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Modeling spiking behavior of neurons with time-dependent Poisson processes
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(Received 15 March 2001; revised manuscript received 9 May 2001; published 21 September 2001

Three kinds of interval statistics, as represented by the coefficient of variation, the skewness coefficient, and
the correlation coefficient of consecutive intervals, are evaluated for three kinds of time-dependent Poisson
processes: pulse regulated, sinusoidally regulated, and doubly stochastic. Among these three processes, the
sinusoidally regulated and doubly stochastic Poisson processes, in the case when the spike rate varies slowly
compared with the mean interval between spikes, are found to be consistent with the three statistical coeffi-
cients exhibited by data recorded from neurons in the prefrontal cortex of monkeys.

DOI: 10.1103/PhysRevE.64.041910 PACS nuner87.10+e, 02.50.Ey

[. INTRODUCTION to the OUP when considering it as a neurospiking model.
The feasible region of an OUP for infinite length sequences,
Spike sequences recorded from cortical neurongivo  given this constraint, is shown in Fig(a) as the shaded area
are usually irregular. It is not established whether the stanin the Cy-S plane. The dashed line represents the envelope
dard neurospiking models can describe the experimentallpf the contours within which lie 99% of sequences contain-
observed spiking irregularityl]. It has been asserted that the ing 100 intervals generated by an OUP with the same con-
leaky integrate-and-fire model with temporally uncorrelatedstraint. The data taken from the monkey prefrontal cortex are
inputs is able to generate irregular spike sequern2ed. overlaid in the same figure. Each dot represents statistics
Motivated by this alleged finding, Shinomoto, Sakai, andderived from 100 ISIs recorded from a neuron. The percent-
Funahashi4,5] proposed examining the consistency of a@d€ of the experimental dgta Iying outside this 1% envelope
neurospiking model with experimental spiking data by con-iS 7-2%. Thqse data that lie outside tht_a 1% envelope do so
sidering several statistical measures of the interspike intef?€cause theig values are too large, typically greater than 4
vals (ISlIs): not only the coefficient of variatio€, , which ~ Of S.

measures the spiking irregularity, but also the skewness co- The second finding on which our rejection of the OUP is
efficient of the interval distributionS, and the correlation Pased is that regarding the correlation coefficient of consecu-

coefficient of consecutive intervalg, tive intervalsR. The R values are expected to be distributed

A leaky integration process with temporally uncorrelatednormally with mean zero and variancenlfor any spike
Gaussian input is termed an Ornstein-Uhlenbeck procesieduences ofl intervals generated according to a renewal
(OUP). In this paper we refer to a threshold spike-reset proProcess, including an OUP and a Poisson pro¢@ss].
cess whose membrane dynamics are given by such a procé_ggre, the_ range within which lie 99% of sequences contain-
as OUP. This OUP can generate an irregular spike sequenc8g 100 intervals generated by a renewal process, corre-
The experimental spike sequences examined in R4fs] ~ sponds toRe[—0.26,0.26, with 0.5% lying on either side
are in fact irregular(possessing larg€, values, but the (_)f thls_ range. This range is |nd|cate_d by th_e vertical dashed
other two statistical coefficienBandR evaluated from them lines in Fig. 1b). The R values obtained using the data re-
are distributed very widely beyond the range that any oupcorded from the prefrontal cortical neurons are distributed
can realize. The larg8values and the largR values exhib- with an overall shift to the positive side with respect to this
ited by some non-negligible percentage of neurons are thgange, and the percentage of the data lying outside the 1%
statistical characteristics of these experimental spike sedeviation range is 11.3%. This result implies that renewal
quences that cannot be reproduced by any OUP, as explain@focesses in general, including the OUP, are incapable of
in the following. describing the statistics of spiking behavior as reflected by

