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Introduction

Oxalic acid occurring in higher plants, cultures of molds and wood-rotting fungi, has

been receiving much attention from various viewpoints l
). Several higher plant~, including

Oxalis spp., seem to accumulate oxalic acid in leaves to protect themselves against fungal

attack. Plant pathogens produce oxalic acid to attack cropS2). Symbiotic mycorrhizal

fungi seem to excrete the acid to liberate phosphorus from calcium phoshphate and other

minerals so that host plants utilize them for their growth3
). Symbiotic rhizobia also

biosynthesize oxalic acid, which is used as an electron donor for nitrogen fixation in broad

beans (Vicia jaba)4). Recently, Akamatsu and Shimada partially purified glyoxylate

oxidase, which catalyzes the oxidation of glyoxylate to form oxalate, from brown-rot

basidiomycete Tyromyces palustrii). However, the oxalate producing enzyme from white-rot

fungi has not yet been characterized, although the enzyme was obtained in cell-free

extracts6
,7). We report here occurrence of glyoxylate oxidase, formate dehydrogenase, and

also oxalate decarboxylase in the white-rot fungus Coriolus versicolor and some characteristics

of the glyoxylate oxidase.

Materials and Methods

Coriolus versicolor (COV-1030; kindly supplied from Laboratory of Deterioration

Control, Wood Research Institute, Kyoto University) was grown, the mycelia were

*1 A part of this work was presented at the 40th lignin symposium in Tsukuba, October, 1995.
*2 Laboratory of Biochemical Control.

- 23-



WOOD RESEARCH No. 83 (1996)

harvested on day 21 of the cultivation, and glyoxylate oxidase was extracted as described

previously6). The enzyme proteins were precipitated by addition of ammonium sulfate to
I

80% saturation, the precipitate was collected, dialyzed, and the enzyme solution was used as

a crude, preparation.

The reaction mixtures (3 ml each) contaiped glyoxylate substrate (20 mM, pH 4.0), 12

pI of5 mM DCIP, 0.5 ml of the crude enzyme,:solution, 1 ml of 0.1 M borate buffer (pH 8.0)

and distilled water. The initial velocity of the reduction of DCIP was determined by

measurement of the decrease in absobancy at 600 nm (E = 17.2 mM- 1 em-I at pH 8.0) at

40°C5).

Oxalate decarboxylase was assayed at pH 4.0 according to the method ofDutton et al.B
).

Formate dehydrogenase was assayed by measurement of the increase in absorbance at 340

nm according to the reported method9
) except for the use of67 mM ofdipotassium hydrogen

phosphate buffer pH 9.5.

Alternatively, for identification of the oxalate product formed from glyoxylate, the

product was confirmed by GC-MS analysis of the amide derivative of the product lO
) and

determined by the assay of oxalate product with the commercial enzyme kits for oxalate as

reported previously6,7) •

Results and Discussion

Changes in activities ofglyoxylate oxidase, oxalate qecarboxylase, and formate dehydrogenase in Coriolus

versicolor: Activities of oxalate producing enzyme (glyoxylate oxidase) and oxalate­

decomposing enzymes (oxalate decarboxylaseand formate dehydrogenase) and the amounts
:

of oxalate produced during the cultivating of the white-rot fungus were assayed. The

results are shown in Fig. 1. The increase in activities ofboth glyoxylate oxidase and oxalate

decarboxylase are in good harmony with the changes in production of oxalate. Formate

dehydrogenase reached the maximum on day 14 and decreased. The reason for the lower

activity of formate dehydrogenase is not clear. However, excess oxalate may be

decomposed predominantly by lignin peroxidase systems1I) rather than formate

dehydrogenase.

Optimal pH and temperature: The glyoxylate oxidase exhibited the maximum activity at pH 9

(borate-potassium chloride buffer).

Substrate specificity: The relative activities of glyoxylate oxidase for various substrates were

compared. The results indicate that both glyoxylate and glycolaldehyde were the best

substrates among the compounds tested. The activity for glycollate was half of that for

glyoxylate; but no other compounds such as glyoxal, acetaldehyde, formaldehyde, formate,

oxalate and L-malate were found to be the substrate. It is noteworthy that the glyoxylate

oxidase from T. palustris5
) utilized glyoxylate substrate best but have little activity for
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Fig. 1. Changes in activity of the oxalate-producing and -decomposing enzymes during the
cultivation of C. versicolor.

glycolaldehyde and glycollate in contrast to the enzyme from C. versicolor.

Effects of inhibitors: Although metal ion chelators such as EDTA, thiourea and azide anions

as heme-enzyme inhibitor did not inhibit the enzyme. However, Tiron, which is one of

metal IOn (iron) chelators, inhibited half of the activity. However, p­
chloromercuribenzoate (PCMB) was found to inhibit the activity completely, which

indicates the sulphydryl group is involved in the catalytic function of the enzyme. The

preincubation of the enzymewith ImM hydroxylamine according to the Shinagawa et al. 12
),

did not inactivate the enzyme. The result indicates that PQQ (pyrroloquinoline quinone)­

enzyme is not involved in the oxidation of glyoxylate, because PQQ has been reported to be

inhibited by NH20HI2
). Interestingly, oxalate was found to potently inhibit glyoxylate

oxidase activity. The overproduction of oxalate within the cellular sites may be controlled

by the oxalate itself in a manner product inhibition.

Effectiveness of electron acceptor: The effectiveness of electron acceptors for the enzymatic

oxidation of glyoxylate was tested. The results indicate that DCIP was the second best

electron acceptor after potassium ferricyanide, which was consisted with the observation for

glyoxylate oxidase from T. palustris. Neither NAD nor NADP was effective, regardless of the

presence or absence of CoA which has been reported to be necessary for glyoxylate

dehydrogenase I3
). The addition of the FMN or FAD did not enhance the activity,

indicating that the enzymatic reaction was independent on the external addition of these
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flavin nucleotides. However, it is not ruled out from this experiment alone the glyoxylate

oxidase does not contain these flavin nucleotides as a prosthetic group, because these

nucleotides are known to be frequently tightly bound to a variety of flavoprotein oxidases.

In order to confirm the "natural electron acceptor, further study must be carried out with the

purified enzyme.

In conclusion: (1) The glyoxylate oxidase from the white-rot fungus C. versicolor is very

similar in general to the enzyme from the brown-rot fungus Tyromyces palustris5
). (2)

Formate dehydrogenase was cell-free extracted for the first time and detailed results will be

re'ported elsewhere. (3) Oxalate biosynthesized by C. versicolor is in part mineralized to

CO2 according to the following metabolic pathway:

glyoxylate -+ oxalate -+ CO2 +formate -+ CO2
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