
Title Effect of Time Duration and Intrinsic Features for English
Phoneme Recognition

Author(s) Ariki, Yasuo

Citation 音声科学研究 = Studia phonologica (1990), 24: 70-82

Issue Date 1990

URL http://hdl.handle.net/2433/52485

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University



STUDIA PHONOLOGICA XXIV (1990)

Effect of Time Duration and Intrinsic Features
for English Phoneme Recognition

Yasuo ARIKI

SUMMARY

This paper describes methods to improve the performance of English phoneme

recognition from linguistic view points. The methods include exploiting time dura­

tion information in hidden Markov model (HMM), intrinsic feature space for vowel.

The time duration constraint imposed on states of the phoneme HMM can improve

its recognition rate significantly for phoneme data in continuous pseech. As intrin­

sic feature spaces for vowel, formants and the time derivative are employed. They

improve the phoneme recognition rate considerably compared with the commonly

used LPC cepstral coefficients.

I. INTRODUCTION

The speech signal exhibits variability in both time duration and spectrum even

by the same speaker. This variability has been causing difficulty in the realisation

of speech recognition by machine. Hidden Markov modelling (HMM) was propos­

ed to absorb the variability, by virture of its computational time alignment capabi­

lity coupled with use of spectral probability distribution functions (pdf) [1]. The

HMM made it feasible to recognise continuous speech with large vocabulary by

modelling sub-word speech units. The subword models can be easily concatenat­

ed into word models owing to the probabilistic representation of the HMM [2] [3]

[4].

Using HMM sub-word modelling as bases for experimentation, we investigat­

ed several methods of increasing its performance. In this paper following two me­

thods to improve phoneme recognition rate are described:

(1) Incorporation of time duration modelling into the phoneme HMM.

(2) Employment of specific feature space intrinsic to vowels and consonants.

The HMM can be thought as a time varying information source which can be

modelled as Markov process with the pdf at each state. Speech data are used to

estimate the pdf at each state and state transition probability of the Markov model.

However, it lacks information about how long the speech data can be likely to stay

at each state [5] [6]. In this paper, we formalise the time duration modelling in the

HMM and show the recognition improvement of the phoneme in continuous speech,
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compared to the conventional HMM without time duration [7].

In phoneme recognition by HMM, a single acoustic feature space, such as

LPC cepstral coefficients, has been employed so far, irrespective of the phoneme clas­

ses: consonants or vowels. However, their features may be well represented in in­

trinsic feature space, since vowels and consonants are produced through different vo­

cal mechanisms. For example, consonants can be characterised largely by spectral

envelope and their temporal movement. On the other hand, vowels can be chara­

cterised by formant frequencies rather than spectral envelope. In this paper· we

demonstrate considerable improvement of the vowel recognition by employing for­

mant frequency instead of LPC cepstral coefficients [8].

In order to formalise the time duration modelling in the HMM, we describe

EM algorithm for parameter estimation of the HMM in section II, then its applica­

tion to the discrete HMM is described in section III and IV. Section V formalises

the time duration HMM. Phoneme recognition using the discrete HMM and

the effect of time duration HMM are described in section VI and VII respectively.

Section VIII describes the experimental results of phoneme recognition in intrinsic

feature space.

II, EM ALGORITHM

We suppose here that observed speech sample x comes out according to pro­

babilistic structure y with the probability density of j(x,y). Information such as

from which probabilistic structure (class, state) a data sample x comes is unobser­

vable and only the speech sample x is observed. Observable data are called in­

complete data because they are missing the unobservable data y, and data com­

posed of observable and unobservable data are called complete data. The purpose

of the EM algorithm is to maximise the log-likelihood of incomplete data, by itera­

tively maximising the expectation of log-likelihood of complete data. The name

of the EM algorithm comes from E for expectation and M for maximisation. I t can

be said that the EM algorithm is a maximum likelihood estimation method, but

its computation is less complex than the conventional maximum likelihood estima­

tion method.