The first finding that leads us to reject the OUP as a modelhe correlation coefficienR.
of biological spiking behavior concerns the incompatibility =~ With these two results, the OUP alone was found to be
of their statistics in theCy-S plane[4]. Among the experi- Unable to describe the experimental data. It was then shown,
mental spike sequences examined in Ris5], the mean however, that the statistics of the experimental data could be
ISI is at least 30 msec and typically greater than 100 msed€produced by a leaky integrate-and-fire model that includes
This is much larger than the membrane time constant, whickemporally correlated inputs, which are themselves gener-
is considered to range from 1 to 20 mgé¢. Thus in any of ~ ated by another Ornstein-Uhlenbeck prodégsWe refer to
the spiking sequences, model parameter values for which tH8is model as a “colored OUP.” In sweeping out all param-
mean ISI is less than the membrane time constant should K¥er values, however, the data generated by colored OUP

excluded from consideration. We always add this constrainfccupies a much wider region in the space of the three sta-
tistical measures of interest than that of the experimental

data. The colored OUP is therefore in some sense “overca-
*Email address: shinomoto@scphys.kyoto-u.ac.jp pable” of describing neurospiking behaviors. One somewhat
TEmail address: tsubo@ton.scphys.kyoto-u.ac.jp unnatural aspect of the behavior of the colored OUP is that it
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FIG. 1. (Color) Distributions of statistical coefficients for 666 spike sequences recorded from monkey prefrontal ¢byticesrtesy of
Shintaro Funahashi and Yutaka Sak&iach dot represents a pair of statistical coefficients computed from a spike sequence consisting of 100
ISIs of a neuron(a) The coefficient of variatiorC,, and the skewness coefficieBt The shaded area represents the region that can be
reproduced by the OUP with the constraint that the mean spike interval is greater than the membrane time constant. The dashed curves
represent the envelope of the contours within which 99% of the data should exist given the finite number of intervals per sequence (
=100) if this spiking behavior were described by an OUP. The percentage of the data lying outside this 1% envelope is 7.2%. This result
clearly excludes the OUP as a possible model of such spiking behévjofhe correlation coefficient of consecutive intervBsnd the
skewness coefficiers. Here, the range, within which lie 99% of sequences containing 100 ISIs generated by an OUP or any renewal
process, corresponds Be[ —0.26,0.26, which is indicated by the vertical lines. The percentage of the experimental data lying outside
these lines is 11.3%. This result clearly excludes any renewal process.
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generates regular spike sequences over a fairly wide range afed by the Poisson process. We can see in Ha@. that
parameter valuegThe original OUP can also generate regu- most experimental spike data exhibit large value€of
lar spike sequencgsAlthough in actual biological systems, The skewness coefficieftis a measure of the asymmetry
regular spiking can be observed in constant current injectionf the interval distribution defined as
experiments conducteid vitro [10,11], in general it is not
observed in the cortex of an active animialvivo, and for T T3 T T\ 232

: . ) S=(T-T)*/(T-T)"". 2
this reason, there is no reason to require our model to be able

o @gr\?v?;ﬁ ?0855:3332?:2&“ le model with a small numberThe skewness coefficieStcan be either positive or negative,
P but it is 2 for an infinite length sequence generated by the

of parameters, which reproduces the spiking statistics of M€ 6isson process. For a sequence of finite number of intervals

ronsin vivo Wlthou_t the necessity of fine tuning parameter n, the sampleS value is expected to be distributed about 2
values. As a possible type of such models, we study in the ith the deviati f th d t 4h. if th .
present paper time-dependent Poisson processes, in whidf € deviation of the order o  I1Ihe sequence IS

point events(spikes are generated randomly with a spike generated by the Poisson process. We can see in fap. 1
rate that is temporally modulated in some prescribed mannelg

We consider such models because we have proven that t
coefficient of variationCy, is greater than or equal to unity
for a sequence of infinite length generated by any kind o
time-dependent Poisson process. This fact appears to be con- [

sistent with experimental data of finite length takanvivo. R=(TiTis1—THN(T-T)3, 3

