min. 95. 4 94. 9 61. 5 60. 6 O. 5 40.0 40. 1 6.3

2min. 91. 4 90.4 55.2 54.4 0.7 57.3 57.3 29. 1

4min. 87.4 96. 8 51. 0 51. 4 0.6 76.5 76.5 60. 6

8min. 90.0 89.4 54. 3 53. 6 0.6 78.8 78.8 65.0

16min. 89.9 89.1 56.4 55. 7 O. 7 75. 9 76.0 61. 6
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Table II. Nutritional analysis and digestibility of exploded Mosochiku

Nutritional analysis in vitro Digestibility

Samples Steaming DM OM CW OCW Ash DM OM OCW

(Mosochiku) time (min) (%) % of DM (%) (%) (%)

Unexploded 0 92.4 98.0 94.1 93.2 2.0 9.6 8.0 3.2

1 93. 3 98.0 73.0 72.4 2.0 32.6 31. 8 7. 1

2 94. 5 98. 8 72.3 71. 6 1.2 33.8 33.5 8. 1

Exploded 4 91. 8 99.0 71. 1 70.3 1.0 47.8 47.3 25.8

8 91. 9 98. 9 81. 0 80.1 1. 1 48. 6 48. 7 36.6

16 91. 2 98.9 82.3 81. 5 1. 1 50.0 49.8 39. 1

Table 12. Nutritional analysis and in vitro digestibility of exploded materials

Nutritional analysis In vitro Digestibility

OM OM Crude Crude OCW OM OM OCW
protein fat

(%) (%) (%) (%)
(%) of OM

Mixed hey of orchard grass 85. 8 90.9 18. 1 2.0 61. 9 70. 2 68. 5 53.7
and timothy

Alfalfa 86.5 89.9 20.1 2.4 46.4 64.0 64.4 31. 1

RiLe straw (unexploded) 86.1 85.1 5.2 1.8 60.9 43.6 43. 7 20.9

Rice straw (exploded) 90. 2 84.6 4. 5 2. 2 56.8 69.1 75.0 64. 2
(22 kgf/cm2 4 min)

Bagasse (unexploded) 92.0 97. 2 93. 7 41. 6 41. 8 39.6

Bagasse (exploded) 91. 9 96.9 77.5 63. 3 65.8 57.2
(27 kgf/cm2 2 min)

Karamatsu 90. 3 99. 8 88. 4 11. 6 12. 1 O. 6
(unuxploded)

Karamatsu (exploded) 92. 3 99. 7 72. 1 29.1 29.4 2. 4
(28 kgf/cm2 4 min)

Shirakanba (unexploded) 94.9 93. 7 83.5 13.3 13.4 2. 8

Shirakanba (exploded) 87.4 86.8 51. 4 76.5 76.5 60.6
(28 kgf/cm2 4 min)

Shirakanba (exploded) 25. 2 99.8 O. 6 3.4 75.8 52. 7 54. 0 41. 0
(26 kgf/cm2 4 min)

EXW with P. valioti 40. 7 97. 2 7.2 0.9 82. 7 52.4 52. 7 45. 4
(26 kgf/cm2 4 min, 40°C, 14 days)

In addition, we recently found 16) that the culture of Paecilomvces varioti which wa~

developed by FORSS et al.74) to produce microbial protein, with Shirakanba EX\V

considerably improved nutritional quality of EXW (crude protein content increased

to 7.2%, Table 12) as ruminant feed.

Sugars derived from hemiceIIuloses, phenolic compounds from lignin, and

5-hydroxymethyIfurfural in water soluble fraction of the white birch EXW were

almost completely catabolized by the culture.
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It is thus concluded that EXB and EXW are suitable for fermentation and

ruminant feed. It was also shown that the steam explosion process is one of the

best pretreatment of bamboo and woody residues for enzymatic saccharification,

and preparation of ruminant feed and wood chemicals.

3.3.2 Mycelial growth of Paecilomyces varioti

Both strains (IFO-4855 and 5674) of P. varioti grew very well III the four media

(A, B, C, and D) as shown in Fig. 43. The mycelial growth in B media for which

carbon source, glucose is substituted with water extract of EXW is almost the same.