Let L (x,~) denote the log-likelihood of the observed speech sample x. Here

~ is the parameters of the probabilistic structure y. The log-likelihood L (x,~) is

decomposed into two functions; Q(J, ~) and H(J, ~) as follows.

L (x,~) = Q(J, ~) -H(J, ~) (1)

where J and ~ indicate the parameters of the probabilistic sturcture y already

estimated and to be estimated at this iteration step respectively. The H function

has the property that H(J, ~)-::;;H(J, J), then the log-likelihood L increases if the

function Q increases for the newly estimated parameters ~. The function Q is
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expressed as follows:
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- 1 -
Q(A, A) = 2Jf(x,YIA) Iogf(x,y/A)

f(xIA) Y

(2)

(3)

The procedure of the EM algorithm can be summarised in the following way.

1. Choose an initial estimate A.

2. E-step. Compute Q(A, ~) based on the given A.

3. M-step. Choose ~Eargmax Q(A, ~). Here, arg'f!lax Q(A,~) denotes the set of
_ A _ A

values A which maximise Q(A, A).

4. Set A=~, repeat from step 2 until convergence.

The Q function expressed in EQ. (2) is concerned with a single observed incom­

plete data Xk' Applying it to multiple observed incomplete data X={xl , "', XN}, the

Q function is extended to:

_ N _

Q(A, A) = 2J Qk(A, A)
k=l

= :E 2J f(XhY IA) 10gf(xhY I~)
k=l y f(Xk IA)

where N denotes the number of observed data.

The EM algorithm is used in applications which permit easy maximisation of

the Q-function instead of maximising L(x,~) directly. In such applications, the

M-step maximisation of Q(A, ~) is easily carried out,

III. ApPLICATION OF EM ALGORITHM TO HMM

H dden Markov modelling is the probabilistic modelling to deal with a time

sequence of speech data. Stable state of the speech data is modelled by one sim­

ple probabilistic model and the time sequence is modelled by the transition from

one probabilistic model to anther model.[7] Let X=Xl"'Xt"'XT denote a time

sequnece of speech data and S=Sl"'St"'ST denote a time sequence of stable states

of the model. The Xt is referred to as frame data hereafter. The complete data is

expressed as (X, S). In order to apply the EM algorithm to the HMM, it is neces­

sary to formalise the probability density function (pdf) of the complete data. Then

the Q function expressed in EQ. (2) can be applied. The pdf of the complete data

is expressed as:

f (X, S IA) = f(xl"'xt"'XT, Sl"'St"'ST IA)

=f(xH sdA)···f(xt, StIXi-1, Si-1
, A)

••• f(XT' ST IX[-I, S[-I, A)

(4)

where Xi- 1 and Sf-1 denote the partial sequence from time 1 to t-I of the speech

data X and state sequence S. Here, we callf(xt, stlXi-l, Si-I, A) conditional pdf of

the complete data at time t. We introduce following hypothesis into the model.
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The conditional pdf of the complete data at time t does not depend on the pre­

vious frame data sequence Xi-I, but only depends on the previous stable state St-I

Under this hypothesis, the conditional pdf of the complete data at time t is simplified

as follows:

f (Xt, St IXi-I, Si-I, A) = f (xt, St 1St-I, l)

= Pr(St ISt-I, A) f (Xt 1St-I, St, l)

We introduce the following terms to make the model more clear.

(5)

Transition probability

initial probability

output probability

aSt-lSt = Pr(St 1St-I, l)

nosl = Pr(SIIA)

bSt-lst(Xt) =f(Xt 1 St-I, St, l)

(2:::;;t:::;; T)

(t = 1)

(lst<T)

(6)

The output probability bst-lst(Xt) is the probability to output the data Xt at the

transition from the state St-I to St. If all the output probabilities from any state to

the state St are tied, the output probability is expressed as:

Then the conditional pdf of the complete data at time t is expressed as:

(7)

(2:::;;t:::;; T)

(t = 1)
(8)

From the EQ.(4) and EQ.(8), the pdf of the complete dataf(X,Sll) is obtained

as:

(9)

By substituting the EQ. (9) to the EQ. (2), the HMM parameters are iteratively

obtained by the EM algorithm under the hypothesis of data independence and one

state dependency (Markov chain).

