
Title Categories of holomorphic line bundles on higher dimensional
noncommutative complex tori

Author(s) Kajiura, H

Citation JOURNAL OF MATHEMATICAL PHYSICS (2007), 48(5)

Issue Date 2007-05

URL http://hdl.handle.net/2433/50498

Right

Copyright 2007 American Institute of Physics. This article may
be downloaded for personal use only. Any other use requires
prior permission of the author and the American Institute of
Physics.

Type Journal Article

Textversion publisher

Kyoto University



Categories of holomorphic line bundles on higher
dimensional noncommutative complex tori

Hiroshige Kajiuraa�

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

�Received 13 December 2006; accepted 1 March 2007; published online 31 May 2007�

We construct explicitly noncommutative deformations of categories of holomorphic
line bundles over higher dimensional tori. Our basic tools are Heisenberg modules
over noncommutative tori and complex/holomorphic structures on them introduced
by Schwarz �“Theta functions on noncommutative tori,” Lett. Math. Phys. 58,
81–90 �2001��. We obtain differential graded �DG� categories as full subcategories
of curved DG categories of Heisenberg modules over the complex noncommutative
tori. Also, we present the explicit composition formula of morphisms, which, in
fact, depends on the noncommutativity. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2719564�

I. INTRODUCTION

In this paper, we propose a way to construct differential graded �DG� categories of finitely
generated projective modules over higher dimensional noncommutative complex tori. Also, we
give explicit examples of this construction as noncommutative deformations of the DG categories
of holomorphic line bundles over higher dimensional complex tori.

The motivation of the present paper is to construct an explicit example of a noncommutative
deformation of a complex manifold which may be thought of as one of the extended deformations
of a complex manifold proposed by Barannikov-Kontsevich.1 For an n-dimensional complex or a
Calabi-Yau manifold M, the extended deformation is defined by a deformation ��g1 of the
Dolbeault operator �̄ :gk→gk+1 such that ��̄+��2=0, where gª�k=0

n
gk is the graded vector space

given by gk
ª�k=p+q��M ,∧pTM � ∧qT̄M*�. The degree 1 graded piece controlling the extended

deformation consists of g1=��M ,∧2TM� � ��M ,TM � T̄M*� � ��M ,∧2T̄M*�. Namely, it defines a

generalization of the usual complex structure deformation ����M ,TM � T̄M*�. In particular, the
deformation corresponding to ����M ,∧2TM� is called the noncommutative deformation of the
complex manifold M. On the other hand, examples of the models of noncommutative deformation
should be constructed so that we can see how it is noncommutative, as in the case of the defor-
mation quantization of Kontsevich.27 A candidate might be to consider an algebra deformation of

M. Let Vª�k=0
n Vk be a graded vector space given by Vk

ª��M ,∧kT̄M�. This V has a natural
graded commutative product · :Vk � Vl→Vk+l, together with a differential given by the Dolbeault
operator �̄ :Vk→Vk+1. Then, �V , �̄ , · � forms a DG algebra. A deformation of this DG algebraic
structure may describe the noncommutative deformation corresponding to ����M ,∧2TM�. We
can also replace this DG algebra with the DG category of holomorphic vector bundles or coherent
sheaves on M, where the DG algebra V should be included in the DG category as the endomor-
phism algebra of the structure sheaf on M. This algebraic or categorical approach can be thought
of as in the spirit of homological mirror symmetry by Kontsevich.26

Actually, �topological� string theory suggests considering the complexes �g , �̄� and �V , �̄�; the
algebraic structures on their cohomologies are defined in terms of the closed46 and open47 string
amplitudes, respectively, in the B-twisted topological string theory �B model�. The DG category
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above corresponds to physically what is called a D-brane category �see Ref. 29�; the objects are
the D-branes, the morphisms are the open strings between the D-branes in the B model. Thus, the
approach above is physically to construct an open string model instead of the closed string model.

It is natural from the viewpoints of both string theory �see Refs. 13, 15, 28, and 30� and
deformation theory �see Refs. 41 and 10 and references therein� that DG categories constructed as
above should be treated in the category of A� categories, where equivalence between A� catego-
ries should be defined by homotopy equivalence.

Now, let us concentrate on an n-dimensional complex torus �MªT2n , �̄�. It would be easy if
its noncommutative deformation corresponding to ����T2n ,∧2TM� could be described by the DG
algebra �V , �̄ , * �, where *:Vk � Vl→Vk+l is the natural extension of the Moyal product on V0, the
space of functions on T2n, defined by the Poisson bivector ����T2n ,∧2TM�. However, as far as
one identifies homotopy equivalent DG algebras with each other, all these DG algebras turn out to
be equivalent, being independent of the noncommutative parameter �. In fact, one can easily show
that the DG algebra �V , �̄ , * � is formal, i.e., homotopy equivalent to a graded algebra on the
cohomology H�V , �̄�, and, in particular, the product on the cohomology H�V , �̄� is independent of
�. These results follow from the fact that one can take a Hodge-Kodaira decomposition of the
complex �V , �̄� so that the space of harmonic forms is closed with respect to the product *.

