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Modeling spiking behavior of neurons with time-dependent Poisson processes
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Three kinds of interval statistics, as represented by the coefficient of variation, the skewness coefficient, and
the correlation coefficient of consecutive intervals, are evaluated for three kinds of time-dependent Poisson
processes: pulse regulated, sinusoidally regulated, and doubly stochastic. Among these three processes, the
sinusoidally regulated and doubly stochastic Poisson processes, in the case when the spike rate varies slowly
compared with the mean interval between spikes, are found to be consistent with the three statistical coeffi-
cients exhibited by data recorded from neurons in the prefrontal cortex of monkeys.
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I. INTRODUCTION

Spike sequences recorded from cortical neuronsin vivo
are usually irregular. It is not established whether the stan-
dard neurospiking models can describe the experimentally
observed spiking irregularity@1#. It has been asserted that the
leaky integrate-and-fire model with temporally uncorrelated
inputs is able to generate irregular spike sequences@2,3#.
Motivated by this alleged finding, Shinomoto, Sakai, and
Funahashi@4,5# proposed examining the consistency of a
neurospiking model with experimental spiking data by con-
sidering several statistical measures of the interspike inter-
vals ~ISIs!: not only the coefficient of variationCV , which
measures the spiking irregularity, but also the skewness co-
efficient of the interval distribution,S, and the correlation
coefficient of consecutive intervals,R.

A leaky integration process with temporally uncorrelated
Gaussian input is termed an Ornstein-Uhlenbeck process
~OUP!. In this paper we refer to a threshold spike-reset pro-
cess whose membrane dynamics are given by such a process
as OUP. This OUP can generate an irregular spike sequence.
The experimental spike sequences examined in Refs.@4,5#
are in fact irregular~possessing largeCV values!, but the
other two statistical coefficientsSandR evaluated from them
are distributed very widely beyond the range that any OUP
can realize. The largeSvalues and the largeR values exhib-
ited by some non-negligible percentage of neurons are the
statistical characteristics of these experimental spike se-
quences that cannot be reproduced by any OUP, as explained
in the following.

The first finding that leads us to reject the OUP as a model
of biological spiking behavior concerns the incompatibility
of their statistics in theCV-S plane@4#. Among the experi-
mental spike sequences examined in Refs.@4,5#, the mean
ISI is at least 30 msec and typically greater than 100 msec.
This is much larger than the membrane time constant, which
is considered to range from 1 to 20 msec@6#. Thus in any of
the spiking sequences, model parameter values for which the
mean ISI is less than the membrane time constant should be
excluded from consideration. We always add this constraint

to the OUP when considering it as a neurospiking model.
The feasible region of an OUP for infinite length sequences,
given this constraint, is shown in Fig. 1~a! as the shaded area
in the CV-S plane. The dashed line represents the envelope
of the contours within which lie 99% of sequences contain-
ing 100 intervals generated by an OUP with the same con-
straint. The data taken from the monkey prefrontal cortex are
overlaid in the same figure. Each dot represents statistics
derived from 100 ISIs recorded from a neuron. The percent-
age of the experimental data lying outside this 1% envelope
is 7.2%. Those data that lie outside the 1% envelope do so
because theirS values are too large, typically greater than 4
or 5.

The second finding on which our rejection of the OUP is
based is that regarding the correlation coefficient of consecu-
tive intervalsR. TheR values are expected to be distributed
normally with mean zero and variance 1/n for any spike
sequences ofn intervals generated according to a renewal
process, including an OUP and a Poisson process@7–9#.
Here, the range within which lie 99% of sequences contain-
ing 100 intervals generated by a renewal process, corre-
sponds toRP@20.26,0.26#, with 0.5% lying on either side
of this range. This range is indicated by the vertical dashed
lines in Fig. 1~b!. The R values obtained using the data re-
corded from the prefrontal cortical neurons are distributed
with an overall shift to the positive side with respect to this
range, and the percentage of the data lying outside the 1%
deviation range is 11.3%. This result implies that renewal
processes in general, including the OUP, are incapable of
describing the statistics of spiking behavior as reflected by
the correlation coefficientR.