IV. DISCRETE HMM

In discrete HMM, frame data Xt in speech data X is quantised into finite set

of repersentatives, called codewords. The process of quantisation is called vector

quantisation. In the application of the EM algorithm to the quantised speech data

O=OloOOOtOOOOT, the pdf of the complete data (0, S) is substituted into the EQ.(2).

Using the notation of the initial probability nosl, state transition probability aStSt+l and

output probability bst(ot), the log-likelihood (log pdf) of the complete data is expres­

sed as follows, applying log operation to the EQ. (9):
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(10)

Then Q(A, J) function is expressed as:

- 1
Q(A, A) = 2J Pr(O, S IA) log its1

Pr(O IA) S

1 P-1

+ 2J Pr(O, S IA) 2J log aStSt+1
Pr(O IA) S t=1

1 P -+ 2J Pr(O, S IA) 2J log bst(Ot)
Pr(O IA) S t=1

(11 )

By maximising the first term of the right hand side in terms of it SI' the initial pro­

bability estimation is obtained.

it; = Pr(sl = i 10, A) = Tl(i) (12)

By maximising the second term of the right hand side in terms of astst+l' the tran­

sition probability estimation is obtained.

T-l

2J Pr(st=i, St+l =j 10, A)
t=1aij = --=----=T'---=-1--------

2J 2J Pr(st=i, St+l j 10, A)
j 1=1

T-l

2J Tt(i,j)
t=1
T-l

2J 2J Tt(i,j)
j t=1

(13)

By maximising the third term of the right hand side in terms of bst(Ot), the output

probability estimation is obtained.

(14)

where Vk is the k-th codeword. Tt(i) =Pr(st=i 10, A) is the probability that state is

i at time t after having observed speech data 0, then;

(15)

at(i), Pt(i) are called forward probability and backward probability respectively,

and expressed as followed:

at(i) = 2;J at - 1U) aji bi(Ot)
J

(16)

(17)

Tt(i,j) =Pr(st=i, St+l =j 10, A) is the transition probability from the state i to the

state j at time t after having observed the speech data °and is expressed as follow­

ed:

(18)
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V. TIME DURATION MODELLING

In a basic HMM, the probability that speech data can be produced from one

state decreases exponentially with time t according to the expression of p(l_p)t,

where the p is a transition probability from the state to the next state. This does

not present the true property of the state because the short duration is always pre­

ferred. Ideally, there should be more representative limits on duration time, pre­

venting both short durations as well as long durations in the state. This types of

time duration probability can be modelled by a Gaussian distribution.

The conventional discrete HMM, whose output probability is computed on

vector quantised codewords, can be extended to use time duration probabilities which

are also represented in discrete form. The HMM parameters such as transition

probability ilii' output probability bi (k) , and time duration probability d~(7:) can

be directly obtained from the EM algorithm. [91

Let O=OI"'Ot"'OT, S=SI'''Sk'''SN and D=7Cl"'7Ck'''7:N denote the quantised

speech data, state sequence and time duration sequence respectively. The states

included in the state sequence are different each other, unlike the discrete HMM

without time duration. Then, the state Sk denotes the k-th state in the state sequence,

not the state at time k. The bs/ot) is the probability that the frame data 0t is pro­

duced from the state Sk' The aSksk+l and 7Csk is the transition probability and initial

probability defined in the same way as discrete HMM. The dk (7:) is the probabi­

lity that the state Sk is occupied for duration 7:. Notation tk is used to present the

starting time of the k-th state so that the pair (tk,7:k) denotes the time information

at the k-th state. Using these notations, the pdf of the complete data (0, S, D) is ex­

pressed as:

Pr (0, S, D I A) = Pr (O:~+Tl-\ Sk, 7:1 1 A)

...Pr (O::+Tk-l, Sk' 7:k IA, Oik-I, s~-l, tk-1) (19)