Therefore, in the same way as in the complex one-tori �=real two-tori� case,14,33,22,16 we
should include nontrivial vector bundles which are compatible with the complex structure in some
sense. In the real two-tori case, one can construct a DG category of holomorphic vector bundles,
in the sense of Ref. 39, over a noncommutative two torus,33,16 where holomorphic vector bundles
are described by DG modules. In particular, the derived category of the DG category is indepen-
dent of the noncommutativity parameter ��R.33 Though noncommutative deformation of com-
plex tori in this approach is relatively well understood for the complex one-tori case, its higher
dimensional extension is quite nontrivial and interesting especially from the viewpoint of extended
deformations.1,19,11,2 However, in this higher dimensional case, a different problem will arise. Even
though we start with a DG module of a holomorphic vector bundle, its noncommutative deforma-
tion might not be described by a DG module. There may be several ways to resolve this problem.
Our idea in this paper is that we treat the deformed holomorphic vector bundles as curved differ-
ential graded (CDG) modules over V. The important point is that even though the deformed ones
are not DG modules, the space of morphisms may be equipped with a differential. Namely, in the
context of DG categories, the cohomology should be defined not on the objects but on the
morphisms between the objects. Thus, one may be able to extract finite dimensional graded vector
spaces as the cohomologies of the morphisms.

According to such a spirit, we construct DG categories consisting of some of these CDG
modules of deformed holomorphic vector bundles on higher dimensional noncommutative tori.
We remark that this procedure is just the same as the DG categories of the B-twisted topological
Landau-Ginzburg model in Refs. 20, 21, and 43 and also similar to the procedure by Fukaya
et al.10 in the mirror dual A-model side. It would also be interesting to construct a triangulated
category via the twisted complexes as is done in Refs. 43, 44, and 4.

Our starting point is based on Schwarz’s framework of noncommutative supergeometry40 and
noncommutative complex tori.39,5 In Ref. 40, a CDG algebra35 is restudied and applied to non-
commutative geometry under the name Q algebra, where modules over a Q algebra are discussed.
On the other hand, in Ref. 39, a complex structure is introduced on a real 2n-dimensional non-
commutative torus T�

2n, and a holomorphic structure on the Heisenberg modules, noncommutative
analogs of vector bundles, over T�

2n is defined. Then, our setup can be thought of as an application
of the noncommutative supergeometry40 to the theory of holomorphic Heisenberg modules.39 This
setup provides us with explicit descriptions of noncommutative models. Though one of our mo-
tivation comes from Fukaya’s noncommutative model of Lagrangian foliations on symplectic tori9

and their mirror dual, our approach in this paper is different from the one since we deal with the
Heisenberg modules which are finitely generated projective modules over noncommutative tori.
For recent papers, see Ref. 3 for another approach to noncommutative complex tori and the setup
in Ref. 4 which should be closer to ours.
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The construction of this paper is as follows. In Sec. II, we recall the definitions of CDG
algebras,35 CDG modules, and CDG categories. The notion of module over a Q algebra is more
general than that of the CDG modules over a CDG algebra. However, for our purpose, it is enough
to consider CDG modules since we begin with Heisenberg modules with constant curvature
connections. In Sec. III, we construct CDG categories of Heisenberg modules over noncommuta-
tive tori with complex structures. In particular, we propose a way to obtain DG categories as full
subcategories of the CDG categories. Following the general strategy in Sec. III, we construct CDG
categories of holomorphic line bundles over noncommutative complex tori and the DG categories
as their full subcategories in Sec. IV. In Sec. IV A, we construct the CDG category on a commu-
tative complex tori. In this case, the CDG category is exactly a DG category. In Sec. IV B, we
consider three types of noncommutative deformations of the DG category as CDG categories.
Then, we obtain DG categories as the full subcategories of the CDG categories. Furthermore, we
present the composition formula of the zeroth cohomologies of the DG categories explicitly. The
structure constants of the compositions, in fact, depend on the noncommutative parameters, which
implies that the DG categories or the triangulated/derived categories of them depend on the
noncommutative parameters. These results can be thought of as generalizations of complex one-
dimensional case14,33,22,16 and also a complex two-tori case22,23 �in the case that the structure
constant of the composition is not deformed by the noncommutative parameter�. From a string
theory or homotopy algebraic point of view, these deformations should correspond to deforma-
tions of an A� structure as weak A� algebras discussed in the context of open-closed homotopy
algebras18 �OCHAs� �see also Ref. 12�. We would like to study explicitly this correspondence also
elsewhere.

In this paper, any �graded� vector space is over the field k=C. We use indices i , j , . . . for both
the ones which run over 1 , . . . ,d=2n and the ones which run over 1 , . . . ,n, where n and d=2n are
the complex and the real dimension of a noncommutative torus.

