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Viscoelastic and thermodynamic properties of transient gels formed by telechelic associating
polymers are studied on the basis of the transient network theory that considers the correlation
among polymer chains via network junctions. The global information of the gel is incorporated into
the theory by introducing elastically effective chains defined according to the criterion of Scanlan [J.
Polym. Sci. 43, 501 (1960)] and Case [J. Polym. Sci. 45, 397 (1960)]. We also consider the effects
of superbridges whose backbone is formed by several chains connected in series and containing
several breakable junctions. The dynamic shear moduli of this system are well described in terms of
the Maxwell model characterized by a single relaxation time and high-frequency plateau modulus.
Near the critical concentration at the sol/gel transition, superbridges become infinitely long along
the backbone, thereby leading to a short relaxation time 7 for the network. It is shown that 7 is
proportional to the concentration deviation A near the gelation point. The plateau modulus G..
increases as the cube of A near the gelation point as a result of the mean-field treatment, and hence
the zero-shear viscosity increases as 7y~ G.7~A* The present model can explain the
concentration dependence of the dynamic moduli observed for aqueous solutions of telechelic
poly(ethylene oxide). © 2007 American Institute of Physics.

[DOL: 10.1063/1.2747610]

I. INTRODUCTION

Transient gels formed by associating polymers have at-
tracted widespread interests in recent years. Associating
polymers are polymer chains carrying specific groups ca-
pable of forming aggregates through noncovalent
bonding.zf14 Under certain thermodynamic conditions, they
form a transient gel by connecting sticky groups on polymers
to each other. This transformation is thermoreversible in gen-
eral. In the first paper of this series'® (referred to as I in the
following), we presented a theoretical framework to study
the dynamic properties of transient gels formed by multiple
junctions comprising a limited number of associative groups
with the intention to understand the thermodynamic proper-
ties of the linear rheology of telechelic associating polymer
systems. As a first attempt, elastically effective chains (or
active chains) were defined locally according to the conven-
tional practice, i.e., chains with both ends connected to other
chains were regarded to be elastically effective irrespective
of whether or not these chains were incorporated into an
infinite network (gel). We could qualitatively explain the
concentration dependence of the dynamic shear moduli de-
scribed in terms of the Maxwell model. It was shown that (i)
the plateau modulus and the zero-shear viscosity increase
nonlinearly with the concentration at low concentration
ranges, (ii) there exists a large fraction of pairwise junctions
forming concatenated chains at low concentrations, and (iii)
the fraction of pairwise junctions decreases with an increase
in the concentration; consequently, the relaxation time of the
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network increases with the concentration. However, the treat-
ment of concatenated chains was unsatisfactory and the sol/
gel transition of the system could not be treated properly due
to the local definition of active chains and a lack of global
information of the network.

In this study, we consider the global information of the
infinite network by making use of the criterion suggested by
Scanlan'® and Case'’ for a chain to be active. This criterion
states that telechelic chains are elastically effective if both
their ends are connected to junctions with at least three paths
to the infinite network. We assume that elastically effective
chains deform according to the macroscopic deformations
applied to the gel. Static properties of transient gels have
been studied by Tanaka and Ishida on the basis of this
criterion.'® Here, we consider not only primary active chains
(referred to as primary bridges in this paper) but also active
superchains (called superbridges) whose backbone is an ag-
gregate of several bridges connected in series. The effects of
superbridges cannot be negligible, particularly in a study of
the dynamic properties of transient gels, because they reduce
the relaxation time of the network due to the presence of
several breakable internal junctions, as suggested by Annable
et al.> We can describe the transition between the sol state
and the gel state in this theoretical framework. The critical
behavior of viscoelastic quantities near the sol/gel transition
point is shown to be significantly affected by superbridges.

It is established that telechelic polymers self-assemble in
dilute solutions to form flowerlike micelles. Pham et al.®’
indicated that the solution of flowerlike micelles resembles a
colloidal dispersion of adhesive hard spheres with regard to
the concentration dependence of the shear modulus. Re-
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cently, Meng and Russel'* showed that the colloidal theory
describing the nonequilibrium structure of dispersions under
shear explains the high-frequency plateau modulus of telech-
elic poly(ethylene oxide) (PEO). In this paper, we attempt to
theoretically describe the linear rheology of telechelic poly-
mers in the absence of intramolecular associations. It can be
shown that experimentally observed dynamic shear moduli
that are characterized by a high-frequency plateau modulus
and the relaxation time (and the zero-shear viscosity) are
well described in terms of this theoretical treatment. This
indicates that the transient network theory is a useful tool for
the study of not only rheological properties but also thermo-
dynamic properties of transient gels when it is extended so
that both the correlation among polymers and the global
structure of the network are taken into consideration.

This paper is organized as follows. In Sec. II, we will
review the assumptions and definitions employed in I; they
are also utilized in this paper. In Sec. III, linear viscoelastici-
ties of the transient gel will be studied within the framework
of the Scanlan-Case criterion for active chains. As the first
step, only primary bridges are taken into consideration in this
section. The effects of superbridges will be discussed in Sec.
IV. In Sec. V, linear rheology (including the effects of super-
bridges) will be studied. Section VI will be devoted to a
summary of the study.

Il. ASSUMPTIONS AND DEFINITIONS
OF FUNDAMENTAL QUANTITIES

We consider a solution of n linear polymers (or primary
chains) per unit volume. Functional groups capable of form-
ing junctions through noncovalent bonding are locally em-
bedded in both ends of the primary chain. The common as-
sumptions employed in this paper and in I are as follows: (1)
any number of functional groups are allowed to be bound
together to form one junction; (2) association/dissociation
reactions among functional groups occur in a stepwise fash-
ion; (3) primary chains are Gaussian chains; (4) the Rouse
relaxation time of the primary chain is much shorter than the
characteristic time of the macroscopic deformation applied to
the system and the lifetime of the association among func-
tional groups; (5) the looped chain formed by a single pri-
mary chain is absent (some discussion regarding the validity
of this assumption is provided in Sec. V B); and (6) the
molecular weight M of the primary chain is much smaller
than the entanglement molecular weight, and hence the ef-
fects of the topological interactions among chains are ig-
nored.