It was further shown that the mycelial growth of the fungus in C medium, for

which yeast extract and some of minerals were omitted from the standard medium

A, was not significantly different from the growth in A medium. The result

indicated that the sugars in the water extract of EXW were good carbon source

for the mycelial growth of P. varioti. pH of the cultures in A and B media grau­

dually decreased to about 3.2 and then increased to about 6.5 after 5 days culture

(Fig. 44). However, in the cultures in C and D pH decreased to about 2 after

4 days culture and then slowly increased to about 3. The lower pH in the cultures

of C and D media might be ascribed to relatively poor uptake of nitrate released

by assimilation of ammonium ion from ammonium nitrate. This could be improved

Fig. 43. Mycelial growth of Paecilomyces varioti

IFO 4855: A: Glucose+standard medium:
-e-; B: Water extract of EXW+standard

medium; -0-; C: Water extract of EXW
+the medium composed ofNH4N032 g, K2HP04
I g and MgS04 0.5 g/lOOO ml: -6- D. The
medium C+NH4N03 3 g/lOOO ml: -0-.

9 10 11
(days)

3 4 5 6 7 82

Fig. 44. Change of pH in culture~ of P.

varioti IF 0-4855; A: Glucose + standard
medium: -e-; B: Water extract of EXW
+standard medium: -0-; G: Water ex­
tract of EXW+the medium composed of
NH4N03 2 g, K2HP04 I g and MgS04 O.5g/
IOOOml: -6-; D: The medium C+
NH4N03 3 g/lOOOml: -0-.

o

pH
7

6

(days)Iacub&t1on t~
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to use ammonium carbonate as nitrogen source.

3.3.3 Assimilation of sugars in the water extract by P. varioti
Sugars in the water extract of EXW before and after culture of P. varioti were

analyzed by GLC. As shown in Fig. 45 arabinose, xylose, mannose, galactose and

glucose in the extract were all consumed after 9 days culture. The process of sugar

consumption in the water extract of EXW is shown in Table 13. It is obvious that

xylose, glucose and galactose were consumed faster than other sugars. In addition,

o
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l:•...
§
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k

i
4•
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o 2 3 4 5 6 7 8
Iacl&ba Uon u_

9 10
(days)

Fig. 45. GLC analysis of assimilation of mono
saccharides in water extract of EXW by
P. varioti: A: The original monosac­
charides; B: After 9 days culture.

Fig. 46. Assimilation of oligosaccharide's
in water extract of EXW by P.
varioti.

Table 13. Assimilation of sugars in the water extract

of EXW by P. varioti

Cont 3 days 5 days 9 days

Ara. (%) 9.5 6.0 O. 2 0

Xyl. (%) 57.7 24. 3 O. 2 0

Man. (%) 6.8 3. 9 1.0 0.6

Cal. (%) 6.6 1.6 0 0

Glc. (%) 8.0 1.0 0 0

Other compounds (%) 11. 3 2. 9 0.4 1.6

Total (%) 100 39.8 1.9 2. 3

(% of water extract) (30.3) (12. I) (0.5) (0.7)
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the consumption of total sugars including oligosaccharides ill the water extract

during fungal growth were measured by phenol-sulfuric acid method as shown in

Fig. 46. The results showed that oligosaccharides which were not analzed by G LC

was slowly assimilated and still remained after 10 days culture.

3. 3. 4 Degradation of phenolic compounds and hydroxymethylfurfural by

P. varioti

By steam explosion of wood both a-O-4 and 13-0-4 linkages of lignin were

cleaved to give various phenolic compounds and low molecular weight lignin.

While a part of hexosan and pentosan gave hydroxymetylfurfural and furfural,

respectively. However, furfural and some volatiles were taken out of the water

extract during freeze-drying. These phenolic compounds and hydroxymetylfurfural

which are partly soluble in water were separated by TLC and identified by NMR

analysis to be vanillin, syringaldehyde, d,l-syringaresinol, d,l-episyringaresinol and

coniferyl aldehyde. P. varioti catabolized these phenolic compounds and hydroxy­

methylfurfural as shown in Fig. 47. It was suggested that hydroxymethylfurfural

and phenolic lignin degradation compounds in EXW might be dislikable substances

for cattle. We found that the EXW cultured with P. varioti did not give a stimu­

lative odor or bitter taste found in original EXW.

3. 3. 5 Nutritional analysis and in vitro digestibility of cultured steam-exploded

woods

The nutritional analysis of the EXW cultured with P. varioci showed that crude

protein whose amount in the original EXW was 0.6% was increased to 7.2% in the

cultured EXW. The protein amount was a little lower than that in orchard-timothy

and alfalfa but much higher than that in rice straw (4.5%). In vitro digestibility

of EXW and cultured EXW was not different but much higher than that of rice

straw. These results indicated EXW is a suitable feed for ruminant, and that

mycelial protein cultured with EXW considerably improved nutritional quality of

the EXW.