II. CURVED DIFFERENTIAL GRADED ALGEBRAS, CURVED DIFFERENTIAL GRADED
MODULES, AND CURVED DIFFERENTIAL GRADED CATEGORIES

Definition 2.1: �(Cyclic) (CDG) algebra35� A CDG algebra �V , f ,d ,m� consists of a Z �or Z2�
graded vector space V= �k�ZVk, where Vk is the degree k graded piece, equipped with a degree
element f �V2, a degree 1 differential d :Vk→Vk+1, and a degree preserving �=degree 0� bilinear
map m :Vk � Vl→Vk+l, satisfying the following relations:

d�f� = 0, �1�

�d�2�v� = m�f ,v� − m�v, f� , �2�

dm�v,v�� = m�d�v�,v�� + �− 1��v�m�v,d�v��� , �3�

m�m�v,v��,v�� = m�v,m�v�,v��� , �4�

where �v� is the degree of v, that is, v�V�v�.
Suppose that we have in addition a nondegenerate symmetric inner product

�:Vk
� Vl → C

of fixed degree ����Z on V. Namely, the � is nondegenerate, nonzero only if k+ l+ ���=0, and
satisfies ��v ,v��= �−1�kl��v� ,v� for v�Vk and v��Vl. Then, we call �V , f ,� ,d ,m� a cyclic CDG
algebra if the following conditions hold:

��d�v�,v�� + �− 1��v���v,d�v��� = 0, ��m�v,v��,v�� = �− 1��v���v��+�v�����m�v�,v��,v� .

Remark 2.1: A CDG algebra is identified with a weak A� algebra �V , �mk :V�k→V�k�0� with
m0= f , m1=d, m2= ·, and m3=m4= ¯ =0. This algebraic structure is what is called a Q algebra
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introduced in the framework of noncommutative supergeometry in Ref. 39. Also, a CDG algebra
�V , f ,d , · � with f =0 is a DG algebra, which is a �strict� A� algebra �V , �mk�k�1�42 with m3=m4

= ¯ =0.
Definition 2.2: �CDG module� A right CDG module �E ,dE ,mE� over a CDG algebra �V ,

−f ,d ,m� is a Z-graded vector space E equipped with a degree 1 linear map dE :E→E and a right
action mE :E � V→E, satisfying the following condition: for any v ,v��V and vE�E,

�dE�2�vE� = mE�vE, f� ,

dEmE�vE,v� = mE�dE�vE�,v� + �− 1����mE�vE,d�v�� ,

mE�vE,m�v,v��� = mE�mE�vE,v�,v�� .

In particular, if f =0, then �E ,dE ,mE� is called a DG module over the DG algebra �V ,d ,m�. The
third condition is nothing but the condition that E is a �graded� right module over V.

A CDG category is a generalization of a CDG algebra, where morphisms in a CDG category
correspond to elements of a CDG algebra �see Remark 2.2 below�.

Definition 2.3: �(Cyclic) CDG category� A CDG category C consists of a set of objects
Ob�C�= �a ,b , . . . �, a Z-graded vector space Vab= �k�ZVab

k for each two objects a, b and the grading
k�Z, fa :C→Vaa

2 for each a, a differential d :Vab
k →Vab

k+1, and a composition of morphisms
m :Vbc

k
� Vab

l →Vac
k+l, satisfying the following relations:

d�fa� = 0, �5�

�d�2�vab� = m�fb,vab� − m�vab, fa� , �6�

dm�vbc,vab� = m�d�vbc�,vab� + �− 1��vbc�m�vbc,d�vab�� , �7�

m�m�vcd,vbc�,vab� = m�vcd,m�vbc,vab�� , �8�

where �vab� is the Z grading of vab, that is, vab�Vab
�vab�.

Let � be a nondegenerate symmetric inner product of fixed degree ����Z on Vª�a,bVab.
Namely, for each a and b,

�:Vba
k

� Vab
l → C �9�

is nondegenerate, nonzero only if k+ l+ ���=0, and satisfies ��Vba
k ,Vab

l �= �−1�kl��Vab
l ,Vba

k �. In this
situation, we call a CDG category with inner product � a cyclic CDG category C if the following
conditions hold:

��dvab,vab� + �− 1��vab���vab,dvab� = 0, �10�

��m�vbc � vab�,vca� = �− 1��vbc���vab�+�vca����m�vab � vca�,vbc� . �11�

Also, we call a cyclic CDG category C a cyclic DG category if fa=0 for any a�Ob�C�.
Remark 2.2: A CDG category C consisting of one object only is a CDG algebra. Similarly, for

a fixed object a�Ob�C�, the CDG category structure of C reduces to a CDG algebra �Vaa , fa ,d ,m�.
On the other hand, if the space of morphisms V= �a,bVab is thought of as a Z-graded vector space,
�V ,� , �a�Ob�C�fa ,d ,m� can be regarded as a cyclic CDG algebra �see also Ref. 46�.

Suppose that a CDG category C has an object o�Ob�C� such that fo=0 and for any object

a�Ob�C�, associated with fa�Vaa
2 , there exists a central element f̂ a in Voo such that
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m�fa,voa� = m�voa, f̂ a� .

Then, �Voa¬Ea ,d ,m� can be regarded as a CDG module over the cyclic CDG algebra �Voo ,� ,

− f̂ a ,d ,m�.