In the present paper we do not attempt a detailed examina-

tion of the consistency of such models with experimentalwhere T; and T;,; denote a pair of consecutive intervals.
data of finite length, but instead we obtain values for theThe correlation coefficienR vanishes for an infinite length
three coefficientC,,, S andR, describing the statistics of sequence generated by any renewal process, including the
the spike sequences of infinite length, through analytic an@UP and the Poisson process. For a sequence of finite num-
numerical investigation for three types of time-dependenber of intervalsn, the sampleR value is expected to be dis-
Poisson processes: pulse regulated, sinusoidally regulateglibuted normally about zero with variancenlif the se-

at a large percentage of experimental data exhibit values of
esignificantly larger than 2.

The correlation coefficienR is a measure of the mutual
Idependence of consecutive ISls, defined as

and doubly stochastic. quence is generated by a renewal process. As depicted in Fig.
1(b), a large percentage of the data taken from the monkey
Il. THREE STATISTICAL COEFFICIENTS prefrontal cortex exhibit positivR values significantly larger

) _ ) ) i than what would result from the renewal process.
A sequence of point eventspikes is registered in a form

of a sequence of interevent intervaldSls) as {T,
T,,---,T,}, assuming the stationarity of the phenomena. lll. THREE KINDS OF TIME-DEPENDENT POISSON

The ISI sequence is characterized in the present paper by PROCESSES

three statistical coefficientS,/, S andR, which will be de- In the Poisson process, point events occur randomly in
fined in this section. Theoretical statistical coefficients withtime with a certain fixed ratk. In this process, the interevent
respect to time-dependent Poisson processes will be conhtervals T appear as randomly and independently chosen

puted for a sequence of infinite number of intervals. When,ajues from an exponential probability distribution
performing the numerical simulation, the number of intervals

n was set very largen=1 000 000) so that the computed p(T)=re . )
statistics can practically be regarded as theoretical values for

n=oo. With respect to the experimental ISI sequence, NOWgq, o infinite length spike sequence generated by a fixed
ever, the number of available ISIs are limited, and we will fiX pisson process, we can expect that the three stafistical co-
the number of intervals as=100 in computing the sample efficients defined above will take the valu€g=1, S=2,
statistics. andR=0. For a finite number of intervals so generated, the

The coefficient of variatiorCy is a measure of the vari- 4ot mean square deviation from these values is of the order
ability of ISls, defined as the ratio of the standard dewatlonof G

to the mean, The values of the coefficient§,, and S evaluated from

T experimental spike sequences in fact have been found to be
Cy=(T-T)" /T. oy distributed around the values for the Poisson proc€ss,

. . S ) =1 andS=2. The extent to which this experimental data
HereT is the interval and - - represents an averaging opera- jeyiate from these values is, however, too large, given that
tion such thatT=1/nX={_,T;. The coefficientCy vanishes each data point represents a sequence of 100 [i§lsIn
for a regular spike sequence. On the other h&hg=1 for  addition, the values d® found experimentally are as a whole
an infinite length sequence generated by a fixed Poisson prehifted in the positive direction with respect to the range for
cess. For a sequence of finite number of intervglgshe  the renewal process. For these reasons, a fixed Poisson pro-
sampleCy value is expected to be distributed about 1 withcess, in which the spike rate is time independent, cannot
the deviation of the order of {h, if the sequence is gener- reproduce the experimental spiking statistics. We therefore
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would like to consider extended Poisson processes in which T
the spike rate is given by some predefined functions of time P(T[t)=A(t+T)expg — fo dui(t+u)
A(1).

First, we consider a pulse regulated Poisson process, in . ]
which the spike rate is a periodic function consisting of The nth moment of the ISI, when the preceding spike was

. (8

Dirac & functions separated by time intervals of length generated at timg is given by
= ﬂt:f dTTp(T|t).
Ab)= > vé(t—sk). (5) 0

The conditional moment of the ISIs averaged over all pos-

Namely, multiple spikegincluding no spike and one spike sible values of the time of the preceding spike is therefore

case can be generated at each timesk (k=---,0,1,

2,--+). The number of spikes at each time is chosen accordg—]lven by
ing to the Poisson distribution with the mean y v .