With these two results, the OUP alone was found to be
unable to describe the experimental data. It was then shown,
however, that the statistics of the experimental data could be
reproduced by a leaky integrate-and-fire model that includes
temporally correlated inputs, which are themselves gener-
ated by another Ornstein-Uhlenbeck process@5#. We refer to
this model as a ‘‘colored OUP.’’ In sweeping out all param-
eter values, however, the data generated by colored OUP
occupies a much wider region in the space of the three sta-
tistical measures of interest than that of the experimental
data. The colored OUP is therefore in some sense ‘‘overca-
pable’’ of describing neurospiking behaviors. One somewhat
unnatural aspect of the behavior of the colored OUP is that it
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FIG. 1. ~Color! Distributions of statistical coefficients for 666 spike sequences recorded from monkey prefrontal cortices~by courtesy of
Shintaro Funahashi and Yutaka Sakai!. Each dot represents a pair of statistical coefficients computed from a spike sequence consisting of 100
ISIs of a neuron.~a! The coefficient of variationCV and the skewness coefficientS. The shaded area represents the region that can be
reproduced by the OUP with the constraint that the mean spike interval is greater than the membrane time constant. The dashed curves
represent the envelope of the contours within which 99% of the data should exist given the finite number of intervals per sequence (n
5100) if this spiking behavior were described by an OUP. The percentage of the data lying outside this 1% envelope is 7.2%. This result
clearly excludes the OUP as a possible model of such spiking behavior.~b! The correlation coefficient of consecutive intervalsR and the
skewness coefficientS. Here, the range, within which lie 99% of sequences containing 100 ISIs generated by an OUP or any renewal
process, corresponds toRP@20.26,0.26#, which is indicated by the vertical lines. The percentage of the experimental data lying outside
these lines is 11.3%. This result clearly excludes any renewal process.
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generates regular spike sequences over a fairly wide range of
parameter values~The original OUP can also generate regu-
lar spike sequences!. Although in actual biological systems,
regular spiking can be observed in constant current injection
experiments conductedin vitro @10,11#, in general it is not
observed in the cortex of an active animalin vivo, and for
this reason, there is no reason to require our model to be able
to reproduce such behavior.

We wish to construct a simple model with a small number
of parameters, which reproduces the spiking statistics of neu-
rons in vivo without the necessity of fine tuning parameter
values. As a possible type of such models, we study in the
present paper time-dependent Poisson processes, in which
point events~spikes! are generated randomly with a spike
rate that is temporally modulated in some prescribed manner.
We consider such models because we have proven that the
coefficient of variationCV is greater than or equal to unity
for a sequence of infinite length generated by any kind of
time-dependent Poisson process. This fact appears to be con-
sistent with experimental data of finite length takenin vivo.
In the present paper we do not attempt a detailed examina-
tion of the consistency of such models with experimental
data of finite length, but instead we obtain values for the
three coefficientsCV , S, and R, describing the statistics of
the spike sequences of infinite length, through analytic and
numerical investigation for three types of time-dependent
Poisson processes: pulse regulated, sinusoidally regulated,
and doubly stochastic.

II. THREE STATISTICAL COEFFICIENTS

A sequence of point events~spikes! is registered in a form
of a sequence of interevent intervals~ISIs! as $T1 ,
T2 ,•••,Tn%, assuming the stationarity of the phenomena.
The ISI sequence is characterized in the present paper by
three statistical coefficientsCV , S, andR, which will be de-
fined in this section. Theoretical statistical coefficients with
respect to time-dependent Poisson processes will be com-
puted for a sequence of infinite number of intervals. When
performing the numerical simulation, the number of intervals
n was set very large (n51 000 000) so that the computed
statistics can practically be regarded as theoretical values for
n5`. With respect to the experimental ISI sequence, how-
ever, the number of available ISIs are limited, and we will fix
the number of intervals asn5100 in computing the sample
statistics.