The terminology used in this paper (and I) are as fol-
lows: (1) the number of functional groups forming a junction
(or aggregation number), say, k, is referred to as the junction
multiplicity; (2) the junction with multiplicity k is called the
k-junction; (3) the primary chain whose head belongs to a
k-junction and whose tail is incorporated into a k’-junction is
referred to as the (k,k’)-chain (for convenience, we imagi-
narily mark one end of each chain to identify the head and
tail); (4) the primary chain whose one end, irrespective of
whether it is the head or tail, is incorporated into the
k-junction is called the k-chain.

J. Chem. Phys. 127, 144905 (2007)

As in I, we define F; ;/(r,7)dr as the number of (k,k’)-
chains at time ¢ per unit volume with the head-to-tail vector
r~r+dr. The total number of (k,k’)-chains (per unit vol-
ume) is then given by v ;(¢)=[drF; ;/(r,t) =y (1), where
the two subscripts of vy ;/(#) are interchangeable because the
middle chain is homogeneous. It should be noted that the
total number of primary chains n=%;- /-, (r) does not
depend on time. The number of k-chains is given by x,(7)
=31 =V (?), and then the number of k-junctions is ex-
pressed as w(1)=2x,(t)/k. The number of functional groups
belonging to k-junctions is kuw(r)=2x,(f) while the total
number of functional groups is 2n, so that the probability
that an arbitrary chosen functional group is in a k-junction
can be expressed as ¢(t)=x;(t)/n. The above equation for
the number conservation is equivalent to the normalization
condition of g, i.e., 2;=q;(f)=1. The extent of association,
or the probability for a functional group to be associated with
other groups, can be expressed as a(f)=2;=,q;(1)=1-¢q,(1).

lll. THEORY ON THE BASIS OF THE SCANLAN-CASE
CRITERION FOR ACTIVE CHAINS

A. Global structure of the network

Here, based on the literature,lg_21 we briefly review the
manner of incorporating the global structure of the network.
Under certain thermodynamic conditions, an infinite network
(gel) is formed. In the postgel regime, the extent of associa-
tion a’ with regard to the functional groups in the sol part is
different from that o’ in the gel part.”"** Note that a() de-
fined in the previous section is the average extent of associa-
tion for all functional groups in the system, i.e., it is ex-
pressed as

a(t) = a' (Dws(t) + " (Hwe(1), (1)

where wg(r) is the fraction of the sol part and wg(r)=1

—wq(f) is that of the gel. The sol fraction can be written
19221
as

wsl(t) = 2 Qk(t)g(k)’ (2)

k=1

where { is the probability that a randomly chosen unreacted
group belongs to the sol part. In the pregel regime, we have
only {,=1. In the postgel regime, on the other hand, we have
{o less than 1. Thus, ¢ is useful as an indicator of gelation. A
primary chain belongs to the sol when both its ends are as-
sociated with the sol part, so that the sol fraction can also be
expressed as

_1\2
ws() = (2 a0 ‘) . (3)
=1

Therefore, {; is a root of the following equation:

x=u(x), (4)
where

u(x) = 2 gDt (5)

k=1

If Eq. (4) has more than one root, we must employ the small-

est Ol’le.19
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elastically effective chain

path to the gel network :
!

dangling end -—{ =

(i=4, k=6);junction (i=3, kz4j—junction

FIG. 1. A classification of the junction by the multiplicity k and the path
connectivity i to the gel network. For example, a left-hand junction is
formed by six functional groups but it is connected with the gel network
only through four paths (represented by arrows); the other two paths are
connected with dangling ends (indicated by dotted circles). A primary chain
whose both ends are connected to junctions with i =3 is elastically effective.

Now we consider the connectivity of a functional group
to the gel network according to the theoretical treatment by
Pearson and Graessley.20 Let u;,; be the number of junctions
with the multiplicity k that is connected to the gel network
through i paths (0<i<k). Such a junction is called the
(i,k)-junction in the following. According to the multinomial
theorem, it takes the form'>?°

piat) = )45 (1 = )", (6)

v(k i)!
Then, the number of paths originating from the
(i,k)-junction is expressed as x;.(t)=(i/2)u;(t). Here we
employ the criterion of Scanlan™ and Case'” to decide
whether the primary chain is active. They suggested that the
primary chain whose both ends are connected to junctions
with a path connectivity greater than or equal to 3 is elasti-
cally effective (see Fig. 1). According to this criterion, the
number of active chains whose one end belongs to
k-junctions is

k
X(1) = 2 xix0)

=3
=x O =1 =& = (k-1 -29]. (7)

Note that X‘fff(t) XEff(t):O as it should be. The total number
of active chains is then obtained as'®

() = 2 X0 = n(1= £o)*(1 - u' (&), (8)

k=3

where we have used the relation {y=u({,). The number of
active (k,k')-chains [i.e., the chains whose one end is con-
nected to the (i,k)-junction with i=3 and whose other end
belongs to the (i’,k’)-junction with i’ =3] can be defined as

ff ff
. Xe Oxe(©

Ve (1) = Ay 9)

The following relation:

> L0 =" (10)

kk'=3

holds as it should be.