Sec_ond, we conS|de_r a sinusoidally regulated Poisson pro- j din ()T, J dt)\(t)f dTTp(T|t)
cess, in which the spike rate undergoes a smooth periodic— 0 ) 0 0
modulation as "= lim — = lim 0

U= f din(t) Y7~ f din(t)
N(1t)=Ng+Asin(t/s), (6) 0 0

C)
where\o(=|A|) is the mean spike rate andr3 is the pe-
riod of the modulation. This can be simplified by means of partial integration to
Third, we examine a doubly stochastic Poisson process igield the simple integral expressions
which the spike rate is randomly modulatEd,8,13. We
consider the case that the random modulation of the spike

rate is given by the Ornstein-Uhlenbeck process, T= % (10)
d\ A—\o
Gt s TVAd, ) i
Té==| dT — | dun(t+u)|, 11
whereé(t) is Gaussian white noise with ensemble-averaged )\jo exr{ fo UN(t+U) 1
quantities(£(t))=0 and (&(t)&(t'))=8(t—t'). We intro-
duced same notations ands as the abovementioned sinu- 5
. . _ o0 T
soidally regulated Poisson proce{Eﬂ.(G_)], as .those param- - ::f dTTex _f dun(t+u) |, (12
eters have mutually the same dimensionalities. This process \Jo 0
yields the fluctuating spike rate
Nty =Nog+An(1), (7)  where --- on the right-hand side represents the long-time
average defined as
which is characterized by
_ 1 (u
(n(1))=0, A=lim = dtA(t),
U—ow u 0
and
(p(t)n(t"))y=e"It-tls, while - - - on the left-hand side represents the average over a

long spike sequence defined in Sec. Il.
In this process we stipulate that spikes are not generated The statistical coefficientS, andSare given by the first

when\(t)=<0. few of the above moments as
IV. METHOD OF ANALYSIS Cy=" IT2/T2— 1,
In this section we introduce the method of obtaining the-
oretical moments of intervals, which constitute the three sta- T3-3T2T+2T3

tistical coefficients for an infinite length sequence generated
by the time-dependent Poisson process, in which point
events(spikes are generated randomly in time with the rate
A (t). The conditional probability that given a spike at timne Evaluation of the correlation coefficieRtrequires an av-
the next spike will appear at timtetrT is [7—9] erage over two consecutive intervals, given as

(?_ ?2)3/2

041910-4
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U oo o0
JO (o) JO AT, Tap(Tolt) fo AT, T,p(Tlt+Ty)

TiTH—l: lim

U—o

Repeated use of partial integrati@as explained in Appendix
A) yields the simple form

1 (> o
TiTi+1=:j dTlf dT2
AJO 0

T1+T,
><)\(t+T1)exp{—f dun(t+u)|. (19
0

With the quantityT;T,;,, defined in this manner, the statis-
tical coefficientR is given by

e LT
TZ_TZ

V. PROOF OF THE INEQUALITY C,=1

It was pointed out by Tuckwell [9], pp. 222—225 that
the relationC,,=1 holds for a two-state semi-Markov pro-

cess in which a spike generator alternates between two stat

with different spike rates. Here, we would like to prove that
this inequality holds generally forany kind of time-
dependent Poisson process.

The inequalityCy=1 is equivalent to

2=272,
or in other words,

?2

2T

(19

The left-hand side of this relation is

oo

)

and its integrand satisfies Jensen’s inequaldge, for in-
stance, Ref[13]),

exr{ — JTdu)\(H u)
0

Using this, we can prove Eql5),

=
dTex;{ —f dun(t+u)
0

=e ™,

-
>ex;{ —j dul(t+u)
0

y (13
fo dtn (1)

T2
2T

:f:

zj dTexp —TA)=
0

=
dTexr{ —f dul(t+u)
0

=T. (16)

4R

Namely, the coefficient of variatiol€,, is larger than or
equal to unity for a spike sequence of infinite length gener-
ated by any kind of time-dependent Poisson process. The
equality holds if the spike rate is constant in time, that is, in
the case of a fixed Poisson process.