...Pr(Of
N

, SN' 7:NI A, OiN-I, sf-I, tN-I)

In the same way as the discrete HMM, we call PreO::+Tk-l, Sk, 7:k IA, Oik -l, s~-l, tk-l)

the conditional pdf of the complete data at the state Sk' Under the assumption of

data independency, one previous state dependency, and absolute time independency,

the conditional pdf of the complete dats at the state Sk is simplified as foUows:

Pr (O:Z+Tk+1, Sk, 7:k IA, Oi k -
1
, s~-\ tk-1)

= Pr (Sk IA, Sk-l) Pr (O::+Tk-ll A, Sk-H Sk) Pr (7:k IA, Sk-H Sk)

We introduce the following terms to make the model more clear.

Transition probability

initial probability

output probability

duration probability

aSk_1Sk = Pr (Sk ISk-l, A)

7Csl = Pr (sll A)

bs/Otk+n-l) = Pr (Otk+n- l1 Sk, A)

dSk (7:k) = Pr(7:klsk-l,Sk, A)

(2~k~ T)

(k = 1)

(l~k~N)(l~n~7:k)

(1 ~k~ N) (21)
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Then the log-likelihood of the complete data is expressed as:

Then Q function is expressed as:

Q(A, ~)

__1_~ ~ Pr(O~ S, DIA) log Pr(O, S, DIl)
Pr(OIA) S D

1 ~~Pr(O,S,DjA)logilsl
Pr(O IA) B D

1 9-1

+ ~~Pr(O,S,DIA) ~logasksk
Pr(OjA) S D k=1 +1

1 9 Tk _

+-- ~ ~ Pr(O, S, DIA) ~ ~ log bSk(Otk+n - 1)
Pr (0 jA) B D k=l n=l

1 9 -+ ~ ~ Pr (0, S, D IA) ~ log dSk('l"k)
Pr (0 IA) S D k=l

(22)

(23)

By maximising the first term of the right hand side in terms of il S1 ' the initial pro­

bability estimation is obtained.

il; = PreSt = i 10, A) = ~ TO,T(i)
T

(24)

By maximising the second term of the right hand side in terms of tlskSk+l' the transi­

tion probability estimation is obtained.

~ ~ Tt,T(i,j)
tl .. = T t

'J ~ ~ ~ Tt,T(i,j)
j T t

(25)

By maximising the third term of the right hand side in terms of bSk(Otk+n- 1)' the out­

put probability estimation is obtained.

(26)

where ct,T(k) is the number of vector quantised output symbols Vk from time t+ 1

to t+'l". The Tt,T(i,j) is the time duration probability that speech data can be pro­

duced from the state Sj for duration 'l", after transition from the state S; to Sj at time

t.

By maximising the fourth term of the right hand side in terms of dSk('l"k), the

duration probability estimation is obtained.

(27)
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Here, Tt.7'(i,j) is the probability that the state transition occurred from state to

state j at time t and the state j is occupied for duration T, after having observed

speech data O. It is calculated using the following expression:

(28)

and

The atU) and Pt(i) is the forward probability and backward probability. They are

computed by the following expression.

T

atU) = ~ ~ at-7'(i) a;j dj(-c) II bj (Ot-7'+n) (30)
7' • n=l

i:j:j

and
7'

Pt(i) = ~ ~ a;j dj(-c) II bj(ot+n) fit+7'U)
7' J n=l

j:j:i

(31)

In the case where uniform probability distribution is used as the initial time

duration probability for dj(-c) and the final probability is estimated this results in

the Fergusson model. [5] In the case where a Gaussian probability distribution is

used, this is termed he.:. e as the Gaussian model. The Gaussian model can prevent

errors produced by short token durations or long token durations by virtue of its

statistical nature.

VI. PHONEME RECOGNITION EXPERIMENT

As a guide line for comparison, phoneme recognition experiments were carri-

Table I, Conditions for acoustic analysis (AA), vector quantisation
(VQ) and Hidden Markov Modelling (HMM).