The coefficient of variationCV is a measure of the vari-
ability of ISIs, defined as the ratio of the standard deviation
to the mean,

CV5~T2T̄!2 1/2
/T̄. ~1!

HereT is the interval and•••̄ represents an averaging opera-
tion such thatT̄[1/n( i 51

n Ti . The coefficientCV vanishes
for a regular spike sequence. On the other hand,CV51 for
an infinite length sequence generated by a fixed Poisson pro-
cess. For a sequence of finite number of intervalsn, the
sampleCV value is expected to be distributed about 1 with
the deviation of the order of 1/An, if the sequence is gener-

ated by the Poisson process. We can see in Fig. 1~a! that
most experimental spike data exhibit large values ofCV .

The skewness coefficientS is a measure of the asymmetry
of the interval distribution defined as

S5~T2T̄!3/~T2T̄!23/2
. ~2!

The skewness coefficientScan be either positive or negative,
but it is 2 for an infinite length sequence generated by the
Poisson process. For a sequence of finite number of intervals
n, the sampleS value is expected to be distributed about 2
with the deviation of the order of 1/An, if the sequence is
generated by the Poisson process. We can see in Fig. 1~a!
that a large percentage of experimental data exhibit values of
S significantly larger than 2.

The correlation coefficientR is a measure of the mutual
dependence of consecutive ISIs, defined as

R5~TiTi 112T̄2!/~T2T̄!2, ~3!

where Ti and Ti 11 denote a pair of consecutive intervals.
The correlation coefficientR vanishes for an infinite length
sequence generated by any renewal process, including the
OUP and the Poisson process. For a sequence of finite num-
ber of intervalsn, the sampleR value is expected to be dis-
tributed normally about zero with variance 1/n if the se-
quence is generated by a renewal process. As depicted in Fig.
1~b!, a large percentage of the data taken from the monkey
prefrontal cortex exhibit positiveR values significantly larger
than what would result from the renewal process.

III. THREE KINDS OF TIME-DEPENDENT POISSON
PROCESSES

In the Poisson process, point events occur randomly in
time with a certain fixed ratel. In this process, the interevent
intervals T appear as randomly and independently chosen
values from an exponential probability distribution

p~T!5le2lT. ~4!

For an infinite length spike sequence generated by a fixed
Poisson process, we can expect that the three statistical co-
efficients defined above will take the valuesCV51, S52,
andR50. For a finite number of intervals so generated, the
root mean square deviation from these values is of the order
of 1/An.

The values of the coefficientsCV and S evaluated from
experimental spike sequences in fact have been found to be
distributed around the values for the Poisson process,CV
51 and S52. The extent to which this experimental data
deviate from these values is, however, too large, given that
each data point represents a sequence of 100 ISIs@4#. In
addition, the values ofR found experimentally are as a whole
shifted in the positive direction with respect to the range for
the renewal process. For these reasons, a fixed Poisson pro-
cess, in which the spike ratel is time independent, cannot
reproduce the experimental spiking statistics. We therefore
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would like to consider extended Poisson processes in which
the spike rate is given by some predefined functions of time
l(t).

First, we consider a pulse regulated Poisson process, in
which the spike rate is a periodic function consisting of
Dirac d functions separated by time intervals of lengths,

l~ t !5 (
k52`

`

nd~ t2sk!. ~5!

Namely, multiple spikes~including no spike and one spike
case! can be generated at each timet5sk (k5•••,0,1,
2,•••). The number of spikes at each time is chosen accord-
ing to the Poisson distribution with the meann.

Second, we consider a sinusoidally regulated Poisson pro-
cess, in which the spike rate undergoes a smooth periodic
modulation as

l~ t !5l01D sin~ t/s!, ~6!

wherel0(>uDu) is the mean spike rate and 2ps is the pe-
riod of the modulation.