VI. EVALUATION OF INTERVAL STATISTICS

In this section, we evaluate the three statistical coeffi-
cientsCy,, S, andR analytically and also report the results of
their numerical evaluation for the three kinds of time-
dependent Poisson processes defined above: pulse regulated,
sinusoidally regulated, and doubly stochastic. Among those
three processes, the first two are not stationary. If the statis-
tical coefficients are evaluated in a finite interval of time for

0se nonstationary processes, they are generally not invari-
ant with respect to the shift of time. But if the number of
intervals n used for the evaluation is sufficiently large to
overcome the nonstationary time scale, the statistical coeffi-
cients evaluated in this section for infinite length sequences
are expected to be close to those for finite length sequences.
The obtained results are compared with the experimental
data displayed in Fig. 1 to elucidate the potentiality of the
respective models for describing neuronal spiking behavior
in vivo.

A. Pulse regulated Poisson process

The pulse regulated Poisson process, whose spike rate is
expressed by Eqb5), is analytically tractable. Though this
modulation is periodic, the spiking behavior it generates dif-
fers significantly from that in the sinusoidally regulated case.
As the spiking probability is given by the Diragfunction,
the model tends to generate multiple spikes at a single time.
This is reminiscent of the spiking behavior of intrinsic burst-
ing cells and chattering cells, both of which generate bursts
of several successive spikes that appear at intervals of a few
milliseconds, while the interburst interval is typically of the
order of several tens of milliseconds or several hundreds of
milliseconds[14].

The probability of the number of spikes generated at
each time at which the argument of the delta function of Eq.
(5) vanishes (= - -,0,5,2s,3s, - - -) is distributed according
to the Poisson distribution

041910-5
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v — 1y
pn—me . (17) A_Jlinw U/, dtA(t)
The statistical quantities necessary to dei@®g, S andR  can be replaced by the time average over one period of the
are readily derived from this probability distribution as modulation,
__ s . 1 27s
T= ;, = 2—77_5 0 th(t)
2 _ This replacement enables us to perform numerical integra-
— s [1l+e’? . . =5 =3
T2=_ ' tion of Egs.(11), (12), and(14) to obtainT<, T°, andT;T;, 1,
vil—e™” which yield the quantitie€y, S, andR.
The value of these quantities obtained by analytic integra-
_ B[144erre-2 tion are valid forh o> A. The results obtained with this direct
T =" - integration method are depicted in Fig. 3. We have also per-
4 (1—e )2 formed numerical simulations of the original stochastic
model with various parameters, but we do not include the
e v simulation results in the figures, as they essentially coincide
TT =5 ———|. with those obtained from the numerical integration method.
(1—e7)? If the modulation of the spike rate is much more rapid

than the mean spike rats<€1/\,), the coefficientCy, S

We thus see that the ISI depends linearlysofror this rea- and R take on their values for a Poisson process. In this
son, nondimensional spiking statistics suchCas S, andR regular modulation, it would be possible to catch the rapid
do not depend os but only onv. regular modulation by means of the other kind of statistics

