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Reproducibility of a Noisy Limit-Cycle Oscillator
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Reproducibility of a noisy limit-cycle oscillator driven by a random piecewise constant
signal is analyzed. By reducing the model to random phase maps, it is shown that the
reproducibility of the limit cycle generally improves when the phase maps are monotonically
increasing.

§1. Introduction

When a spiking neuron receives a randomly fluctuating input, its reproducibility
of spike generation improves compared with the case of a constant input.1) This phe-
nomenon can be interpreted as phase synchronization between uncoupled nonlinear
oscillators that receive a common fluctuating input, because repeated measurements
on a single oscillator using the same input is equivalent to a single measurement
on an ensemble of uncoupled identical oscillators. In our previous studies, we ana-
lyzed the cases where the fluctuating input is given by a random telegraphic signal2)

or by a random impulsive signal.3) In this proceeding, we analyze the case where
the fluctuating input is a slowly varying, piecewise constant random signal using
the phase reduction technique,4),5) as a generalization towards a full treatment of
realistic continuous random signals.

§2. Fluctuation-induced phase synchronization

We consider an ensemble of N identical uncoupled limit-cycle oscillators subject
to a common fluctuating input:

Ẋi(t) = G(Xi(t)) + I(t) (2.1)

for i = 1, · · · , N , where X i(t) represents the internal state of the i-th oscillator at
time t, G(X) the intrinsic dynamics of each oscillator, and I(t) a fluctuating input
common to all the oscillators. The fluctuating input I(t) is a piecewise constant ran-
dom signal that takes one of M values Im ∈ {I1, · · · , IM} with equal probability.
The changes of I(t) occur at time {t1, t2, · · · } following a Poisson process of mean
interval τ . We assume τ to be sufficiently larger than the period of the oscillator.
At each tn, I(t) changes its value in a stepwise manner. Namely, if I(tn − 0) = Im,
its new value I(tn + 0) after the change is either of Im+1 or Im−1 with equal prob-
ability. The probability density function (PDF) of the interval Tn = tn+1 − tn
between changes obeys an exponential distribution P (T ) = exp (−T/τ) /τ . For
each value of Im, Eq. (2.1) is assumed to have a stable limit-cycle solution, whose
basin of attraction is the entire phase space except some unstable fixed points.
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Fig. 1. (a) Typical realization of a piecewise-

constant random signal. (b) Zero-crossing

events under a constant input. (c) Zero-

crossing events under a fluctuating input.

Though our theory itself is a gen-
eral one, we use the FitzHugh-Nagumo
model as an example, where X = {u, v},
G(X) =

{
ε(v + a − bu), v − v3/3 − u

}
and I(t) = {0, I(t)}. The parameters
are fixed at a = 0.7, b = 0.8 and ε =
0.08. I(t) takes one of M = 7 values
Im ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}.
We set the mean interval between changes
at τ = 40 and consider N = 25 oscilla-
tors. In the numerical simulation, small
Gaussian-white noise of zero-mean and in-
tensity D = 10−5 is independently ap-
plied to each variables of the oscillators
to incorporate the effect of external dis-
turbances. Figure 1(a) displays a typi-
cal realization of the piecewise-constant signal, Fig. 1(b) zero-crossing events of
the v-component from v < 0 to v > 0 under the constant input, and Fig. 1(c)
zero-crossing events under the fluctuating input, sufficiently after initial tran-
sients. Due to the independent Gaussian-white noises, the zero-crossing events
occur randomly under the constant input as shown in Fig. 1(b), whereas phase
synchronization induced by fluctuating input can clearly be seen in Fig. 1(c).

§3. Reduction to random phase maps

The phase synchronization is the result of the stabilization of each limit-cycle
oscillator against phase disturbances due to the fluctuating input. To analyze its
mechanism, we reduce our model to random phase maps. We consider the single-
oscillator problem, because the stability is a property of individual oscillators.

Corresponding to the M values of I(t), the orbit of our model moves among M
limit cycles. Since τ is assumed to be large, the orbit is on one of those limit cycles
most of the time, except for short transients between limit cycles after the changes
of the input, as shown in Fig. 2. Following the standard procedure,4),5) we define
a phase variable θm(X) ∈ [0, 1] using the limit cycle m corresponding to the input
Im for each m = 1, · · · , M , where 0 and 1 represent the same phase. We specify the
value of I(t) by m hereafter. When the input is m, i.e., I(t) = Im, the dynamics of
the orbit can simply be described as θ̇m(t) = ωm by using the corresponding phase
variable θm, where ωm is the angular velocity of the limit cycle m.