Third, we examine a doubly stochastic Poisson process in
which the spike rate is randomly modulated@7,8,12#. We
consider the case that the random modulation of the spike
rate is given by the Ornstein-Uhlenbeck process,

dl

dt
52

l2l0

s
1ADj~ t !,

wherej(t) is Gaussian white noise with ensemble-averaged
quantities^j(t)&50 and ^j(t)j(t8)&5d(t2t8). We intro-
duced same notationsD ands as the abovementioned sinu-
soidally regulated Poisson process@Eq. ~6!#, as those param-
eters have mutually the same dimensionalities. This process
yields the fluctuating spike rate

l~ t !5l01Dh~ t !, ~7!

which is characterized by

^h~ t !&50,

and

^h~ t !h~ t8!&5e2ut2t8u/s.

In this process we stipulate that spikes are not generated
whenl(t)<0.

IV. METHOD OF ANALYSIS

In this section we introduce the method of obtaining the-
oretical moments of intervals, which constitute the three sta-
tistical coefficients for an infinite length sequence generated
by the time-dependent Poisson process, in which point
events~spikes! are generated randomly in time with the rate
l(t). The conditional probability that given a spike at timet
the next spike will appear at timet1T is @7–9#

p~Tut !5l~ t1T!expF2E
0

T

dul~ t1u!G . ~8!

The nth moment of the ISI, when the preceding spike was
generated at timet, is given by

Tnu t5E
0

`

dTTnp~Tut !.

The conditional moment of the ISIs averaged over all pos-
sible values of the time of the preceding spike is therefore
given by

Tn5 lim
U→`

E
0

U

dtl~ t !Tnu t

E
0

U

dtl~ t !

5 lim
U→`

E
0

U

dtl~ t !E
0

`

dTTnp~Tut !

E
0

U

dtl~ t !

.

~9!

This can be simplified by means of partial integration to
yield the simple integral expressions

T̄5
1

l̄
, ~10!

T25
2

l̄
E

0

`

dT expF2E
0

T

dul~ t1u!G , ~11!

T35
6

l̄
E

0

`

dTTexpF2E
0

T

dul~ t1u!G , ~12!

where •••̄ on the right-hand side represents the long-time
average defined as

Ā5 lim
U→`

1

UE
0

U

dtA~ t !,

while •••̄ on the left-hand side represents the average over a
long spike sequence defined in Sec. II.

The statistical coefficientsCV andS are given by the first
few of the above moments as

CV5AT2/T̄221,

S5
T323T2T̄12T̄3

~T22T̄2!3/2
.

Evaluation of the correlation coefficientR requires an av-
erage over two consecutive intervals, given as
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TiTi 115 lim
U→`

E
0

U

dtl~ t !E
0

`

dT1T1p~T1ut !E
0

`

dT2T2p~T2ut1T1!

E
0

U

dtl~ t !

. ~13!

Repeated use of partial integration~as explained in Appendix
A! yields the simple form

TiTi 115
1

l̄
E

0

`

dT1E
0

`

dT2

3l~ t1T1!expF2E
0

T11T2
dul~ t1u!G . ~14!

With the quantityTiTi 11 defined in this manner, the statis-
tical coefficientR is given by

R5
TiTi 112T̄2

T22T̄2
.

V. PROOF OF THE INEQUALITY CVÐ1

It was pointed out by Tuckwell~ @9#, pp. 222–225! that
the relationCV>1 holds for a two-state semi-Markov pro-
cess in which a spike generator alternates between two states
with different spike rates. Here, we would like to prove that
this inequality holds generally forany kind of time-
dependent Poisson process.

The inequalityCV>1 is equivalent to

T̄2>2T̄2,

or in other words,

T̄2

2T̄
>T̄. ~15!

The left-hand side of this relation is

E
0

`

dT expF2E
0

T

dul~ t1u!G
and its integrand satisfies Jensen’s inequality~see, for in-
stance, Ref.@13#!,

expF2E
0

T

dul~ t1u!G>expF2E
0

T

dul~ t1u!G5e2Tl̄.

Using this, we can prove Eq.~15!,

T2

2T̄
5E

0

`

dT expF2E
0

T

dul~ t1u!G
>E

0

`

dT exp~2Tl̄ !5
1

l̄
5T̄. ~16!