It is thus concluded that EXW is well digested by ruminants and hydrolyzed

by cellulase: in vitro and in vivo digestibilities were 50"'-'80% of OM, and saccharifi­

cation, 80"'-'90% of the polysaccharides. Culture of P. varioti with EXW remarkably

improved nutritional quality of EXW, and phenolic compounds and hydroxymethyl­

furfural which may be dislikable compounds for ruminants were completely cata­

bolized by the fungus. Thus, utilization of wood residues for ruminant feed became

promising by steam-explosion of wood. It was also shown that the EXW process IS

one of he best pretreatments of woody residues for enzymatic saccharification.
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3.4 Summary

The steam-exploded wood (EXW) (28 kgf/cm2 , 4 min) of Shirakanba was easily

hydrolyzed by cellulase and digested by ruminants as in alfalfa: saccharification

was about 87% of the polysaccharides of EXW, in vitro digestibility about 77% of

EXW. These values of steam-exploded bamboos (saccharification: 95% of cellulsoe

and in vitro digestibility: 50% of dry matter (DM) for the Mosochiku EXB) are

comparable to those of steam-exploded wood (EXW) of Shirakanba but better than

those of Karamatsu EXW. Culture of P. varioti with EXW considerably improved

nutritional quality of EXW (crude protein, 7.2%) as a ruminant feed. Sugars

derived from hemicelluloses, phenolic compounds, and 5-hydroxymethylfurfural in

water soluble fraction of EXW were almost completely metabolized by the culture.

The results indicated that utilization of wood residues for ruminant feed and fer­

mentation become promising by the steam-explosion.

CONCLUSION

Wood chips of Shirakanba (white birch, Betula j;latyphvlla Sukatchev var. jafJOnica

Hara) and Karamatsu (Japanese larch, Larix leptolepis Gordon) were treated with a

high pressure steam (12"-'28 kgf/cm2) for 1,,-, 16 min, and the steam pressure was

released instantaneously resulting in steam-exploded wood. When the treating time

was longer more fibrillation of cell walls of Shirakanba occurred. Fibers of the

exploded woods were observed to be vigorously ruptured.

Chemical changes of main components in wood (cellulose, hemicelluloses and

lignin) by steam explosion have been elucidated by IH- and 13C-NMR, gas chroma­

tography, GPC, X-ray diffraction, transmission electron microscopy, thermal softe­

ning property and CP/MAS 13C-NMR (cross polarization and magic-angle spinning

carbon 13 nuclear magnetic resonance) spectroscopy. By steam explosion hemicel­

luloses were rapidly hydrolyzed to lower molecular weight products. Almost all

hemicelluloses (27.9%) in Shirakanba wood were hydrolized to oligosaccharides

extractable with water by only one min steaming at 20 kgf/cm2, and by 8 min

steaming at 28 kgf/cm2 53.7% of hemicelluloses were converted to monosaccharides.

Monosaccharides obtained by 2 min steaming of Shirakanba wood were composed

of 61.1% of xylose and only 4.9% of glucose, and the yields were in accord with

original composition of hardwood hemicelluloses. Cellulose in non-crystalline area

was partially hydrolyzed, and micelle lingth was decreased to about 2000 A by 8 min

steaming at 28 kgf/cm2• However, cellulose was not completely hydrolyzed to give

glcose, and non-crystalline cellulose would be annealed and transformed to crystalline

cellulose.

By a steam explosion (28 kgf/cm:!, 230°C, 16 min) cellulose In Shirakanba wood
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was increased in crystallinity (Crl: 51 % to 67 %), micelle width (25 A to 52 A), and

microfibril width (32 A to 50 A), whereas the langth of cellulose microfibrils was

decreased (to about 2000 A). The crystalline form of cellulose clearly was changed

by the steam explosion: broad peaks in the CP/MAS 13C-NMR spectrum of the

crystalline component of the wood cellulose assigned at CI, C 4, and C 6 of the

pyranose ring changed to fine doublet peaks of crystal form, Cellulose la. It also

was found that the crystallinity of cellulose is increased by steaming the wood at

high temperatures and pressures without explosion. However, purified, crystalline

cellulose, such as filter paper, was influenced less in crystallinity by steaming, and

the results suggested that other constituents accompanied by cellulose were res­

ponsible for the increase of crystallinity of the cellulose by the steam explosion.