III. CURVED DIFFERENTIAL GRADED MODULES AND CURVED DIFFERENTIAL
GRADED CATEGORIES ON NONCOMMUTATIVE TORI

A. Higher dimensional noncommutative tori

Let us consider an algebra generated by Ui, i=1, . . . ,d, with relations

UjUk = e−2��−1�jk
UkUj, j,k = 1, . . . ,d , �12�

for an antisymmetric d	d matrix �ª �� jk�. Namely, any element of the algebra is a linear com-
bination over C of elements Um, m= �m1 , . . . ,md��Zd, defined by

Um ª U1
m1U2

m2
¯ Ud

mde��−1 	
j
k

mjmk�jk
,

and the relation between Um and Um� becomes

UmUm� = e−��−1	
j,k

mj�
jkmk�Um+m�. �13�

One can represent any element of this algebra as a formal sum,

u = 	
m�Zd

umUm, um � C .

For any element u represented as above, an involution � is defined by

u*
ª 	

m�Zd

um
* Um

* ,

where um
* is the complex conjugate of um and Um

*
ªU−m. One can consider a subalgebra T�

d such
that any element, again represented as u=	mumUm, belongs to the Schwartz space S�Zd�, that is,
the coefficients �um� as a function on Zd tend to zero faster than any power of 
m
. This algebra
T�

d is, in fact, a C* algebra and is called �the smooth version of� a noncommutative torus.36,25

There is a canonical normalized trace on T�
d specified by the rule

Tr�u� = um=0, u = 	
m

umUm. �14�

For �=0 we can realize the algebra T�
d as an algebra of functions on a d-dimensional torus Td.

Then trace �14� corresponds to an integral over Td provided that volume of Td is 1.
In order to define a connection on a module E over a noncommutative torus T�

d, we shall first
define a natural Lie algebra of shifts L� acting on T�

d. The shortest way to define this Lie algebra
is by specifying a basis consisting of derivations � j :T�

d→T�
d, j=1, . . . ,d, satisfying

� j�Um� = 2��− 1mjUm. �15�

For the multiplicative generators Uj the above relation reads as

� jUk = 2��− 1� jkUk.

These derivations then span a d-dimensional abelian Lie algebra �over C� that we denote L�.
A connection on a �right� module E over T�

d is a set of operators �X :E→E, X�L� depending
linearly on X and satisfying

�X�� · u� = �X��� · u + � · X�u�
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for any ��E and u�T�
d. A connection � is called a constant curvature connection if the curvature

of the connection is of the following form: for �iª��i
, i=1, . . . ,d,

��i,� j� = − 2��− 1Fij · 1EndT�
d�E�, Fij = − Fji � R . �16�

�Namely, Fij is a constant.� On a noncommutative torus, one can construct a class of finitely
generated projective modules called Heisenberg modules �see Refs. 36 and 25�. In fact, on any
Heisenberg module there exists a constant curvature connection. They play a special role. It was
shown by Rieffel36 that if the matrix �ij is irrational in the sense that at least one of its entries is
irrational, then any projective module over T�

d is isomorphic to a direct sum of Heisenberg mod-
ules.

Heisenberg modules are applied to discuss the Morita equivalence of noncommutative tori.
Let SO�d ,d ,Z� be the group defined by

SO�d,d,Z� ª �g � Mat2n�Z��gtJg = J�, J ª �0n 1n

1n 0n
� .

An SO�d ,d ,Z� action on a generic skew symmetric matrix in Matd�R� is defined by

g��� ª �A� + B��C� + D�−1, g ª �A B
C D � � SO�d,d,Z� .

In fact, g��� is again a skew symmetric matrix in Matd�R� due to the condition g�SO�d ,d ,Z�.
Then, it is known that a noncommutative tori T�

d is Morita equivalent to T��
d if37 and only if40 they

are related by ��=g���, g�SO�d ,d ,Z� �for more recent papers, see Refs. 45, 31, and 7�. To
establish this Morita equivalence, one may construct a T�

d−Tg���
d Morita equivalence bimodule,

denoted by P�−g��� �see Refs. 36 and 37�. One can, in fact, construct the Morita equivalence
bimodule P�−g��� for any g�SO�d ,d ,Z� as a left Heisenberg module E over T�

d. In this case, the
algebra EndT

�
d�E�, the algebra of endomorphisms of E which commute with the left action of T�

d,
coincides with the noncommutative torus Tg���

d . This implies that one can construct a Tg���
d −T�

d

Morita equivalence bimodule Pg���−� as a right Heisenberg module over T�
d. We denote it by Eg,�;

we have EndT
�
d�Eg,��Tg���

d . Also, the T�
d−Tg���

d Morita equivalence bimodule is given by the right
Heisenberg module Eg−1,g���. On Tg���

d , a trace TrTg���
d :Tg���

d →C and derivations �i :Tg���
d →Tg���

d , i

=1, . . . ,d, are defined by appropriate rescaling of those for T�
d as

TrTg���
d �u� = ��det�C� + D��um=0, u ª 	

m�Zn

umZm � Tg���
d �17�

and

� j�Zm� =
2��− 1mj

��det�C� + D��
Zm,

where g= �A B
C D � and Z1 , . . . ,Zd are the generators of Tg���

d with relations ZjZk=e−2��−1�g��jk
ZkZj,

j ,k=1, . . . ,d. For X�L�, a linear map � :Tg���
d

� L�→Tg���
d is defined by extending linearly

��i
�u� ª �i�u�, i = 1, . . . ,d, u � Tg���

d . �18�

When we have a T�
d−T��

d Morita equivalence bimodule, one can consider the following tensor
product �see Refs. 38 and 40�:
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Ega,��T
�
dP�−g���  Egag−1,g��� �19�

for a Heisenberg module Ega,� with any ga�SO�d ,d ,Z�, where the tensor product �T
�
d is defined

by the standard tensor product � over C with the identification ��a ·u� � p��a � �u · p� for any
�a�Ega,�, u�T�

d and p� P�−g���. Let us denote �aªga���. For a right Heisenberg module Ega,�

and a Morita equivalence bimodule P�b−�a
with an SO�d ,d ,Z� element gb, the existence of tensor

product �19� implies that we have the following tensor product:

P�b−�a
�T

�a

d Ega,�  Egb,�.

Thus, we may identify P�b−�a
with the space of homomorphisms from Ega,� to Egb,�. Hereafter, we

write

Hom�Egb,�,Ega,�� ª Pgb���−ga���.

On a Morita equivalence T�b

d −T�a

d bimodule Hom�Ega,� ,Egb,��, we define a connection
� :Hom�Ega,� ,Egb,�� � L�→Hom�Ega,� ,Egb,�� as a linear map, satisfying

�X�ub · �� = �X�ub� · � + ub · �X���, �X�� · ua� = �X��� · ua + � · �X�ua�

for any ua�T�a

d and ub�T�b

d , where �X�ub� and �X�ua� are defined by Eq. �18�. Since these Morita
equivalence bimodules are Heisenberg modules, they can be equipped with constant curvature
connections.

A Heisenberg module Eg,� attached to an element g�SO�d ,d ,Z� as above is called a basic
module. Since any Heisenberg module is constructed as a direct sum of basic modules, in this
paper we concentrate on categories of basic modules. �Of course, we can consider the correspond-
ing “additive” categories and further �pre�triangulated categories in the sense of Refs. 43 and 44
through twisted complexes.�

Let Obª �a ,b , . . . � be a collection of labels and consider a map g :Ob→SO�d ,d ,Z�, g�a�
ªga�SO�d ,d ,Z� for a�Ob. For the collection of Heisenberg modules �Ega,� �a�Ob�, assume
that we have an associative product

m:Hom�Egb,�,Egc,�� � Hom�Ega,�,Egb,�� → Hom�Ega,�,Egc,��

for any a ,b ,c�Ob. Namely, for any a ,b ,c ,d�Ob and �ab�Hom�Ega,� ,Egb,��, �bc

�Hom�Egb,� ,Egc,��, �cd�Hom�Egc,� ,Egd,��, we assume that the product m satisfies

m�m��cd,�bc�,�ab� = m��cd,m��bc,�ab�� . �20�

Such a product m :Hom�Egb,� ,Egc,�� � Hom�Ega,� ,Egb,��→Hom�Ega,� ,Egc,�� is obtained essentially
by the tensor product; m is constructed by fixing a map inducing the isomorphism

Hom�Egb,�,Egc,���T
�b

d Hom�Ega,�,Egb,��  Hom�Ega,�,Egc,�� .

There exists a choice of the map so that the associativity holds �see Ref. 40�.
For a�Ob, suppose that a constant curvature connection �a is defined on Ega,�. Also, for b

�Ob, a�b, define a constant curvature connection � :Hom�Ega,� ,Egb,�� � L�

→Hom�Ega,� ,Egb,�� whose constant curvature Fabª �Fab,ij�i,j=1,. . .,d is defined by

Fab,ij · �ab ª

�− 1

2�
��i,� j���ab�, Fab,ij = − Fab,ji � R

for any ��Hom�Ega,� ,Egb,��. Then, a constant curvature connection �b :Egb,� � L�→Egb,� can be
induced as follows:38,40

053517-7 Higher dimensional noncommutative complex tori J. Math. Phys. 48, 053517 �2007�

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



�b�m��ab,�a�� ª m����ab�,�a� + m��ab,�a��a��

for any �a�Ega,� and �ab�Hom�Ega,� ,Egb,��, where the relation between the curvatures of Ega,�,
Egb,� and that of Hom�Ega,� ,Egb,�� is given by

Fb − Fa = Fab.

Thus, repeating this procedure leads to the following category C�,E
pre :

Definition 3.1: For a noncommutative torus T�
d, let Obª �a ,b , . . . � be a collection of labels

and E a map from Ob to the space of basic modules with constant curvature connections; for a
�Ob, we denote E�a�= �Ega,� ,�a�¬Ea. A category C�,E

pre is defined by the following data.

• The collection of objects is

Ob�C�,E
pre � ª Ob.

Each object a�Ob is associated with a basic module with a constant curvature connec-
tion Ea whose constant curvature is denoted by a skew symmetric matrix Fa�Mat2n�R�.

• For any a ,b�Ob�C�,E
pre �, the space of morphisms is

HomC
�,E
pre�a,b� ª Hom�Ega,�,Egb,�� ,

which is equipped with a constant curvature connection � :HomC
�,E
pre�a ,b� � L�

→HomC
�,E
pre�a ,b� with its constant curvature Fab=Fb−Fa.