Figure 2 displays statistical coefficients for the pulse regusuch as the autocorrelation function, but we are presently not
lated Poisson process. In the limit f-0, the values of the interested in those statistics. As seen in the figure, the value
statistical coefficients converge to their Poisson val@s, Of Cy increases asis increased from 0, while the values of
=1, S=2, andR=0. Negative values dR and small values S andR first decrease from the Poisson values 2 and 0, re-
of Sare two main characteristics of this process that emerggpectively, and then reverse, eventually exceeding these val-
as v is increased from 0. In this pulse regulated caSe, ues assapproaches the order of the mean intervalh1mhe
asymptotically approaches the lige=Cy, for large v. This  large values oy, S andR produced for large modulation
behavior, however, is not consistent with the experimental/\o of long-time scales\ o reproduce the experimental data
data displayed in Fig. 1. In that figure, we see that a largdlisplayed in Fig. 1, but the values obtained for values of the
number of the data points have valuesSthat are distrib-  smallsky do not correspond well with the experimental data.
uted well above th&=C,, line. In addition, the values d®
generated by this model are inconsistent with the experimen- C. The doubly stochastic Poisson process
tal values, as the former are shifted in the negative direction

with respect to 0, while the latter are shifted in the positive uld also be subiect to slowlv fluctuating current and the
direction. From these results, we see that the spike sequenc Q ) y 9

recorded from monkey prefrontal cortical neurons cannot bégsultlng spike rate may fluctuate accordingly in t|me'. As a
described by the pulse regulated Poisson process Simple model to express the random temporal fluctuation, we
Y ' would like to consider the doubly stochastic Poisson process,

whose spike rate is given by E(¥),

Even if a neuron generates spikes randomly in time, it

B. Sinusoidally regulated Poisson process

. . N =Agt+An(t),
The activity of the neurons of alert animals may be tem- (O=ko+ An(t)

porally modulated by brain waves. Types of brain waves ar
classified according to their frequency range casvaves
(8—13 H2, B waves(13—-30 H3z, 6 waves(4—7 H2, and§
waves(0.5—4 H3z [15]. As a simple model to examine the
effects of a smooth periodic modulation of this kind, we
consider here the sinusoidally regulated Poisson process dis- o 1 (u

cussed briefly above, whose spike rate is given by (BY. A= lim — | dtA(t),

We note here that sinusoidally regulated noisy leaky U—oo 0

integrate-and-fire models have been studied by Lafsgy

and Bulsaraet al. [17] in different contexts, related to sto- can be replaced by the ensemble avergde over the

(?/vheren is the correlated Gaussian noise with the ensemble
characteristicg 7(t))=0 and(»n(t) 7(t"))=exp(—[t—t'|/s).

Here we assume that the ergodicity and thus the long-time
average over one sample,

chastic resonance phenomena. Gaussian distribution of the ensemblesft). In this Gauss-
In the present case of a periodically modulated spike ratedan model,\ (t) is distributed normally about, with devia-
the “long-time” average tion of orderA. Accordingly,\(t) can take negative values

041910-6
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(a)

pulse regulated 1

&~ O 0

no

FIG. 2. (Color) Pulse regulated
Poisson process. The statistical
0 1 2 3 coefficientsC,,, S, andR depend
only on v. In the limit v—0, the
C statistical coefficients converge to
') the Poisson values Cy=1,
S=2,and R=0. (a) The Cy-S
plane. We see thaty increases
(b) monotonically as a function o#,

while S first decreases and then
! T T asymptotically approaches the
dashed line representin8=C,, .
(b) The R-S plane. Here we see
that R remains negative for alb.

b
i
n—

o nnOA~A OO0 0

o
=3
o

R

)

and this results in errors in the analysis. The analytical re- _  n(n—1) (= I T
sults can be considered reliable fosA2<\ . T”=)\—Ofo dTT" %e o <eX;{—AJO dun(u)

The mean interval value is given simply by (18)
1 The ensemble average with respect to the Gaussian distri-
T= o bution of #(t) is analytically obtained agee Appendix B
0
T
, _ ex —Af duzm(u)|)=ef™, (19
and the higher moments1&2) are given by 0

041910-7
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(a)

L 1

8 + sinusoidally regulated i

o NN~ O

Cv

: sinusoiéﬁially regulated :

N O~ O ®
|
S

FIG. 3. (Color) Sinusoidally regulated Poisson process: In this case the statistical coefficign® andR depend on two parameters,
A/Ng andsh. In either limitA—0 ors—0, the statistical coefficients converge to the Poisson valligs,1, S=2, andR=0. The curves
represent the is&- curves(A=0.4, 0.6, 0.8, and 1)0(a) The Cy-S plane. We see tha first decreases from the Poisson value Zés
increased from 0, and then it reverses its courseasproaches the order of the mean inteW@F, while Cy, increases monotonically with
s. (b) The R-S plane. Here it is seen th&first decreases from the Poisson value & @&sincreased from 0, and then it reverses its course
ass approaches the order mgl.

