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STUDIA PHONOLOGICA XXV (1991)

Phoneme Probability Presentation of Continuous Speech
based on Phoneme Spotting

Yasuo ARIki

SuMMARY

This paper describes a new presentation of continuous speech in terms of the
probability of all phoneme types as a function of time. The presentation is called
a phoneme probability presentation (PPP) and can be used for phoneme recogni-
tion of continuous speech. As a technique 0 produce the PPP, we have employed
hidden Markov models (HHMM) with time duration information. This information
is essential to spot the phonemes and to produce the PPP. With this information
the HMMs of all the phoneme types can compute their probability in parallel and
in time synchronism. The PPP can serve as phoneme filters which can produce
phoneme probability from continuous speech.

I. INTRODUCTION

In continuous speech recognition systems, speech models (knowledge) of pho-
nemes, diphones, triphones or words are applied to continuous speech signals, to-
gether with language models (knowledge) such as finite state automata (FSA), bi-
gram or tirgram models. These two levels, speech and language modles, are strongly
interrelated in the recognition process. As a step toward analysing the interrela-
tion, here we consider two kinds of recognition methods derived from different ap-
plication of the two models, in a separate or integrated manner.

When the two models are applied separately in the system a phoneme lattice
may be produced as an intermediate presentation by applying the speech models.
Then the language models are applied to interpret the lattice. [1] Since segmenta-
tion and labelling of continuous speech into a phoneme lattice causes an enormous
increase in hypotheses, simple attempts to reduce the hypotheses in a deterministic
way leads to loss of information. In order to keep as much information as possible,
more robust presentation of phonetic information is required for continuous speech,
as an alternative to a deterministic lattice representation. Phoneme probability
presentation shows the probability of all the English phoneme types, for example
44 types (20 vowels and 24 consonants), as a function of time in-continuous speech.
It represents one method to keep as much phonetic information as possible by pre-
senting the phoneme ambiguity on position and labels in a probabilistic manner.

The second method is an integrated application both of the speech models
and the language models to continuous speech. [2] [3] [4] [5] This method is po-
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werful due to the integration of these two models with global optimisation at the
sentence level. However, the computation time is large because all the phonemes
contained in all the words in the lexicon must be processed. The total number of
phonemes included in the lexicon is certainly larger than the number of phoneme
types. In order to reduce the computation time, duplication of the phonemes in the
lexicon must be avoided. This requires some intermediate presentation of phone-
tic information for phoneme types, instead of all the phonemes in the lexicon at the
expense of the global optimisation. The phoneme probability presentation is one
of the methods which can avoid the duplicate computation of the phoneme proba-
bility.

The method proposed here, termed the phoneme probability presentation (PPP), results
from the above two requirements. It can present continuous speech in terms of
probabilities of phoneme types as a function of time. The PPP can be derived by
spotting each phoneme type on the continuous speech using Hidden Markov Mo-
dels with time duration constraints. On this presentation, phoneme position and
its ambiguity are presented as a probabilistic time function. This presentation can
be viewed as a phoneme filter which produces a probability time function for each
phoneme type from the continuous speech signal. The phoneme lattice could be
easily generated by searching for the best phoneme sequence, using dynamic program-
ming techniques. Realisation of word lattice, word spotting and language model
based word parsing are also feasible on this presentation.

II. DeriNiTION OF PPP

The PPP is two-dimensional probability presentation of phoneme types as a
function of time. One axis corresponds to 44 English phoneme types and the other
is the time axis. Deterministic phoneme segmentation or phoneme lattice can be
presented in a similar two-dimensional plane. We derive the PPP definition by
modifying the deterministic algorithm of phoneme segmentation.

Fig. 1 shows an Example of phoneme segmentation. The vertical line shows
the 44 phoneme types and the horizontal line corresponds to time scale. The re-
sultant segment is referred to by a number from 1 to K. The start time and the
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Fig. 1. Example of phoneme segmentation.
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end time of the kth segment are E(k—1)+1 and E(k) respectively. The probability
of the phoneme p, to the kth segment is represented as follows:

D((E(k—1)+1, E(K)),pn) : (1)

where D( ) is a function to compute the probability. The probability of the pho-
neme sequence shown in Fig. 1 is represented as:

3 D(EE-1) 41, EE).p) @

For the purpose of the segmentation of continuous speech into the phoneme se-
quence, the best method is to optimise EQ.(2) in terms of the number of phonemes
K, position of phoneme boundaries 4, and the phoneme type p,. Then the opti-
misation equation is obtained as follows:

A(T) = max max 53 D((B(E—1)) +1, B8, 3)