Namely, the coefficient of variationCV is larger than or
equal to unity for a spike sequence of infinite length gener-
ated by any kind of time-dependent Poisson process. The
equality holds if the spike rate is constant in time, that is, in
the case of a fixed Poisson process.

VI. EVALUATION OF INTERVAL STATISTICS

In this section, we evaluate the three statistical coeffi-
cientsCV , S, andR analytically and also report the results of
their numerical evaluation for the three kinds of time-
dependent Poisson processes defined above: pulse regulated,
sinusoidally regulated, and doubly stochastic. Among those
three processes, the first two are not stationary. If the statis-
tical coefficients are evaluated in a finite interval of time for
those nonstationary processes, they are generally not invari-
ant with respect to the shift of time. But if the number of
intervals n used for the evaluation is sufficiently large to
overcome the nonstationary time scale, the statistical coeffi-
cients evaluated in this section for infinite length sequences
are expected to be close to those for finite length sequences.
The obtained results are compared with the experimental
data displayed in Fig. 1 to elucidate the potentiality of the
respective models for describing neuronal spiking behavior
in vivo.

A. Pulse regulated Poisson process

The pulse regulated Poisson process, whose spike rate is
expressed by Eq.~5!, is analytically tractable. Though this
modulation is periodic, the spiking behavior it generates dif-
fers significantly from that in the sinusoidally regulated case.
As the spiking probability is given by the Diracd function,
the model tends to generate multiple spikes at a single time.
This is reminiscent of the spiking behavior of intrinsic burst-
ing cells and chattering cells, both of which generate bursts
of several successive spikes that appear at intervals of a few
milliseconds, while the interburst interval is typically of the
order of several tens of milliseconds or several hundreds of
milliseconds@14#.

The probability of the number of spikesn generated at
each time at which the argument of the delta function of Eq.
~5! vanishes (t5•••,0,s,2s,3s,•••) is distributed according
to the Poisson distribution
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pn5
nn

n!
e2n. ~17!

The statistical quantities necessary to deriveCV , S, and R
are readily derived from this probability distribution as

T̄5
s

n
,

T25
s2

n S 11e2n

12e2nD ,

T35
s3

n F114e2n1e22n

~12e2n!2 G ,

TiTi 115s2F e2n

~12e2n!2G .

We thus see that the ISI depends linearly ons. For this rea-
son, nondimensional spiking statistics such asCV , S, andR
do not depend ons but only onn.

Figure 2 displays statistical coefficients for the pulse regu-
lated Poisson process. In the limit ofn→0, the values of the
statistical coefficients converge to their Poisson values,CV
51, S52, andR50. Negative values ofR and small values
of S are two main characteristics of this process that emerge
as n is increased from 0. In this pulse regulated case,S
asymptotically approaches the lineS5CV for large n. This
behavior, however, is not consistent with the experimental
data displayed in Fig. 1. In that figure, we see that a large
number of the data points have values ofS that are distrib-
uted well above theS5CV line. In addition, the values ofR
generated by this model are inconsistent with the experimen-
tal values, as the former are shifted in the negative direction
with respect to 0, while the latter are shifted in the positive
direction. From these results, we see that the spike sequences
recorded from monkey prefrontal cortical neurons cannot be
described by the pulse regulated Poisson process.

B. Sinusoidally regulated Poisson process

The activity of the neurons of alert animals may be tem-
porally modulated by brain waves. Types of brain waves are
classified according to their frequency range asa waves
~8–13 Hz!, b waves~13–30 Hz!, u waves~4–7 Hz!, andd
waves~0.5–4 Hz! @15#. As a simple model to examine the
effects of a smooth periodic modulation of this kind, we
consider here the sinusoidally regulated Poisson process dis-
cussed briefly above, whose spike rate is given by Eq.~6!.
We note here that sinusoidally regulated noisy leaky
integrate-and-fire models have been studied by Lansky@16#
and Bulsaraet al. @17# in different contexts, related to sto-
chastic resonance phenomena.