041910-8
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f(T)=A%s%(T/s—1+e 1’9, than 2 and the positiv&k values, which are exhibited by
some significant percentage of the experimental data re-
and the final analytical integral form of the moments is givencorded from the monkey prefrontal corté¢kig. 1), can be

by reproduced by the present doubly stochastic Poisson process
in the case when is larger than 0.5y ands is larger than
ﬁ:n(”_l)f 4TI 2e T+ (200 1Mo, that is, with a fairly large modulation and slow time
Ao Jo ' scale.

This integral formula is used for the evaluation of statistical
coefficientsC,, and S It should be noted that the moments
given in Eq.(20) can, in principle, be derived from the prob-  In the present paper, we have obtained values for three
ability distribution of intervals given by Cox and Lew[g], quantities describing interval statistics for three kinds of
(pp. 179-18R But the straightforward method described in time-dependent Poisson processes: pulse regulated, sinusoi-
Appendix B enables us to derive the following further re-dally regulated, and doubly stochastic. The values of these

VIl. CONCLUSION

sults. quantities obtained for each process were compared with dis-

First, the average over the consecutive intervals is writtertributions of the data recorded from the monkey prefrontal
as the ensemble average, cortex. We find that among these three processes, the doubly
stochastic Poisson process corresponds best to the experi-

TT .= 1 (= dT J‘” dT mental data. It would be interesting to perform more detailed

L NoJo T~ Y)o T2 statistical tests to examine the consistency of this model with

. the experimental data. It is also desirable to examine how ISl
1mr2 statistics depend on the area of the brain from which they are
X < )\(Tl)ex;{ B Jo duh (u) > - (@) taken, as wgll as on the nature of the individual neuron Li/sed.
We are proceeding with this study in these directions.
The integrand on the right-hand side is carried out by means
of the functional derivative, as explained in Appendix B, and ACKNOWLEDGMENTS
we arrive at the final single integral form of the correlation,

Thanks are due to Shintaro Funahashi and Yutaka Sakai,
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analytical integration of the integrals in Eq0) and (22)
are plotted in Fig. 4. If the modulation of the spiking prob- APPENDIX A
ability fluctuates very rapidly in comparison with the mean ] ] ] ]
spike rate §<1/\o), as seen in the figure, this modulation [N this appendix, we derive E¢14) from Eq.(13). Using
does not alter the statistics from that obtained for the Poissofl€ relation
processCy=1, S=2, andR=0.

The values of the statistical coefficients obtained by per-
forming the numerical simulation of the original dynamical i <t — le”zdu)\(tJru)
equations are displayed in Fig. 5. We find that the analytical aT,
results a2re in agreement with the simulation results only for S
smallsA<4/\g. Itis thus co_ncluded that numerlca_ll S|mulat|0ns_ _ —7\(t+T1+T2)exr{—f 1 Zdu)\(t+u)
are necessary to determine the general behavior of the statis- 0
tical coefficients in this case. An important point regarding
the present results is that the valuesSafignificantly larger  the numerator of Eq(13) can be simplified as