• For any a ,b ,c�Ob, there exists an associative product �Eq. �20��

m:HomC
�,E
pre�b,c� � HomC

�,E
pre�a,b� → HomC

�,E
pre�a,c� .

• For any a ,b ,c�Ob and �ab�HomC
�,E
pre�a ,b�, �bc�HomC

�,E
pre�b ,c�, the Leibniz rule holds,

�m��bc,�ab� = m����bc�,�ab� + m��bc,���ab�� . �21�

• For any a�Ob, a trace Tra :HomC
�,E
pre�a ,a�→C is given by Eq. �17�,

Tra�u� = ��det�Ca� + Da��um=0, u ª 	
m�Zn

umZm � HomC
�,E
pre�a,a� ,

for ga= �Aa Ba

CaDa
�. In particular, for any a ,b�Ob, Tra m :HomC

�,E
pre�b ,a� � HomC

�,E
pre�a ,b�→C

gives a nondegenerate bilinear map such that

Tra m��ba,�ab� = Trb m��ab,�ba�, �ab � HomC
�,E
pre�a,b�, �ba � HomC

�,E
pre�b,a� . �22�

The last identity �Eq. �22��, together with the nondegeneracy of Tra m, is a typical property
of Morita equivalence bimodules �see Refs. 36 and 25, and for the noncommutative
two-tori case, see Ref. 15�.

B. Noncommutative complex tori and curved differential graded structures on them

Let us consider a complex structure on the noncommutative torus T�
2n as introduced by

Schwarz.39 We take a different notation which fits our arguments, though it is equivalent to the one
in Ref. 39. When we define a complex structure on a commutative torus T2n, we may take a
C-valued n	n matrix �= �� j

i�, i , j=1, . . . ,n, whose imaginary part �Iª Im��� is positive definite. A
commutative complex torus is then described by Cn / �Zn+�tZn�, where �t is the transpose of �. The
complex coordinates of Cn are given by �z1 , . . . ,zn�, zi=xi+	 jy

j� j
i, i=1, . . . ,n. The corresponding

Dolbeault operator �̄ is given by
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�̄ = 	
i=1

n

dz̄i �

�z̄i ,
�

�z̄i ª
1

2�− 1
	
j=1

n ����I�−1��i
j �

�xj − ���I�−1�i
j �

�yj� ,

where we denote Im���= :�I which is by definition positive definite.
Based on these formulas, for a noncommutative torus T�

2n and a fixed complex structure �, let
us define �̄i�L�, i=1, . . . ,n, by

�̄i ª
1

2�− 1
	
j=1

n

����I�−1��i
j� j − ���I�−1�i

j�n+j� .

Also, for Eaª �Ega,� ,�a�, a Heisenberg module Ega,� over T�
2n with a constant curvature connection

�a,i, i=1, . . . ,2n, define a holomorphic structure �̄a,i :Ega,�→Ega,�, i=1, . . . ,n, by

�̄a,i ª
1

2�− 1
	
j=1

n

����I�−1��i
j�a,j − ���I�−1�i

j�a,n+j� . �23�

For each pair �Ea ,Eb�, we define a holomorphic structure �̄i :Hom�Ega,� ,Egb,��
→Hom�Ega,� ,Egb,��, i=1, . . . ,n, by the same formula,

�̄i ª
1

2�− 1
	
j=1

n

����I�−1��i
j� j − ���I�−1�i

j�n+j� . �24�

Let  be the Grassmann algebra generated by dz̄1 , . . . ,dz̄n of degree 1. Namely, they satisfy
dz̄idz̄ j =−dz̄ jdz̄i for any i , j=1, . . . ,n, so, in particular, �dz̄i�2=0. These generators are thought of as
a formal basis of the antiholomorphic one forms on the complex noncommutative torus T�

2n. By k

we denote the degree k graded piece of . The graded vector space VªT�
2n

�  is then thought of
as the space of smooth antiholomorphic forms on the complex noncommutative torus T�

2n, which
also has the the graded decomposition,

V = �k=0
n Vk.

Any element in Vk can be written as

v = 	
m�Zn

	
i1,. . .,ik

vm;i1¯ik
Um · �dz̄i1

¯ dz̄ik� ,

where vm;i1¯ik
�C is skew symmetric with respect to the indices i1¯ ik. A product m :Vk � Vl

→Vk+l is defined naturally by combining the product on T�
2n with the one on the Grassmann

algebra , and then �V ,m� forms a graded algebra. One can define a differential d :Vk→Vk+1,

d ª 	
i=1

n

dz̄i · �̄i,

which satisfies the Leibniz rule with respect to the product m.
An inner product � :Vk � Vl→C of degree −n is defined by the composition of the product m

with a trace �T
�
2n :V→C,

� = �
T�

2n
m, �

T�
2n

v = vm=0;i1¯ik
�1¯n

i1¯ik.

Here � is defined by
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�1¯n
i1¯ik = �0, k � n ,

	
��Sn

�������1�
i1

¯ ���n�
in , k = n , �

where ���� is the signature of the permutation of n elements ��Sn. Namely, �T
�
d :Vk→C is

thought of as the integration of differential forms over T�
2n, as an extension of the trace map

Tr:T�
2n→C in Eq. �14�, and hence gives a nonzero map only if k=n.