J. Chem. Phys. 127, 144905 (2007)

B. Time development of chains

The number of (k,k’)-chains with the head-to-tail vector
r evolves according to the following equation:

OF i o (r,1) .
T + V . (rk’kr(r,t)Fk’k’(r’t))
= Wep(r)  (for k' =3), (1

where I} ;/(r,7) is the rate of deformation of r. When a mac-
roscopic deformation is applied to the gel, only active chains
deform. Some (k,k')-chains are active but the other
(k,k")-chains are not because each junction has a different
path connectivity even if it has the same multiplicity. To take
this into account, we put

P (t) = P (DR, (12)

where &(7) is the rate of deformation tensor applied to the
gel, and

L0

Vk,k’(t)

Ppy(t) = (13)

is the probability for a (k,k’)-chain to be active. Equation
(12) states that active chains deform affinely to the macro-
scopic deformation on average. Equation (11) holds for
k,k' =3 because both the 1 junction and 2 junction cannot
have a path connectivity greater than or equal to 3 and chains
connected to such junctions do not deform. These elastically
ineffective primary chains are virtually in an equilibrium
state; i.e., the probability distribution function that these
chains take the head-to-tail vector r is expressed as

)3/2 ( 3|r|2) (14)
2 xp 2Na*)’

where N and a are the number and the length of the repeat
unit forming a primary chain, respectively. For example, the
distribution function for the dangling chains is written as
Fi1(r,0)=v1()fo(r). The right-hand side of Eq. (11) repre-
sents the net increase in the number of (k,k’)-chains with the
head-to-tail vector r per unit time due to association/
dissociation reactions between end groups on the
(k,k")-chain and groups on the other chains. As we have
shown in I, it takes the following form:

Wi (0,0) = = [Bi(r) + B (r) + B(1) + By (1) + P (1)
+ Py(D]F o (r,0) + [pry (1) vy 4o (1)
+ P (O v (D 1fo(r) + By () Fryy 1o (r,7)
+ B 1 (OF 1 (0,0) + Py (8) Fyoy 4o (1)
+ Py _((F oy (r,1)  (for k,k" =3), (15)

folr) = (277Na

where B;(r) is the probability that a functional group is dis-
sociated from the k-junction per unit time and p(¢) is the
probability for an unreacted group to be connected with the
k-junction per unit time. As in I, we assume that the disso-
ciation rate does not depend on the junction multiplicity or
on the end-to-end length of the primary chain that is con-
nected to the junction [ B(r)=B]. The connection rate p; for
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(1)
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3¢ . ] ]
1 e saturating junction model

A fixed multiplicity model

FIG. 2. (i) The reduced sol/gel transition concentration
for the saturating junction model (circles) plotted

against the maximum multiplicity s,, and for the fixed
multiplicity model (triangles) plotted against the multi-

plicity s. (ii) The sol/gel transition curves drawn in the

temperature-volume fraction plane for the saturating
junction model with A\g=1 and N=100. The maximum
multiplicity varies from curve to curve. See also Fig. 9.

Axlrrereeereeess
0 ; A .
5 10 15 20
Sy O S

the connection of the functional group to a k-junction is as-
sumed to be proportional to the volume fraction of
k-junctions, and we put p;(1)=BN\iq,(t)h,, where \
=exp(e/kgT) is the association constant (e is the binding
energy for the attraction of functional groups), ¥=2nv is the
volume fraction of functional groups (v is the effective vol-
ume of a segment), and &, is a factor depending on k that
provides a limit for the junction multiplicity. In the follow-
ing, we use c =\¢y=2\¢/N as the reduced polymer concen-
tration (¢=Nnv, is the volume fraction of primary chains).
Under these assumptions, Bi(f) and P.(r) in Eq. (15) are
given by B,=B(k—1) and P(t)=Bkcq,(t)h, respectively.

The kinetic equation for the (k,k’)-chains has the same
form as the one derived in I, i.e.,

de’k/(l’)
dt

= Wk’kr(t) + Wk’!k(t) (fOr k,k, = 1), (16)

where

Wi (1) == Bk(1 + cq (D)) vy 1o (1) + Bk 4 (1)
+ (k= 1)Beq () - vy 4 (1)

+ Beh iy () vy (1) (for k=2), (17a)
wi () = ﬂ(E v (1) + Vz,k'(l‘))
=2
—/3C<E hig (1) +h1Q1(t)>V1,k'(f)- (17b)
=1

Note that Eq. (11) reduces to Eq. (16) by integration with
respect to r (for k,k’=3). The kinetic equation for the
k-chains also takes the same form as that derived in I. That
is,

dg,(1)
dt

=v () (fork=1), (18)

where

Ux(8) = = Bk(qi(1) = g1 (1)) + Bek(hy_ gy (2)

— hqi())q, (1) (for k=2), (19a)

5,0 = ﬂ(E at) + 612(I)>

=2

- ﬂc(E hg(1) + h1q1<r>>q1(r). (19b)

=1

Once ¢,(1) is derived by solving Eq. (18), we can obtain the
number of (k,k')-chains from the relation ;. /(7)
=nq(t)q, (1) and ¢, from Eq. (4). Subsequently, vif,i,(t) and
P ()= sz,t,(t)/ v, (1) can be obtained. By substituting the
expression for P;;/(t) into Eq. (11) and solving the equa-
tions, Fy ;s can be derived.

We study two special models of junctions by putting a
limitation on the multiplicity, i.e., the saturating junction
model and the fixed multiplicity model.””"®" In the saturat-
ing junction model, we allow junctions to take only a limited
range of multiplicity k=1,2,...,s,,. This condition is real-
ized by putting ;=1 for 1 <k=<s,,—1 and h;=0 for k=s,,.
In the case that s,,=, junctions can take any value of the
multiplicity without limitation. In the fixed multiplicity
model, all junctions take only the same multiplicity s (except
for k=1). This situation is approximately attained by intro-
ducing a small quantity § (<1) and by assuming /= ¢ for
1<k<s-1, h,_;=58"2, and h=0 for k>s—1."" In most
cases, 0 is set to 0.01.