It is well known that the above equation can be simplified and represented by the
following Dynamic Programming (DP) recursive equation:

A(t) =max{4() +max D((I+1,t),a)} (4)

where [ corresponds to the phoneme boundary. Two-level DP[6], level building
[7] and one-stage DP[8] are proposed to compute the number of phonemes, the
optimised position of phoneme boundaries and the associated phoneme type. Equa-
tion (4) can be modified and approximated at the expense of global optimisation as
follows:

A(t):r;lax m‘ax{A(l) +D(({41,8),pa)} )
zr;:ax{A(l) “+max D((I+1,0),5,)}
=H}:‘3~X{A(5) +Ps(pn>t)}

Here P,(p,,t) is the highest probability of the phoneme type p, to the segments end-
ing at time ¢ The corresponding starting time is denoted as s. We call this the
phoneme probability presentation PPP 'since the Py(p,,t) can present the probabili-
ty of all the phoneme types as a function of time together with the best starting time,
as a result of spotting phoneme type frame by frame. Equation (5) indicates that
continuous speech can be approximately segmented into a phoneme sequence by
using locally optimised phoneme probability presentation PPP, P(p,.t).

ITI. AvrcoriteM TO Propuce PPP

The PPP is produced by computing the phoneme probability P(p,,t) for all
the phoneme types p, at every time ¢. The best starting time s must be sought for
every ending time f. As a technique to compute the phoneme probability P(p,,t),
we employ hidden Markov models (HMM). We can mention the following reasons
for employing HMM.

(1) HMM can compute the degree of matching between phoneme models and
speech segments as a probability.
(2) HMM can absorb the spectral variabilities caused for the same phoneme even
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by the same speaker.
(3) HMM can normalise the time duration difference in matching between speech
model and speech data using dynamic programming.

The HMM can be thought as a time varying information source which can
be modelled as a Markov process with the output probability at each state. Speech
data are used to estimate the output probability at each state and the state transi-
tion probability of the Markov model.[9] However, it lacks information about how
long the speech data can be likely to stay at each state [10][11]. The time duration
information is effective in English phoneme recognition and phoneme lattice produc-
tion for continuous speech. However, the most important point is that the time dura-
tion information is essential to produce the PPP.

In the PPP, the Viterbi decoding algorithm is applied to continuous speech
at time ¢ and the phoneme probability is calculated by the HMM of the phoneme
type p, over the speech segment ending at time #. The segment starting time s is
varied and the time s is determined with the highest probability. In order to reduce
the computation time, the starting time is freed in the Viterbi decoding algorithm.
This means that the shortest duration is preferred at each state of the HMM. To
prevent this situation, short durations and long durations must have imposed a
large penalty. This idea leads to time duration modelling in HMM.

IV. HMM witd TiME DUurRaTION MODELLING

In a basic HMM, the probability that speech data can be produced from one
state decreases exponentially with time ¢ according to the expression of p(1 —p)?, where
the p is a transition probability from the state to the next state. This does not re-
present the ture property of the state because the short duration is always preferred.
There should be a more representative duration time, preventing short durations as
well as long durations at the state. Such a form of the time duration probability can
be modelled by Gaussian distribution.

The conventional discrete HMM, whose output probability is computed on
vector quantised codewords, can be extended to use time duration probabilities
which are also represented in discrete form. The HMM parameters such as tran-
sition probability &;;, output probability b ;(k), and time duration probability d (%)
can be estimated using the following expressions which can be directly obtained from
the Baum-Welch learning algorithm.[12]

8= 3 )5 D D) ©
- T T

b, =3 B r1n()etr )3 D)7 (7
&, =270 Sr1a) ®

where ¢, (k) is the number of vector quantised output symbols v, from time ¢+1
to t47. The 7,.(4,) is the time duration probability that speech data can be pro-
duced from the state s; for duration 7, after transition from the state s; to s; at time
t. The r,.(i,j) and 7, .(¢) are expressed as follows:
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7e:(6J)=a; (i)aijdj (T) ;l--_:i:lbj(ot+1) Bir(J) 9)
Tt,'r(i)=!z Tt,'r(j:i) (10)

In the above expression, a,(j) and B,(i) are the forward and backward probabilities
respectively and expressed as followed:

@) =5 3 o)y, () IT b,(Orcrr) (1)
i

£u) =32 3L ,,d,(5) T1b,(Orsi)Boneli) (12)
JHH '

In the case where uniform probability distribution is used as the initial time
duration probability for d;(z) and the final probability is estimated from expres-
sion (8), this results in the Ferguson model.[10] In the case where a Gaussian pro-
bability distribution is used, this is termed here as the Gaussian model. The Gaus-
sian model can prevent errors produced by short token durations or long token dura-
tions by virtue of its statistical nautre.