In the present case of a periodically modulated spike rate,
the ‘‘long-time’’ average

Ā5 lim
U→`

1

UE
0

U

dtA~ t !

can be replaced by the time average over one period of the
modulation,

Ā5
1

2psE0

2ps

dtA~ t !.

This replacement enables us to perform numerical integra-
tion of Eqs.~11!, ~12!, and~14! to obtainT2, T3, andTiTi 11,
which yield the quantitiesCV , S, andR.

The value of these quantities obtained by analytic integra-
tion are valid forl0.D. The results obtained with this direct
integration method are depicted in Fig. 3. We have also per-
formed numerical simulations of the original stochastic
model with various parameters, but we do not include the
simulation results in the figures, as they essentially coincide
with those obtained from the numerical integration method.

If the modulation of the spike rate is much more rapid
than the mean spike rate (s!1/l0), the coefficientsCV , S,
and R take on their values for a Poisson process. In this
regular modulation, it would be possible to catch the rapid
regular modulation by means of the other kind of statistics
such as the autocorrelation function, but we are presently not
interested in those statistics. As seen in the figure, the value
of CV increases ass is increased from 0, while the values of
S and R first decrease from the Poisson values 2 and 0, re-
spectively, and then reverse, eventually exceeding these val-
ues ass approaches the order of the mean interval 1/l0. The
large values ofCV , S, andR produced for large modulation
D/l0 of long-time scalesl0 reproduce the experimental data
displayed in Fig. 1, but the values obtained for values of the
smallsl0 do not correspond well with the experimental data.

C. The doubly stochastic Poisson process

Even if a neuron generates spikes randomly in time, it
would also be subject to slowly fluctuating current and the
resulting spike rate may fluctuate accordingly in time. As a
simple model to express the random temporal fluctuation, we
would like to consider the doubly stochastic Poisson process,
whose spike rate is given by Eq.~7!,

l~ t !5l01Dh~ t !,

whereh is the correlated Gaussian noise with the ensemble
characteristicŝh(t)&50 and^h(t)h(t8)&5exp(2ut2t8u/s).

Here we assume that the ergodicity and thus the long-time
average over one sample,

Ā5 lim
U→`

1

UE
0

U

dtA~ t !,

can be replaced by the ensemble average^A& over the
Gaussian distribution of the ensemble ofh(t). In this Gauss-
ian model,l(t) is distributed normally aboutl0 with devia-
tion of orderD. Accordingly,l(t) can take negative values
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and this results in errors in the analysis. The analytical re-
sults can be considered reliable for 2sD2!l0.

The mean interval value is given simply by

T̄5
1

l0

and the higher moments (n>2) are given by

T̄n5
n~n21!

l0
E

0

`

dTTn22e2l0TK expF2DE
0

T

duh~u!G L .

~18!

The ensemble average with respect to the Gaussian distri-
bution of h(t) is analytically obtained as~see Appendix B!

K expF2DE
0

T

duh~u!G L 5ef ~T!, ~19!

FIG. 2. ~Color! Pulse regulated
Poisson process. The statistical
coefficientsCV , S, andR depend
only on n. In the limit n→0, the
statistical coefficients converge to
the Poisson values CV51,
S52, and R50. ~a! The CV-S
plane. We see thatCV increases
monotonically as a function ofn,
while S first decreases and then
asymptotically approaches the
dashed line representingS5CV .
~b! The R-S plane. Here we see
that R remains negative for alln.
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FIG. 3. ~Color! Sinusoidally regulated Poisson process: In this case the statistical coefficientsCV , S, andR depend on two parameters,
D/l0 andsl0. In either limit D→0 or s→0, the statistical coefficients converge to the Poisson values,CV51, S52, andR50. The curves
represent the iso-D curves~D50.4, 0.6, 0.8, and 1.0!. ~a! The CV-S plane. We see thatS first decreases from the Poisson value 2 ass is
increased from 0, and then it reverses its course ass approaches the order of the mean intervall0

21, while CV increases monotonically with
s. ~b! The R-S plane. Here it is seen thatR first decreases from the Poisson value 0 ass is increased from 0, and then it reverses its course
ass approaches the order ofl0

21.
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f ~T!5D2s2~T/s211e2T/s!,

and the final analytical integral form of the moments is given
by

Tn5
n~n21!

l0
E

0

`

dTTn22 e2l0T1 f (T). ~20!