C. Equilibrium properties

We can obtain ¢, in equilibrium by solving the equation
dqi/dr=0,=0. Tt turns out to be (see I)

4= nc""q1 (20)
where ykzl_lﬁllh, for k=2 and y;=1. The fraction of unre-
acted groups ¢, is determined from the normalization condi-
tion y(z)g;=1, where ¥(z)=34=,%z"" and z=cq,. The
function defined by Eq. (5) can be expressed as u(x)
=%(zx)/ ¥(z) in the equilibrium state, and hence ¢ is a solu-
tion of the following equation for a given z (or c):

x:%. (21)

In the case that the junction can take any value of mul-
tiplicity without limitation, for example, z is smaller than 1
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(see I), and hence, y(z)=1/(1-z) (we can put ;=1 for all k
in this case). Therefore, ¢ is obtained as the smallest root of
the equation x=(1-z)/(1-xz), i.e.,

; 1 (0sz<2)
Tz <=,

where z*=1/2. Note that 7" is interpreted as the critical value

of the parameter z for the sol/gel transition. The number of
elastically effective chains given by Eq. (8) is then analyti-
cally expressed as a function of z,

off 0 (0=<z<Z)

| nQz=-2)1z)?

(22)

(z*<zi 1). @3)

We can also express these quantities as a function of ¢ by the
use of the relation z=c/(1+c), that is,

)1 (c<ch ”
bo= e (¢>ch), (24)
and
ar )0 (c<c
v {n((c —-cNle) (e>¢h), (25)

where ¢"=1 is a critical reduced concentration for gelation
[see also Fig. 2(i)]. Near the sol/gel transition point, the num-
ber of elastically effective chains increases as the cube of the
concentration deviation,”” ie., *T=A3 where A=(c
—c")/c". In the high concentration limit, on the other hand,
all primary chains become elastically effective, i.e., 1*T—n
for ¢ — 0.

In general, the sol/gel transition point is obtained as the
point at which {, becomes smaller than 1. This is equivalent
to the point at which the weight-average molecular weight of
the cluster diverges. For polycondensation by multiple reac-
tion, Fukui and Yamabe®® have shown that this condition (an
appearance of a macroscopic cluster) is given by

(fu=D(m, -1 =1, (26)

where f,, (=2 for the present model) is the weight-average
functionality of the primary chain, and w,, is the weight-
average multiplicity of the junctions given by

ot (-2 = (k= DE20 = )1 =& = = D& (1= 4]

J. Chem. Phys. 127, 144905 (2007)

My = Equ:1+w

2 E @)

A boundary curve separating the sol region and gel region in
the temperature-concentration plane can be drawn by the use
of the equation 2\(T")¢"/N=c", where T" and ¢ are the
critical temperature and the critical volume fraction of pri-
mary chains, respectively, and ¢” is obtained according to the
procedure described above. The binding free energy is com-
prised of the energy part €, and the entropy part Sy, so that
the association constant is rewritten as N(T)=\q exp(Ty/T)
with N\g=exp(—Sy/kp) and Ty= €y/kg. Thus, the critical tem-
perature is expressed as a function of the critical volume
fraction as

T" = Ty/log(Nc 12N o). (28)

Figure 2(ii) shows the sol/gel boundary lines derived from
Eq. (28) for the saturating junction model.

D. Dynamic-mechanical and viscoelastic properties

We now apply a small oscillatory shear deformation with
an amplitude € to the present network. An xy component of
the rate of deformation tensor is represented by &, (t)
=€w cos wt while the other components are 0 (w is the fre-
quency of the oscillation). Let us expand F ;. (r,t) with re-
spect to the powers of € up to the first order,

Foo(r,0) = FO (1) + &) (x,0). (29)

Each order term takes the form (see I)

FO

wx (1) = v fo(r), (30a)

3xy
1 .
F,((,,z/(r,t) = (g,;k/(w)sm ot + g;;k,(w)cos wt)ﬁfo(r).

(30b)

The number of (k,k")-chains does not depend on time as far
as the small shear deformation is concerned,Bf25 so that
V(1) and g (7) can be represented by their equilibrium val-
ues v and g, respectively. Then, the probability for a
(k,k")-chain to be elastically effective is given by its equi-
librium value Pk,k,=1/;f£,/ Vi With

V, =V,
ke~ TR -2y ({2)/2)

The in-phase, g,;k,(cu), and out-of-phase, g;("k,(w), amplitudes
of F ]((1]2, are directly related with the storage and loss moduli
of (k,k’)-chains through the relations G,l k,(w):kBTg,i )
and Gl’k,(w)=kBTgZ’k,(w). Because the middle chain is ho-
mogeneous, their two subscripts are exchangeable, i.e.,
g,ii’?:g];([,). Note that g,;(l")=g,:’(£')=0 for k=1 because the
2-chains and 1-chains are effectively in the equilibrium state.

(31

Substituting Eq. (29) with Eq. (30) into Eq. (11), we obtain a
set of equations for g;c(]:,) as follows:

! " n "
ki = (- Qk,k'gk,k/ + Bk+lgk+1,k' + Bk/+lgk,kf+1

" ” eff
+ Pk—lgk—l,k' + Pk,_lgk,k'—l)/w-l- Vk,k” (323)
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superbridge

FIG. 3. Schematic representations of a superbridge (upper) and a primary
bridge (lower). Bridges are surrounded by dotted curves.

n ! ! ! li
8k = (Qk,k’gk,k/ - Bk+1gk+1,k/ - Bk’+1gk,k/+1 - Pk—lgk_l,k'

- Pk,_lg,;k,_l)/w (for k,k' = 3), (32b)
where B =p(k-1), Pk Bkeqihy, QO (t)= Bk(1+cq hy)
+Bk' (1+cqhy), and ka' is given by Eq. (31). It should be
emphasized here that the last term in the right-hand side of
Eq. (32a) is V;f,i, instead of v ;s (see I as a reference). This is
a consequence of the assumption represented by Eq. (12).
We can obtain the total moduli within the framework of
the Scanlan- Case criterion for elastically effective chains by