Sampling frequency 16kHz

High-pass filter xt-0.97xt-l

AA Feature parameter LPC cepstrum (20th)

Frame length 20ms

Frame shift 5ms

Window type Hamming window

Codebook size 256 codewords

VQ Distance measure Euclidean distance

Data amount 100 frames/phoneme

Number of states 3 states

HMM Learning method Baum-Welch Algorithm

Recognition method Viterbi Algorithm
.-
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ed out using basic discrete HMM without time duration modelling. The experi

mental speech data used here consisted of 98 sentences which were spoken twice

by a single speaker: these were hand-labelled to a phoneme level. Half of the sen­

tences were used as training data and the remaining half were used for testing. The

conditions of the acoustic analysis, vector quantisation and Hidden Markov Model­

ling are shown in Table 1.

The phoneme recognition results are shown in Table 2, organised by phoneme:

Table 2. Phoneme recognition results by HMM without time
duration modelling.

Phoneme I Rate (%) II Phoneme I Rate (%)

@ (191 ) 53.4 n (111 ) 64.9

i (96) 34.4 1 (80) 56.3

ii (68) 79.4 t (76) 84.2

ai (56) 73.2 m (72) 70.8

a (44) 31.8 r (58) 89.7

ei (43) 46.5 d (60) 60.0

uu (47) 72.3 w (53) 77.4

ou (38) 42.1 y (47) 91.5

e (38) 5.3 p (47) 91.5

uh (33) 36.4 z (41) 73.2

00 (32) 43.8 b (39) 89.7

0 (21 ) 47.6 k (36) 61.1

aa (15) 20.0 s (29) 96.6

u (10) 10.0 ng (27) 25.9

au (8) 12.5 ch (27) 63.0

i@ (6) 66.7 jh (26) 61.5

@@ (5) 0.0 g (24) 45.8

u@ (3) 0.0 dh (23) 43.5

oi (2) 50.0 v (23) 56.5

e@ (3) 0.0 f (19) 89.5

th (19) 73.7

sh (18) 38.9

h (17) 35.3

zh (17) 23.5

Total (759) 59.8 (%) II
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consonants on the right hand side, vowels on the left hand side. The number in

the parentheses is the number of the data tokens used in training and testing. The

recognition rate up to the first candidate was 59.8% as shown in Table 2. The

recognition rate up to the second, third, fourth and fifth candidates were 76.30/0'

84.3%, 88.6% and 91.4% respectively.

VII. TIME DURATION EFFECT

Phoneme recognition experiments were carried out by using discrete HMM

with time duration modelling described in section V. In this experiment, we ap­

plied following, three kinds of time duration modelling according to the type of

initial time duration probability dj (7:').

(1) Fergusson model

The initial time duration probability dj (7:') is set to be uniform distribution,

and the EM algorithm is applied to estimate the parameters. In the Fergus­

son model, the time duration is limited up to 64 frames.

(2) Gaussian model

The initial time duration probability dj (7:') is set to be Gaussian distribution,

whose initial mean and standard deviation are computed from the training

data. In the EM algorithm, time duration probabilities are updated and re­

modelled by Gaussian distributions at each iteration.

(3) Enhanced Graussian Model

The time duration probability computed in (2) is raised to the fifth power after

setting the highest probability equal to unity only in the decoding process.

The result is shown in Table 3. The enhanced Gaussian model showed the

highest phoneme recognition rates of 68.0%. The main reason for this increase is

attributable to the time duration constraint which enables the most probable path

to be optimised in the Viterbi decoding algorithm.

The recognition rates of vowels, consonants and total phonemes by time dura­

tion modelling are listed in Table 4, together with the result without time duration

Table 3, Comparison of discrete time duration modelling in
phoneme recognition (%).

Without time

59.8

Fergusson

61.2

Gaussian

62.8

Enhanced Gaussian

68.0

Table 4. Phoneme recognition results by time duration modelling (%).

Vowel Consonant Total phoneme

Without time 54.3 77.5 59.8

Time duration 63.9 80.2 68.0
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modelling. In vowel and consonant recognition, separate codebooks were used.