This integral formula is used for the evaluation of statistical
coefficientsCV and S. It should be noted that the moments
given in Eq.~20! can, in principle, be derived from the prob-
ability distribution of intervals given by Cox and Lewis@7#,
~pp. 179–183!. But the straightforward method described in
Appendix B enables us to derive the following further re-
sults.

First, the average over the consecutive intervals is written
as the ensemble average,

TiTi 115
1

l0
E

0

`

dT1E
0

`

dT2

3K l~T1!expF2E
0

T11T2
dul~u!G L . ~21!

The integrand on the right-hand side is carried out by means
of the functional derivative, as explained in Appendix B, and
we arrive at the final single integral form of the correlation,

TiTi 115
1

l0
E

0

`

dT@l0T22 f ~T!# e2l0T1 f (T). ~22!

This formula is used for the evaluation of the correlation
coefficientR.

The statistical coefficientsCV , S, andR evaluated by the
analytical integration of the integrals in Eqs.~20! and ~22!
are plotted in Fig. 4. If the modulation of the spiking prob-
ability fluctuates very rapidly in comparison with the mean
spike rate (s!1/l0), as seen in the figure, this modulation
does not alter the statistics from that obtained for the Poisson
process,CV51, S52, andR50.

The values of the statistical coefficients obtained by per-
forming the numerical simulation of the original dynamical
equations are displayed in Fig. 5. We find that the analytical
results are in agreement with the simulation results only for
smallsD2/l0. It is thus concluded that numerical simulations
are necessary to determine the general behavior of the statis-
tical coefficients in this case. An important point regarding
the present results is that the values ofS significantly larger

than 2 and the positiveR values, which are exhibited by
some significant percentage of the experimental data re-
corded from the monkey prefrontal cortex~Fig. 1!, can be
reproduced by the present doubly stochastic Poisson process
in the case whenD is larger than 0.5l0 ands is larger than
1/l0, that is, with a fairly large modulation and slow time
scale.

VII. CONCLUSION

In the present paper, we have obtained values for three
quantities describing interval statistics for three kinds of
time-dependent Poisson processes: pulse regulated, sinusoi-
dally regulated, and doubly stochastic. The values of these
quantities obtained for each process were compared with dis-
tributions of the data recorded from the monkey prefrontal
cortex. We find that among these three processes, the doubly
stochastic Poisson process corresponds best to the experi-
mental data. It would be interesting to perform more detailed
statistical tests to examine the consistency of this model with
the experimental data. It is also desirable to examine how ISI
statistics depend on the area of the brain from which they are
taken, as well as on the nature of the individual neuron used.
We are proceeding with this study in these directions.
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APPENDIX A

In this appendix, we derive Eq.~14! from Eq.~13!. Using
the relation

]

]T2
expF2E

0

T11T2
dul~ t1u!G

52l~ t1T11T2!expF2E
0

T11T2
dul~ t1u!G ,

the numerator of Eq.~13! can be simplified as

E
0

U

dtE
0

`

dT1E
0

`

dT2l~ t !T1l~ t1T1!T2l~ t1T11T2!expF2E
0

T11T2
dul~ t1u!G

5E
0

U

dtE
0

`

dT1E
0

`

dT2l~ t !T1l~ t1T1!expF2E
0

T11T2
dul~ t1u!G .