4 .
summing Gkk,(w) over k,k' =3, i.e.,

G'Nw)=kyT>, 2 g/ (w (33)

k=3 p1=3

They are well described in terms of the Maxwell model with
a single relaxation time (not shown here). In the high-
frequency limit, Eq. (32a) reduces to g,'(’k,(w—> )= Vilj]t(,.
Therefore, the plateau modulus, defined by G,,=G'(w— ),

can be expressed as

2y (£o2) ) (34)

$469)

The reduced plateau modulus G../(nkgT) coincides with the
fraction of active chains derived by Tanaka and Ishida for
telechelic polymers.19 As they have shown, it agrees well
with experimental data for aqueous solution of hydrophobi-
cally modified ethylene oxide-urethane copolymers (called
HEUR) reported by Annable et al. [this also validates the
assumption represented by Eq. (12)].> However, the relax-
ation time 7 of the gel, determined from the peak position of
G"(w), does not agree well with experimental data, as in the
case of I, because it depends on ¢ only weakly. This discrep-
ancy can be ascribed to the absence of superbridges28 in
elastically effective chains. A superbridge is a linear cluster
of primary chains whose backbone includes several junctions
with the path connectivity i=2 to the gel network. Both ends
of a superbridge are connected to junctions with the path
connectivity i=3. Figure 3 shows an example of the super-
bridge whose backbone is formed by four primary chains. In
the Scanlan-Case criterion, superbridges are not regarded as
the elastically effective chains; only primary bridges, or ac-
tive primary chains (see Fig. 3), are assumed to be respon-
sible for the elasticity of the network. If we consider super-
bridges, not only does the number of active chains become
larger but the relaxation time of the network also becomes
shorter because their lifetime is shorter than that of the pri-

Goo = ¥k T = nkgT(1 - 50)2<1 -

J. Chem. Phys. 127, 144905 (2007)

end primary cham

internal primélry chain

FIG. 4. Schematic of a superbridge (only paths to the network are drawn). It
is comprised of two end primary chains and several internal primary chains.
The number of end primary chains is m(i=3,i’ =2), whereas the number of
internal primary chains is m(i=2,i'=2).

mary bridge due to breakable nodes within the backbone. We
will discuss the effects of superbridges on G'(w) and G"(w)
in the next section.

IV. EFFECTS OF SUPERBRIDGES
A. Number of superbridges

Let m(i,i’) be the number of primary chains (per unit
volume) that have both their ends connected to two junctions
such that the path connectivity linking one junction to the gel
is i and that linking the other junction and the gel is i’. The
number of primary bridges is then represented as”

—”yg;ﬂ)) =L (39)

The total number of primary chains incorporated into the gel
through both ends is

m(i=3,i'=3)=n(l - g0)2(1 -

m(i=2,i' =2)=2 2 xy=n(l-4)* =", (36)

k=2 i=2

and the number of primary chains comprising the backbones
of superbridges is

)22’)/ (ZOZ) off

m(i=2,i'=2)= 2 xou=n(l-{ 7(2) = Vpseud-

k=2

(37)
The relation 7= §{+ 15,4 holds as it should be. Near the
sol/gel transition concentration [or A=(c—c")/c"<1], these
quantities increase as w54~ 7T ~A? (and 1§.~A%) be-
cause 1—{, is proportional to A while zy'({yz)/ ¥(z) is pro-
portional to c. A single superbridge is comprised of two end
primary chains and several internal primary chains (see Fig.
4), and therefore the relation vgfsfeud=m(i =2,i"=2)+m(i
=3,i’=2) must be satisfied, where

ff\2

. . Xok X2k’ (Ve]g 0

m(z:2,z’:2)—k22 E A-eff’-eff ~eft = ;g (38)
= k’>2

is the number of internal primary chains and m(i=3,i'=2)
is the number of end primary chains. In Eq. (38), x,4/ 7" is
the probability for a chain in the network to be connected
with the (i=2,k)-junction, and hence T*(x,,/7*")
X(Xopr !V 77 is the number of primary chains whose one end
is connected with the (i=2,k)-junction while the other end
belongs to the (i’=2,k’)-junction. The number of super-
bridges is half of the number of end primary chains of su-
perbridges, i.e.,
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FIG. 5. The total number of elastically effective chains (solid line), the
number of primary bridges or elastically effective chains defined on the
basis of the Scanlan-Case criterion (dotted line), the number of superbridges
(broken line), the number of primary chains per superbridge (dash-dotted
line), and the ratio of the number of superbridges to that of primary bridges
(dash-double dotted line) plotted against the relative concentration deviation
A=(c-c")/c" for the saturating junction model with the maximum multi-
plicity fixed at s,,=15.

PP = (i = 3,0 =2)
Lo eff . :
= 3 (Vgewa —m(i=2,i" =2))
ff  off
— VEC i Vegseud (39)
- zljeff

Therefore, the total number of elastically effective chains
turns out to be

eff _ _eff super
Viotal = Vsc T V

a1 - 50)2<1 - ”’(50"'))(1 N
N2)

2y (£o2)
29¥(z)

Figure 5 shows 1 | together with the number vy of primary

bridges, number v*'P*" of superbridges, and relative number
of superbridges v*'P*"/ v‘;tg compared to primary bridges as a
function of A for the saturating junction model (s,,=15). The
number of superbridges increases with the concentration near
the sol/gel transition concentration (v*"P'~ A3), but it de-
creases at high concentrations because the number of dan-
gling ends decreases. Thus, a peak appears in v*'P" at modest
concentrations. It should be emphasized that »*"**"/ ¢ in-
creases with decreasing A and finally reaches 0.5, although
both 1™ and 5. become close to 0 in this limit. This
indicates that the effects of superbridges cannot be ignored
as compared with those of primary bridges especially in the
vicinity of the sol/gel transition point. Figure 5 also shows
the number of primary chains forming a superbridge defined

by

) . (40)

eff

Veff
— Bseud ( 4 1 )

Sp = . .
pouper

With a decrease in A, many primary chains become incorpo-
rated into superbridges as s,~1/A (for A<1), indicating
that the superbridge becomes longer along the backbone.
With increasing concentration, on the other hand, s, ap-
proaches 2 because m(i=2,i' =2) becomes close to 0. Sum-
marizing, in the vicinity of the sol/gel transition concentra-
tion, (i) the number of superbridges is comparable to that of
primary bridges, although both are few in number, and (ii)
the superbridge is infinitely long.