Lemma 3.1: �V ,� ,d ,m� forms a cyclic DG algebra. �

For Eaª �Ega,� ,�a� a Heisenberg module over T�
2n with a constant curvature connection, we

lift Ea to a Z-graded right module EaªEga,� �  over V. We denote by ma :Ea � V→Ea the right
action of V on Ea. The connection �a :Ega,� � L�→Ega,� is then lifted to a degree 1 linear map
da :Ea→Ea defined by

da ª 	
i=1

n

dz̄i · �̄a,i,

where �̄a,i is holomorphic structure �23�. This da is not a differential in general. Namely, the
graded module has its curvature,

�da�2vEa = f̂ av
Ea, f̂ a ª − ��− 1�dz̄t�I

−1��� − 1n�Fa� �t

− 1n
���I

t,−1dz̄� � 2

for any vEa �Ea, where dz̄t
ª �dz̄t

¯dz̄n�. This da defines a differential on Ea, that is, f̂ a=0 if and
only if

�� − 1n�Fa� �t

− 1n
� = 0.

In this case, �Ea ,da ,ma� forms a DG module over V. In the commutative case ��=0�, this condi-
tion on Fa is nothing but the condition that the corresponding �line� bundle is holomorphic, i.e., the
curvature is a �1,1� form with respect to the complex structure defined by �. However, for general

�, f̂ a may not be zero even if it is zero when � is set to be zero.

On the other hand, since f̂ a�2�V2 is a central element in V with respect to the product m,

�d�2�v�=m� f̂ a ,v�−m�v , f̂ a� �=0� holds and then �V ,� ,− f̂ a ,d ,m� forms a cyclic CDG algebra.
Thus, the following lemma.

Lemma 3.2: �Ea , f̂ a ,da ,ma� forms a CDG module over the cyclic CDG algebra �V ,� ,

− f̂ a ,d ,m�. �

We call this f̂ a�V2 the potential two form of Ea.
Now, for a category C�,E

pre given in Definition 3.1, we construct a CDG category C�,�,E= :C.
Definition 3.2: For a fixed category C�,E

pre , a category C is defined as follows.

• The collection of objects is

Ob�C� ª Ob,

where any object a�Ob is associated with a CDG module �Ea , f̂ a ,da ,ma� over the CDG

algebra �V ,� ,− f̂ a ,d ,m� corresponding to Ea as in Lemma 3.2.
• For any a ,b�Ob�C�, the space of morphisms is the graded vector space

HomC�a,b� ª HomC
�,E
pre�a,b� �  ¬ Vab = �k=1

n Vab
k ,

which is equipped with a degree 1 linear map d :Vab
k →Vab

k+1,
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d ª 	
i=1

n

dz̄i�̄i,

where �̄i is holomorphic structure �24� corresponding to the constant curvature connection
� :HomC

�,E
pre�a ,b� � L�→HomC

�,E
pre�a ,b�.

• For any a ,b ,c�Ob�C�, an associative product m :Vbc
l

� Vab
k →Vac

k+l is given by the lift of the
product m on HomC

�,E
pre�� , � �.

• For any two objects a ,b�Ob�C�, a nondegenerate graded symmetric inner product � :Vba

� Vab→C of degree −n is defined by

� = �
T�a

2n
m, m:Vba � Vab → Vaa.

Here �T
�a

2n :Vaa→C is defined by

�
T�a

2n
v = ��det�Ca� + Da��vm=0;i1¯ik

�1¯n
i1¯ik, v ª 	

m�Zn
	

i1,. . .,ik

vm;i1¯ik
Um · dz̄i1

¯ dz̄ik � Vaa,

for ga= �AaBa

CaDa
� as an extension of the trace map Tra→C.

Due to Leibniz rule �21�, it is clear that d :Vab
k →Vab

k+1 is a derivation,

dm�vbc � vab� = m�d�vbc� � vab� + �− 1��vbc�m�vbc � d�vab�� . �25�

Let us define f̂ ab�2 by

f̂ ab ª d2, d:Vab
k → Vab

k+1.

Then, Leibniz rule �25� and Fab=Fb−Fa imply that f̂ ab= f̂ b− f̂ a. For each a�Ob�C�, let fa

ª f̂ a ·1a�Vaa, where 1a is the identity in T�a

2n. The following is the main claim of this paper.
Proposition 3.1: (Cyclic DG category of holomorphic vector bundles)

(i) For a given category C�,E
pre in Definition 3.1, CªC�,�,E forms a cyclic CDG category.

(ii) Let C f̂ be the full subcategory of C such that any a�Ob�C f̂��Ob�C� is the set of CDG

modules over a cyclic CDG algebra �V ,� ,− f̂ ,d ,m� for a fixed f̂ �2�V2. Then C f̂ forms
a cyclic DG category.

�

This implies that one can construct a DG category of holomorphic vector bundles over a
noncommutative tori.