The time duration modelling increased vowel recognition rates by 9.6%. It is

directly related to the total phoneme recognition rate. On the other hand, con­

sonant accuracy increased by only 2.7 0/0. The improvement of vowel recognition

is attributed to the successful allocation of the respective states of vowel HMMs

to stationary part of the vowel data by the time duration constraint.

VIII. FEATURE SUBSPACE EFFECT

In Table 4, it can be seen that vowel recognition rate is 63.9% and is still lower

than consonant rate by 16.3%, though it was improved by time duration modelling.

In order to improve the vowel recognition rate still further, the most suitable feature

space should be prepared for vowel recognition, instead of using LPC cepstral coef­

ficients which are commonly used for both vowel and consonant recognition.

The formants are the most representative feautres for vowel because the reso­

nance at the vocal tract causes the formants and produces the vowel sound. Vowel

recognition was carried out using three formant frequencies: the first, second and

third formants [IOJ.
Table 5 shows the details of vowel recognition in the following feature spaces:

(1) Formant (F).

(2) Mel-formant (MF) which is the formant frequency after mel-transformation

and has the effect to increase the frequency resolution around 1kHz.

(3) Mel-formant and its time derivative (MFD) which includes the mel-formant

and its frequency derivatives between consecutive frames (5 ms).

In the Table, LPC cepstral coefficients with and without time duration model­

ling are listed for comparison. From the tablel time duration modelling is effective

for the almost all vowels, and formant representation is most effective for short

vowels like lal, lei and 101. The table also shows that the mel-formant representa­

tion is effective for diphthong and long vowels like lail, leiI and lou/. The highest

recognition rate 75.4% is achieved by the mel-formant and its derivative, mainly

due to the non-linear transformation of the mel-frequency and its dynamic features.

IX. CONCLUSION

Two methods to improve the HMM-based phoneme recognition were describ­

ed considering EM algorithm and its application to ordinary basic discrete HMM,

the time duration modelling in the HMM frame work is analysed and formalised.

The experimental results based on the formalisation of time duration significantly im­

proved the phoneme recognition rate. Formants play an important role compared

to the LPC coefficients in vowel recognition and showed considerable improve­

ment of vowel recognition. The further work will be to integrate the recognition
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Table 5. Detailed results of vowel recognition (%).

Phoneme CEP CEP
time

F
time

MF
time

MFD
time

@ (191) .58.1 75.4 62.8 60.7 70.7

i (96) 52.1 52.1 53.1 58.2 66.7

ii (68) 82.4 88.2 91.2 88.2 91.2

ai (56) 85.7 94.6 92.9 98.2 100.0

a (44) 36.4 38.6 86.4 86.4 90.9

ei (43) 58.1 74.4 76.7 90.7 90.7

uu (47) 70.2 80.9 83.0 85.1 85.1

ou (38) 36.8 63.2 81.6 86.8 92.1

e (38) 7.9 15.8 44.7 52.6 52.6

uh (33) 30.3 36.4 42.4 54.6 51.5

00 (32) 90.6 93.8 93.8 96.9 96.9

0 (21 ) 52.4 57.1 81.0 90.5 90.5

aa (15) 13.3 13.3 66.7 66.7 46.7

u (10) 0.0 0.0 10.0 20.0 0.0

au (8) 12.5 12.5 25.0 25.0 12.5

i@ (6) 33.3 33.3 66.7 66.7 66.7

@@ (5) 0.0 20.0 20.0 40.0 40.0

u@ (3) 0.0 0.0 0.0 0.0 0.0

oi (2) 50.0 50.0 50.0 0.0 0.0

e@ (3) 0.0 0.0 0.0 0.0 0.0

Total (759) 54.3 63.9 68.9 71.8 75.4

CEP: Cepstral coefficients of 20th order.
F: Formant.
MF: Mel-formant.
MFD: Mel-formant and its derivative.
time: With time duration.
( ): The number of tokens.

results of vowel and consonants. Also the application of time duration HMM to

phoneme or word spotting will be left for further work.
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