J. Chem. Phys. 127, 144905 (2007)

FIG. 6. An example of the superbridge whose backbone is comprised of
s,(=4) primary chains.

B. Breakage rate of superbridge

Let us here focus on the primary chain whose one end is
connected to the junction say, A with the path connectivity
i, =3 while the other end belongs to the junction A’ with the
path connectivity i,, =2. Such a primary chain is elastically
effective.’® In the case that i A =3, the chain is a primary
bridge, and therefore the dissociation rate of the end group
from the junction A’ is . In the case that i,,=2, the chain is
the end primary chain of the superbridge (see Fig. 6), and we
assume that the breakage rate of internal chains from the
junctions B,B’,C,..., is reflected in the rate at which this
end primary chain is dissociated from the junction A’. Then,
we can put it as the sum of its own dissociation rate 8 and
the dissociation rate 2(s,—1)8 of 2(s,—1) functional groups
B,B’,..., on the internal primary chains. As a result, the
dissociation rate of A’ on average can be expressed as S
+2(s,—1)pB= B, where p is the probability for i,/ to be 2

and is given by p=m(i=3,i'=2)/m(i=3,i'=3)
+m(i>3,i’=2))=vg£iud/(17"’ff+ V;?;ud). We replace S in Eq.

(32) with B, in the following, in order to incorporate the
short lifetime of superbridges into account. It should be
noted that Eq. (20) still holds after this replacement, and
therefore the discussions given in Secs. III C and IV A of
this paper and Sec. IV in I remain valid. When A is small,
B is inversely proportional to A because s,~ 1/A while
p~1 for A<1. Therefore, we see that the relaxation time 7
of the gel (approximately given as the reciprocal of ) is
proportional to A near the sol/gel transition concentration.

Let ﬁ;‘,’,t(a,l be the probability for a (k,k’)-chain to be a
primary bridge or an end primary chain of a superbridge. It
can be expressed as

P = e (42)

(43)

off eff 351 _epp  off
(), = Vool | Xk Xk X Xkr
Viotal k k" =

eff —eff ~eff _ eff
2 VSC 14 14 VSC

is the number of (k,k’)-chains that is the primary bridge or
the end primary chain of the superbridge. [¥{" ==, xix
=x(1-Z)(1- ]5'1) is the number of paths (=2) originating
from the k(=2)-junction, and hence x;"/#* is the probabil-
ity that a k-junction satisfies the condition i=2. Similarly,
xS/ 18 is the probability for a k-junction to fulfill the con-
dition i = 3. Equation (43) is expressed in a symmetric form.]

Equation (43) satisfies the following relation:
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FIG. 7. (i) The reduced dynamic shear moduli for the
saturating junction model as a function of the fre-

quency. The relative concentration deviation A=(c

() ’ - (11) 1
-1
107} 10
B~ & 107
& 107 3
= \”‘8 10°
O 10»3.
© 104
.4_."'
10 1075
105 106E
102
(ii1) (iv)

—c")/c¢” from the sol/gel transition concentration varies
from curve to curve, while the maximum multiplicity of
the junction is fixed at s,,=20. (ii) The reduced plateau

1y / (nksT/p)

modulus, (iii) relaxation time, and (iv) reduced zero-
shear viscosity plotted against the relative concentration
deviation for several values of the maximum multiplic-
ity (increasing from bottom to top).

10736
102 10! 1 10 10?
A
ff ff
E E (Vteotal)k,k’ = Vteotal (44)
k=2 /=2

as it should be.>' If a macroscopic deformation is applied to
the gel, not only primary bridges but also superbridges de-
form accordingly. According to Eq. (12), we assume that the
rate of deformation vector of the (k,k')-chain is given by

i (1) = PSR (45)

Substltutmg Eq. (45) into Eq. (11), we obtam a set of equa-
tions for g, k’,) as given by Eq. (32) with vk o replaced by
(v Dixr- Therefore, in the high frequency limit, Spr Te-

duces to (£ ), .. The total (observable) modulus is given
by

G'Nw)=kyT2 2 g0 (w), (46)

k=2 pr=9

and then the plateau modulus is found to be G.=G'(w

_ eff
- OO) - kBTVtotal

V. RESULTS AND DISCUSSIONS
A. Saturating junction model

Figure 7(i) shows the dynamic shear moduli for the satu-
rating junction model calculated from Eq. (46) (the summa-
tion is taken over 2=<k, k' <s,,). The relative concentration
deviation varies from curve to curve. They are well described
in terms of the Maxwell model with a single relaxation time.
Near the sol/gel transition concentration (A <<1), the plateau
modulus and the relaxation time increase as G~ A’ [see
Fig. 7(ii)] and 7~ A [Fig. 7(iii)], respectively. As a result, the
zero shear viscosity increases as 7y~ G, 7~ A* [Fig. 7(iv)].
It is worth noting that these powers stem from the mean-field
treatment.*> For example, we can explain 7~ A as follows.

Let £ be the radius of gyration of the superbridge. Assuming
that the superbridge obeys the Gaussian statistics, we have a
following power law: §~sb/2 for 5,> 1. Because ¢ corre-
sponds to the network mesh size, it also obeys a scaling law
of the form £~A7" for A<1 with v=1/2. Comparing the
two expressions, we have the relation s,~ 1/A. As a result,
the mean lifetime of bridges (primary bridges and super-
bridges) that corresponds to the relaxation time of the net-
work is approximately estimated to be 7~ 1/[B+2(s,
—1)pB]~ A/ B. Figure 8 shows the dynamic shear moduli as
a function of the maximum multiplicity s,,. The relaxation
time increases with s,, because the number of superbridges
decreases as s,, increases.