V. ExpERIMENTAL RESuLT

5.1  Phoneme Recognition of Continuous Speech by Viterbi Decoding Algorithm

As a guide for comparison, phoneme recognition experiments of continuous
speech were carried out using basic discrete HMMs with and without time duration
modelling. The experimental speech data used here consisted of 98 sentences which
were spoken twice by a single speaker: these were hand-labelled to a phoneme level.
Half of the sentences were used as training data and the remaining half were used
for testing. The conditions of the acoustic analysis, vector quantisation and Hid-
den Markov Modelling are shown in Table 1. For the phoneme recognition algori-
thm, used is one-stage Viterbi decoding algorithm which can search for the best
phoneme sequence matched to the continuous speech as described in section II.

Table 2 shows the results together with those for no time duration HMM for
comparison. In the table, the term recognition indicates the ratio of the number
of correctly located phoneme segments to the total number of phonemes contained

Table 1 Conditions for acoustic analysis (AA), vector quantisation (VQ)
and Hidden Markov Modelling (HMM).

Sampling frequency 16kHz
High-pass filter x—0.97%; -4
A | Feature parameter LPC cepstrum (20th)
A | Frame length " 20 ms
Frame shift 5 ms
Window type Hamming window
V | Codebook size 256 codewords
Q | Distance measure Euclidean distance
Data amount 100 frames/phoneme
H | Number of states 3 states
M | Learning method Baum-Welch Algorithm
M | Recognition method Viterbi Algorithm
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Table 2 Results of phoneme recognition of continuous speech by time
duration modeling (%).

true | recognition
HMM without time duration | 36.4 48.3
HMM with time duration 43.2 56.6

Table 3 Results of Phoneme recognition of continuous speech on PPP (%).

true | recognition

DP on PPP | 43.0 56.9

in the testing data. The T7rue is the ratio of the number of correctly located pho-
neme segments to the total number of phoneme segments (hypothesis) extracted
from the testing data. The high value of this frue indicates that the quality of the
phoneme hypothesis is high in the sense of how well the correctly located phoneme
segments are included in the hypothesis. The time duration modelling increases
the hypothesis quality by 6.89, and the recognition rate by 8.39,.

5.2  Phoneme Recognition of Continuous Speech on PPP

The PPP is produced by computing the function P,(p,,t) which is the probabi-
lity of all phoneme types p, as a function of time ¢ together with the best starting
time s. In the computation algorithm, all phoneme probabilities are computed
parallelly, indepednently and time synchronously . In order for phoneme recogni-
tion of continuous speech, dynamic programming can be applied to the PPP, because
phoneme sequence probability is sub-optimised in the recursive expression as shown
in EQ. (5). The algorthm of phoneme recognition is summarised as follows:

(1) Compute the PPP using the function of Ps(p,,t).

(2) Select the best phoneme p, which maximises A(s) +P,(p,,t) at time &, Each
phoneme p, has different starting time s to the ending time ¢.

(3) Set the phoneme sequence probability A(t) as A(t) =A(s) +Py(P,,t).

(4) Repeat (2), (3) unitil final time is encountered.

We applied the above algorithm for phoneme recognition of continuous speech
under the same condition as the experiment described in 5.1. The result is shown
in Table 3. The hypothesis quality frue and the hit-rate of the recognised phoneme
segments to the true phoneme, recognition, are almost same compared with the pho-
neme recognition result shown in Table 2 obtained by one-stage Viterbi algorithm.

This indicates that the sub-optimisation of phoneme segmentation on PPP is
a good approximation to the full optimisation by one-stage Viterbi algorithm. It
also indicates that the PPP contains enough information to show clues to phoneme
existence and then to produce the phoneme segmentation. It can be said that the
PPP serves as phoneme filter to produce the phoneme probability from continuous
speech, and works as specialist of phoneme detection.

VI. ConcLusioNn

The necessity for phoneme probability presentation PPP and the method to
produce it have been described. The advantage of the PPP is that it is an inter-
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mediate presentation which retains enough information for subsequent processing
such as phoneme recognition. Another advantage is its time synchronous parallel
computation. We have shown experimentally that the phoneme recognition of
contonuous speech using dynamic programming on the PPP has almost the same
performance as phoneme recognition using the one-stage Viterbi decoding algo-
rithm with full optimisation. Further work will be to show that word spotting or
word sequence recognition can be done on the PPP.
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