When the input changes from m to m′, the orbit of our model originally at
phase θm on the limit cycle m will be mapped to new phase θm′ on the limit cycle
m′. We describe this mapping by θm′ = Fm→m′(θm), which we call a “phase map”.
It is a periodic function on [0, 1] satisfying Fm→m′(θm + 1) = Fm→m′(θm) + 1 =
Fm→m′(θm), where 0 and 1 should be interpreted as the same phase. Figure 3
displays the phase maps of the FitzHugh-Nagumo model obtained for all contigu-
ous pairs of (m, m′). The curves are appropriately shifted to adjust their origins.
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Fig. 2. Typical trajectory of the model (bold

arrow). M limit-cycle orbits correspond-

ing to the M input values are shown in the

background.

We use the time step n rather than
the real time t in the following discussion,
which is the number of changes in I(t)
from the beginning. Since we consider a
Poisson process, the time step n roughly
corresponds to the real time t as n � t/τ ,
because the mean inter-impulse interval is
τ . Let us represent the temporal sequence
of I(t) by m(n), and consider a situation
where the input changes from m(n) to a
new value m(n + 1) at t = tn and keeps
this value until t = tn+1 for an interval of
Tn = tn+1 − tn. The corresponding dy-
namics of the orbit from phase θm(n)(n)
on the limit cycle m(n) to the new phase
θm(n+1)(n+1) on the limit cycle m(n+1)
can be described using the phase map F
as

θm(n+1)(n + 1) = ωm(n+1)Tn + Fm(n)→m(n+1)(θm(n)(n)), (3.1)

where ωm(n+1)Tn represents constant increase of the phase on the limit cycle m(n+1).
Since Tn is a random variable, this equation describes random phase maps.

§4. Stability against phase disturbances

The stability against phase disturbances can be characterized by the average
Lyapunov exponent of the random phase maps, Eq. (3.1). Let us consider a small
phase deviation ∆θm(n)(n) from θm(n)(n). Its linearized evolution equation is

∆θm(n+1)(n + 1) = F ′
m(n)→m(n+1)(θm(n)(n))∆θm(n)(n), (4.1)

where F ′
m→m′(θm) = dFm→m′(θm)/dθm. Therefore, the phase deviation grows as

∣∣∆θm(n)(n)/∆θm(0)(0)
∣∣ =

n−1∏
n′=0

∣∣∣F ′
m(n′)→m(n′+1)(θm(n′)(n

′))
∣∣∣ � exp (λn) , (4.2)

where we defined the average Lyapunov exponent as λ = 〈log
∣∣F ′

m→m′(θm)
∣∣〉. The av-

erage should be taken over all possibilities of (m, m′) and over the phase distributions
on all limit cycles.

When the mean interval τ is sufficiently large, the phase distribution on each
limit cycle tends to be uniform, because the jumps between the limit cycles occur
irrespectively of where the orbit is, leading to complete randomization of the phase.
Under this condition, we can make a general statement on the sufficient condition
for the phase synchronization: when all phase maps Fm→m′(θm) are monotonically
increasing non-identity functions, the Lyapunov exponent λ is negative, leading to
fluctuation-induced phase synchronization.
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Actually, when F ′
m→m′(θm) > 0 holds for all m, we can bound the Lyapunov

exponent λ from above as

λ =
1

#(m, m′)

∑
(m,m′)

∫ 1

0
dθm log F ′

m→m′(θm)

≤ 1
#(m, m′)

∑
(m,m′)

∫ 1

0
dθm

{
F ′

m→m′(θm) − 1
}

=
1

#(m, m′)

∑
(m,m′)

{
[Fm→m′(θm)]10 − 1

}
= 0, (4.3)
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Fig. 3. Phase maps Fm→m′(θ) between two

successive values of the input values m and

m′. The inset is an enlargement showing

the correspondence between the curve and

the pair of input values (m, m′).

where the summation is taken over all
combinations of m and m′, and #(m, m′)
represents the number of them. In the
above inequalities, we utilized the fact
that log F ′ ≤ F ′−1, and that Fm→m′(1)−
Fm→m′(0) = 1 because Fm→m′(θm) is a
phase map. The equality holds only when
F ′

m→m′(θm) ≡ 1 for all m, namely, when
the phase maps are trivial identity maps.
For the FitzHugh-Nagumo model with
the parameter values assumed here, all
the phase maps Fm→m′(θm) are monoton-
ically increasing as can immediately be
seen from Fig. 3. Therefore, by applying
a piecewise-constant random signal with
large mean interval τ , fluctuation-induced
synchronization occurs as demonstrated in Fig. 2(c). In general, as long as the sep-
aration between neighboring values of I(t) are small, the phase maps should be
monotonic, and fluctuation-induced synchronization should occur.

§5. Summary

We analyzed fluctuation-induced phase synchronization among uncoupled noisy
oscillators for the case of a slowly varying, piecewise-constant random input. By
reducing the model to random phase maps, we gave a general sufficient condition for
the phase synchronization. Extension of our current analysis to a realistic continuous
random signal will be tackled in the future.
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