The reduced plateau modulus explicitly depends only on
the reduced polymer concentration and the maximum multi-
plicity of the junction. Therefore, it is written as

G.,
nkgT

_f] (C Sm) (47)

where f; is a dimensionless function of ¢ and s,,. Similarly,
the relaxation time and the reduced zero-shear viscosity can
be expressed as

ﬁT=f2(C,Sm) (48)
and

B

nkBT_f3(c’Sm)a (49)

respectively (f, and f; are dimensionless functions of ¢ and
s,,)- In order to investigate how the dynamic shear moduli
depend on the temperature and the polymer volume fraction,
let us rewrite Eqs. (47)—(49) as

U()G:,o ¢ T
— =—— TITy,N,),s,,), 50
kT NTOf 1(0( 0 ¢) Sm) (50)
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Bor= "V fy(c(TITy.N. 8).5,). (51)

voboo _ ¢

T
— TV (e(TIT,N, h),5,) s
kT

NT, (52)

respectively. We have put W=e for simplicity in the deriva-
tion of Egs. (51) and (52). In this case, the dissociation rate
at temperature 7 is written as

(1)

B: (l)oe_e/kBT:B()el_TO/T, (53)
where 3, is the dissociation rate at 7=T|. Recall that the
reduced concentration depends on the temperature, molecu-
lar weight, and the polymer volume fraction as
c(TITy,N, p)=2¢pNoe™T/N. Thus, for example, the zero-
shear viscosity [Eq. (52)] depends on the temperature
through B (xe'~70T), ¢, and a prefactor. The unitless plateau
modulus [Eq. (50)], relaxation time [Eq. (51)], and zero-

FIG. 9. (i) The plateau modulus, (ii) relaxation time,
and (iii) zero-shear viscosity plotted against the poly-
mer volume fraction for several values of the reduced

temperature with s,,=20, N=100, and \y=1. Marked
points A, B, C, and D on the horizontal axis of (i)—(iii)
indicate the critical volume fraction ¢" for each tem-

perature corresponding to the points in Fig. 2(ii). (iv)
Arrhenius plots of the relaxation time and the zero-
shear viscosity with ¢=0.05, s,=20, N=100, and
No=1.

10 15
To/T

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



144905-10  Tsutomu Indei

J. Chem. Phys. 127, 144905 (2007)

FIG. 10. Comparison between the theoretically ob-
tained plateau modulus (top), relaxation time (middle),
and zero-shear viscosity (bottom) for the saturating
junction model (lines) and experimental data obtained
for (i) telechelic PEO with narrow molecular weight
distribution and fully end capped with C,4 alkanes [
M,,=20 kg/mol for HDU-20 (Ref. 14) and M,
=35 kg/mol for HDU-35 (Ref. 7)] and (ii) HEUR end
capped with the same alkanes [M,,=20 kg/mol for
hd-20 and M,,=33.1 kg/mol for hd-35 (Ref. 2)]. The
values of molecular parameters s,,, 3, and Av, used to

draw theoretical curves are listed in Table 1.
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shear viscosity are shown in Figs. 9(1)-9(iii) as a function of
the polymer volume fraction for several values of the re-
duced temperature 7/T7,. The volume fraction ¢ varies
across the sol/gel transition line drawn in Fig. 2(ii) for each
temperature. When ¢ is small, G, and 7, depend on ¢
through the reduced concentration ¢ and a prefactor, while
they are approximately proportional to ¢ when ¢ (and hence
c) is large because f, and f; depend only weakly on ¢ (see
Fig. 7) in this case. By contrast, 7 depends on ¢ only through
c. As shown in Fig. 9(iv), the zero-shear viscosity and the
relaxation time approximately show the Arrhenius law tem-
perature dependences. At higher temperature, we can see a
slight deviation from the Arrhenius law. This deviation stems
from the fact that 7 and 7, depend on T not only through S
[see Eq. (53)] but also through ¢ (and a prefactor in the case
of 7,). At lower temperature (i.e., larger c), on the other
hand, f, and f; depend only weakly on ¢, and therefore 7and
7o show approximately the Arrhenius law. We can guess
from Egs. (50) and (51) that the dynamic shear moduli at
temperature 7 can be superimposed to the curve at the refer-
ence temperature 7, if they are horizontally and vertically
shifted by a factor of a; and by, respectively, where

_ [ T (L l>:| fZ(C(T/TO7N’ ¢)’S1n
ar=ep o Tt - T . Joe(Tref/ To, N, @), 5,) ,
(54a)

T;ef . fl(C(Tref/TOaN9 ¢)asm)
T fl(C(T/TO’Na d))’sm) .
In particular, for large ¢ or small 7, f; and f, are almost

constant and independent of c¢; hence, Eq. (54) is approxi-
mately written as

bT = (54b)

1 1
ar=-exp|-T, ic—; , (55a)
Tior
by = Te*. (55b)

It has been revealed by Annable et al. that the shift factor
given by Eq. (55) produces the master curve successfully.2
In Fig. 10(i), the theoretically obtained dynamic shear
moduli (i.e., plateau modulus, relaxation time, and zero-
shear viscosity) for the saturating junction model are com-
pared with the experimental data for aqueous solutions of
telechelic PEO of 20 kg/mol (Ref. 14) and 35 kg/mol (Ref.
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TABLE I. Values of molecular parameters used in Fig. 10.