We then carry out another partial integration, using the relation
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FIG. 4. ~Color! Doubly stochastic Poisson process~analytical integration!. Here too, the statistical coefficientsCV , S, andR depend on
the two parameters,D/l0 and sl0. Once again, in either limitD→0 or s→0, the statistical coefficients converge to the Poisson values
CV51, S52, andR50. From the results of numerical simulations, however, we find that these analytical results are only reliable for
2sD2!l0. The curves represent the iso-D curves (D50.4, 0.6, 0.8, and 1.0).~a! TheCV-S plane. Here we see that bothCV andS increase
ass is increased from 0.~b! The R-S plane. Here,R also increases from the Poisson value 0 ass is increased from 0.
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FIG. 5. ~Color! Doubly stochastic Poisson process~numerical simulation!, Each statistical coefficient is evaluated from a sequence of
1 000 000 numerically generated intervals. The curves represent the iso-D curves (D50.4, 0.6, 0.8, and 1.0).~a! The CV-S plane.~b! The
R-S plane. The departure of the analytical results from this numerical simulation results becomes significant ass becomes comparable to
D2l0. In this case, the present numerical results are more reliable.
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]

]t
expF2E

0

T

dul~ t1u!G5@l~ t !2l~ t1T!#expF2E
0

T

dul~ t1u!G ,
whereT5T11T2. Ignoring theO(1) end effects and retaining only the bulk integration, the numerator can be rewritten as

E
0

U

dtE
0

`

dT1E
0

`

dT2T1l~ t1T1!l~ t1T11T2!expF2E
0

T11T2
dul~ t1u!G1O~1!.

Repeating this kind of partial integration, neglecting end ef-
fects ofO(1), wearrive at

E
0

U

dtE
0

`

dT1E
0

`

dT2l~ t1T1!expF2E
0

T11T2
dul~ t1u!G

1O~1!.

This gives the final formula, Eq.~14!,

TiTi 115
1

l̄
E

0

`

dT1E
0

`

dT2

3l~ t1T1!expF2E
0

T11T2
dul~ t1u!G .

APPENDIX B

In this appendix, we perform the Gaussian integral to ob-
tain Eqs.~19! and ~22!. First, the average

K expF2DE
0

T

duh~u!G L
taken over the Gaussian distribution ofh(t), with ^h(t)&
50 and^h(t)h(t8)&5exp(2ut2t8u/s) is readily obtained as

K expF2DE
0

T

duh~u!G L
5expF1

2
D2E

0

T

duE
0

T

dv^h~u!h~v !&G
5expFD2E

0

T

du~T2u!e2u/sG
and this finally leads to Eq.~19!,

K expF2DE
0

T

duh~u!G L 5ef ~T!,

f ~T!5D2s2@T/s211exp~2T/s!#.

Second, Eq.~21! contains the average

K h~T1!expF2DE
0

T11T2
duh~u!G L .

By regardingD as a time-dependent quantityD(u), and us-
ing the functional derivative

d

dD~v !
D~u!5d~u2v !,

this can be rewritten as

K h~T1!expF2DE
0

T

duh~u!G L 52
d

dD~T1! K expF2E
0

T

duD~u!h~u!G L
52

d

dD~T1!
expF1

2E0

T

duE
0

T

dvD~u!D~v !^h~u!h~v !&G
52D~T1!E

0

T

dve2uT12vu/s expF1

2E0

T

duE
0

T

dvD~u!D~v !euu2vu/sG ,

SHIGERU SHINOMOTO AND YASUHIRO TSUBO PHYSICAL REVIEW E64 041910

041910-12



whereT5T11T2. By resettingD(t)5D, we can rewrite this
as

2DE
0

T

dve2uT12vu/s expFD2E
0

T

du~T2u!exp~2u/s!G
52Ds~22exp2T1 /s2exp2T2 /s!ef ~T!

In this way, Eq.~21! becomes

TiTi 115E
0

`

dT1E
0

`

dT2 @l02D2s~22e2T1 /s2e2T2 /s!#

3e2l0T1 f (T).

Finally, by transforming the variables from (T1 ,T2) to
(T1 ,T), the above integral is reduced to the single integral
given in Eq.~22!,

TiTi 115
1

l0
E

0

`

dT@l0T22 f ~T!# e2l0T1 f (T).
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