- 1 (»
TTii1= )\—Ofo dT[AT—2f(T)]e T+ (22

u o °° Ti+T,
f dtf dTlf de)\(t)Tl)\(t-FTl)TZ)\(H-Tl-i—TZ)eX;{—f dun(t+u)
0 0 0 0

u % o Ti+Ty
0 0 0 0

We then carry out another partial integration, using the relation
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FIG. 4. (Color Doubly stochastic Poisson procgssalytical integration Here too, the statistical coefficien®,, S, andR depend on

the two parametersd/\y andsky. Once again, in either limih —0 or s—0, the statistical coefficients converge to the Poisson values
Cy=1, S=2, andR=0. From the results of numerical simulations, however, we find that these analytical results are only reliable for

2sA2<)\,. The curves represent the idgoeurves A =0.4, 0.6, 0.8, and 1.0)a) The Cy-S plane. Here we see that bafk, andSincrease
ass is increased from 0(b) The R-S plane. HereR also increases from the Poisson value G &sincreased from 0.
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FIG. 5. (Color) Doubly stochastic Poisson procegaimerical simulation Each statistical coefficient is evaluated from a sequence of
1 000 000 numerically generated intervals. The curves represent tide dsoves A =0.4, 0.6, 0.8, and 1.0Ya) The C,-S plane.(b) The
R-S plane. The departure of the analytical results from this numerical simulation results becomes signifcchat@ses comparable to
A2\,. In this case, the present numerical results are more reliable.
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J T
Eexr{ - JO duA(t+u)

whereT=T,+T,. Ignoring theO(1) end effects and retaining only the bulk integration, the numerator can be rewritten as

-
=[)\(t)—)\(t+T)]exp{ - fo dun(t+u)

V] o0 o T.+T
f dtf dTlf dTZTlx(t+T1)>\(t+Tl+Tz)exp[—f1 “dun(t+u)|+0(1).
0 0 0 0

Repeating this kind of partial integration, neglecting end ef- T
fects ofO(1), wearrive at ex —AJ’O dun(u)

|

1 T T
:exp[EAsz duf0 do{ 7(u) 7(v))

u * o T+Ty
f dtJ dT1J dTZ)\(t+Tl)exr{—J’ dul(t+u)
0 0 0

0

+0(1 =ex AZJTdu(T—u)e*“’S
(1). 0

This gives the final formula, Eq14), and this finally leads to Eq19),

.
— 1= °° ex —Af dun(u)|)=e'™,
M= on ] ar, (o g aurco

f(T)=A%8[T/s—1+exp —T/s)].

T1+T,
X)\(t+Tl)exr{—f duA(t+u)
0

Second, Eq(21) contains the average
APPENDIX B

T1+Ty
In this appendix, we perform the Gaussian integral to ob- < W(Tl)exl-‘{ —AJO dUﬂ(U)D :
tain Eqs.(19) and(22). First, the average

(oo [t

taken over the Gaussian distribution gft), with (7(t))
=0 and{n(t) n(t'))=exp(—|t—t'|/s) is readily obtained as this can be rewritten as

By regardingA as a time-dependent quantify(u), and us-
ing the functional derivative

o
MA(U)Z o(u—v),

.
<77(T1)8XF{—AJO duz(u)

|

o 17 T
=— ACTY) ex;{ifo duf0 dvA(u)A(u)<7;(u)77(v)>}

F) T
>=— 6A(T1)<exl{_Jo duA(u) n(u)

T 1(7 T
:_A(Tl)f dve TS ex —f duf doA(u)A(v)eliells),
0 2 0 0
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whereT=T,+T,. By resettingA (t) =A, we can rewrite this o o 5 s 1
as TiTi+1: fo dTlfO dTZ[}\O_A 5(2_e 1 S_e 2/5)]

X e_)‘0T+f(T)_

Finally, by transforming the variables fronT{,T,) to

T T
—AJ dveTluVSex;{AZJ du(T—u)exp(—u/s)
0 0 (T,,T), the above integral is reduced to the single integral

=—As(2—exp—T,/s—exp—T,/s)el™ given in Eq.(22),
_ TTi .= if dT[\oT—2f(T)] e T+,
In this way, Eq.(21) becomes NoJo
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