Polymer S B (1/s) \v, (nm?)
HDU-20 20 60 1000
HDU-35 20 60 3200
hd-20 20 2.3 800
hd-35 20 2.3 2300

7) with narrow molecular weight distribution and fully end
capped with C;¢ alkanes. We call these polymers HDU-
20(35) according to Ref. 14. The reduced concentration ¢
was converted into the polymer concentration in weight per-
centage c,, through the relation ¢=(2000N,/M)Avc,, (N, is
Avogadro’s number). We have three molecular parameters
for a given molecular weight: s,,, vy, and B. (Note that B is
not required to calculate G...) The values of these parameters
used to draw theoretical curves are listed in Table I. We find
better agreements between theory and experiment than in the
case that the short lifetime of superbridges is not taken into
consideration."” The value of A\v, increases with the molecu-
lar weight. This indicates that the effective volume v, of a
functional group (or a repeat unit of the chain®) increases
with the chain length. In Fig. 10(ii), we attempt to fit theo-
retical curves to experimental data reported by Annable et
al.* for HEUR of the similar molecular weight (but with
broader molecular weight distribution) and end capped with
C,¢ alkanes. They are called hd-20(35) after Ref. 14. The
parameter values adopted to fit experimental data are also
listed in Table I. We still find a good agreement between
theory and experiment in spite of a broader molecular weight
distribution of hd polymers. The difference between the val-
ues of \v, for HDU and hd for each (averaged) molecular
weight might stem from a difference in the polydispersity of
the PEO backbone. The ratio between the values of Av, for

) (i1)

J. Chem. Phys. 127, 144905 (2007)

HDU-20 and HDU-35 (3.2) is close to that for hd-20 and
hd-35 (2.9). A discrepancy between the values of 8 for HDU
and hd might stem from the difference in the coupling agents
between the alkanes and the PEO backbone, as suggested in
Refs. 7 and 14.

B. Fixed multiplicity model

Figure 11 shows the dynamic shear moduli for the fixed
multiplicity model together with the plateau modulus, relax-
ation time, and zero-shear viscosity plotted against the rela-
tive concentration deviation. These quantities obey the same
critical behavior as in the saturating junction model, i.e., they
increase as G,,~ A3, 7~ A, and 7,~ A* near the sol/gel tran-
sition concentration.

In Fig. 12, theoretical curves are compared with experi-
mental data for telechelic PEO. The values of parameters
used to draw theoretical curves are listed in Table II. We find
disagreement between theory and experiment with regard to
the relaxation time; the theoretical curves increase more rap-
idly with the concentration as compared to experimental
data, and they become roughly flat above certain concentra-
tions. This is because the fraction of junctions with the path
connectivity i=2 (or, in other words, the fraction of super-
bridges) is small in the case that the junction can possess
only a single multiplicity. This tendency becomes more pro-
nounced with an increase in the multiplicity because the frac-
tion of i=2 junctions is small for a large multiplicity. Thus,
we believe that the multiplicity should not be fixed at a
single value. In real systems, the junctions might be cores of
flowerlike micelles and the aggregation number (i.e., the
number of chains per junction), say, Sgower» 1S almost inde-
pendent of the polymer concentration, as some researchers
have indicated. In this case, the number of bridges and dan-
gling chains originating from a junction (i.e., multiplicity in

G/nkBT

FIG. 11. (i) The reduced dynamic shear moduli for the

fixed multiplicity model as a function of the frequency.

(iii)

The relative concentration deviation varies from curve
to curve, while the multiplicity of the junction is fixed
at s=5. (ii) The reduced plateau modulus, (iii) relax-
ation time, and (iv) reduced zero-shear viscosity plotted

I

against the relative concentration deviation for several
values of the junction multiplicity.
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FIG. 12. Comparison between the theoretically pre-
dicted plateau modulus (top), relaxation time (middle),
and zero-shear viscosity (bottom) for the fixed multi-
plicity model (lines) and experimental data observed for
(i) telechelic PEO with narrow molecular weight distri-
bution and fully end capped with C4 alkanes [M,,
=20 kg/mol for HDU-20 (Ref. 14) and M,
=35 kg/mol for HDU-35 (Ref. 7)] and (ii) HEUR end
capped with the same alkanes [M,,=20 kg/mol for
hd-20 and M,,=33.1 kg/mol for hd-35 (Ref. 2)]. The
values of molecular parameters s, 8, and \v, used to

draw theoretical curves are listed in Table II.
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the present theory) can be less than spo,e- This situation
corresponds to the saturating junction model and not the
fixed multiplicity model. This might be the reason why the
former model can describe the dynamic shear moduli of
telechelic PEO better than the latter model.

VIi. SUMMARY

We developed a theory of transient networks with junc-
tions of limited multiplicity. The global information was in-
corporated into the theory by introducing the elastically ef-
fective chains (active chains) according to the criterion by
Scanlan and Case and by considering the effects of super-
bridges whose backbone is formed by several chains con-
nected in series. Linear viscoelasticities of the network were

TABLE II. Values of molecular parameters used in Fig. 12.

Polymer s B (1/s) vy (nm?)
HDU-20 6 90 900
HDU-35 6 90 3200
hd-20 6 4 700
hd-35 6 4 2300

studied as functions of thermodynamic quantities. Near the
critical concentration for the sol/gel transition, superbridges
are infinitely long along the backbone and the number of
superbridges is comparable to that of primary bridges. Thus,
the mean lifetime of bridges is quite short near the critical
point and so does the relaxation time. It was found that the
relaxation time is proportional to the concentration deviation
A near the sol/gel transition concentration. Because the pla-
teau modulus increases as the cube of A as a result of the
mean-field treatment, the zero-shear viscosity increases as A*
near the gelation point. The dynamic shear moduli that were
obtained as a function of the polymer concentration were
found to agree well with the observed experimental data for
aqueous solutions of telechelic PEO.

We assumed in this theoretical model that intramolecular
associations (looped chains) are absent. Looped chains are
thought to compete with the intermolecular association that
causes bridge chains at a junction due to the limitation on the
multiplicity that the junction can possess. Such competition
might influence the viscoelasticity of the system. This effect
and influences of additives such as surfactants and single
end-capped polymers will be studied in the forthcoming pa-
per.
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