However, when reaction time was increased, the yields of furfural and 5-hydro­

xymethylfurfural derived from polysaccharides were increased. Lignin was degraded

slower than hemicelluloses. The yield of lignin was 29.2% in maximum by 8 min

steaming at 28 kgf/cm2, and the molecular weight of lignins obtained were decreased

to Mw=2100 and 1100 by 2 min and 16 min steaming, respectively.

The ether soluble fraction of steam-exploded wood lignin of Shirakanba mainly

contained d,l-syringaresinol, d,l-episysingaresinol, dehydrodiconiferyl alcohol, coni­

feryl alcohol, sinapyl alcohol, vanillin, syringaldehyde, vanillic acid, syringic acid,

furfural, 5-hydroxymethylfurfural, and betulin.

By steam explosion, guaiacylglycerol- and syringylglycerol-;3-guaiacyl ethers gave

coniferyl and sinapyl alcohols, respectively, as main products with small amounts

of dehydrodiconiferyl alcohol and syringaresinol, respectively. The results suggested

that the ;3-0-4 ether linkage of the substrates mainly was cleaved homolytically to

produce cinnamyl alcohol radicals which are converted to cinnamyl alcohol and

their dimers

Hence, we proposed a radical reaction as the mam degradation mechanism of

lignin by steam explosion.

To confirm the radical degradation theory of lignin by steam explosion, a lignin

substructure model compound, guaiacylglycerol-;3 guaiacyl ether was treated with

high pressure steam (at 28 kgf/cm2 , 230°C for 4 min). The degradation prosducts

obtained were identified and compared with those by steam explosion to characterize

the degradation mechanism of lignin by steam explosion. The degradation products

of guaiacylglycerol-;3-guaiacyl ether by steam treatment were almost the same as

those by steam explosion. Coniferyl alcohol and guaiacol were major products

followed by vanillin, vanillyl alcohol, coniferyl aldehyde, d, l-pinoresinol, d,l-epipi­

noresinol, and dehydrodiconiferyl alcohol. In addition, 2-(3-methoxy-4-hydroxy­

phenyl) -7-methoxycoumarane, trans-3-methoxy-4-hyd roxy-2'-hydroxy-3'-methoxystil be-
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ne, cis-3-methoxy-4-hydroxy-2'-hydroxy-3'-methoxystilbene, catechol, cis-coniferyl

alcohol, dihydroconiferyl alcohol, homovanillyl alcohol, 1- (2-hydroxy) ethoxy-2-me­

thoxybenzene were identified. The formation of pinoresinol and phenylcoumarane

from guaiacylglycerol-p-guaiacyl ether was consistent with the homolytic cleavage of

Cp-O ether linkage to produce coniferyl alcohol radical and guaiacol radical followed

by their coupling to derive the dimers. The formation of coniferyl alcohol and

coniferyl aldehyde suggested that disproportionation of coniferyl alcohol radical

occurred. Furthermore one electron reduction of the radical led to a higher yield

of coniferyl alcohol than coniferyl aldehyde.

In steaming of guaiacylglycerol-p-guaiacyl ether, coniferyl alcohol was produced

In a larger amount than coniferyl aldehyde, however, sinapaldehyde was produced

In a larger amount than sinapyl alcohol in steaming S-DHPs. This may be caused

by the difference in the oxidation level of the starting material used. In the

steaming of lignin substructure model compound syringylglycerol-p-guaiacyl ether,

the oxidation level of C 6-C 3 unit of the substrate is equivalent to that of sinapyl

alcohol radical, while the oxidation level of C 6-C 3 unit of S-DHPs is equivalent to

that of sinapaldehyde. Compared to the steaming of syringylglycerol-p-guaiacyl

ether with that of S-DHP, the yield of dimer fractions (e.g. syringaresinol) increased

in latter case. It seems that by steam treatment, the cleavage of 13-0-4 linkage In

S-DHPs occurred to maintain a high concentration of radicals which coupled to

the increase of the dimers formation.

The increased yield of sinapyl alcohol in steamed S-LCC, indicated that sinapyl

alcohol radical produced by the steam treatment was reduced by the mannose derived

from mannan linked to S-DHP. The results obtained in this study indicated that

a remarkable amount of resinols are produced from Ie-aryl ether units during steam

treatment.

It is thus concluded that a homolytic cleavage reaction occurred as main degra­

dation reaction of lignin in wood by steam treatment and steam explosion.
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