IV. THREE EXAMPLES OF NONCOMMUTATIVE DEFORMATIONS

Now, we construct examples of various noncommutative deformations of the DG categories of
Heisenberg modules described by CDG modules over a cyclic CDG algebra of a noncommutative
torus, where we treat Heisenberg modules corresponding to noncommutative deformations of
holomorphic line bundles. The setup given in the previous subsection allows us to deform both the
complex structure � and the noncommutativity � or either of them. In this paper, starting from a
commutative ��=0� n-dimensional complex torus with the standard complex structure �=�−11n in
Sec. IV A, we deform the noncommutative parameter � with preserving the standard complex
structure in Sec. IV B. Also, we give the composition formula on the zeroth cohomologies of the
DG categories explicitly. We show that the structure constants of the compositions, in fact, depend
on �.
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A. Holomorphic line bundles: The commutative case

Let us begin with the commutative torus T2n
ªT�=0

2n . The generators U1 , . . . ,Un ,U1̄

ªUn+1 , . . . ,Un̄ªU2n then commute with each other. The arguments in Sec. III B show that it is
enough to construct a category C�=0,E

pre in order to construct a cyclic CDG category C.
A category C�=0,E

pre is constructed as follows. Any object a�Ob�C�=0,E
pre � is associated with a pair

Eaª �Ega,�=0 ,�a� of a basic module Ega,�=0 with a constant curvature connection �a. The basic
module is defined by

Ega,�=0 ª S�Rn 	 �Zn/AaZ
n��

for a fixed nondegenerate symmetric matrix Aa�Matn�Z�, where ga�SO�d ,d ,Z� is given by

ga = �12n 02n

Fa 12n
�, Fa ª � 0n Aa

− Aa 0n
� .

The right action of T2n on Ega,�=0 is defined by specifying the right action of each generator; for
�a�Ega,�=0, it is given by

��aUi��x;�� = �a�x;��e�2��−1�xi+�Aa
−1��i��,

��aUī��x;�� = �a�x + Aa
−1ti;� − ti�, i = 1, . . . ,n ,

where xª �x1¯xn�t�Rn, ��Zn /AaZn, and ti�Rn is defined by �t1¯ tn�=1n. A constant curva-
ture connection �a :Ega,�=0 � L�→Ega,�=0 is given by

��a,1 ¯ �a,2n�t = �1n

− Aa
�� �x

2��− 1x
� , �26�

where �xª �� /�x1¯� /�xn�t, and the curvature �defined by Eq. �16�� is Fa above. The generators of
the endomorphism algebra are the same as Ui ,Uī,

�Zi�a��x;�� = e�2��−1�xi+�Aa
−1��i���a�x;�� ,

�Zī�a��x;�� = �a�x + Aa
−1ti;� − ti�, i = 1, . . . ,n .

Namely, the endomorphism algebra also forms a commutative torus T2n.

This Eaª �Ega
,�a� is lifted to a CDG module �Ea , f̂ a ,da ,ma� over the cyclic CDG algebra

�V=T2n �  ,� ,− f̂ a ,d ,m� by the procedure in the previous subsection, where the complex struc-

ture is taken to be the standard one: �=�−11n. Then, one obtains �da�2= f̂ a=0, that is, Ea, in fact,
forms a DG module corresponding to a holomorphic vector bundle. In particular, Ea is regarded as
a holomorphic line bundle on commutative torus T2n, as explained briefly in the beginning of the
next subsection �see also Ref. 17�.

For any a ,b�Ob�C�=0,E
pre �, the space HomC

�=0,E
pre �a ,b� is defined as follows. If AabªAb−Aa is

nondegenerate, then it is again the Schwartz space HomC
�=0,E
pre �a ,b�ªS�Rn	 �Zn /AabZn��. For

�ab�HomC
�=0,E
pre �a ,b�, the right action of T2n, generated by Ui and Uī, and the left action of T2n,

generated by Zi and Zī, are defined by

��abUi��x;�� = �ab�x;��e�2��−1�xi+�Aab
−1��i��,

��abUī��x;�� = �ab�x + Aab
−1ti;� − ti� ,

�Zi�ab��x;�� = e�2��−1�xi+�Aab
−1��i���ab�x;�� ,
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�Zī�ab��x;�� = �ab�x + Aab
−1ti;� − ti�

for i=1, . . . ,n, where ��Zn /AabZn. In fact, all these generators Ui, Uī, Zi, and Zī commute with
each other.

On the other hand, if Aa=Ab, we define HomC
�=0,E
pre �a ,b�ªT2n, on which the left and right

actions of T2n are defined just by the commutative product on T2n.
In general, the way of constructing the space HomC

�,E
pre�a ,b�=Hom�Ega,�=0 ,Egb,�=0� depends on

the rank of AabªAb−Aa. In rank n case �nondegenerate case�, one has HomC
�=0,E
pre �a ,b�ªS�Rn

	 �Zn /AabZn�� and in rank 0 case, one has HomC
�=0,E
pre �a ,b�ªT2n as above. In rank 1
r
n case,

we should combine these two constructions with each other appropriately. In order to avoid such
case-by-case arguments, in this paper we assume that Aab is nondegenerate for any a ,b
�Ob�C�=0,E

pre � such that a�b.
The constant curvature connection �i :HomC

�=0,E
pre �a ,b�→HomC

�=0,E
pre �a ,b�, i=1, . . . ,2n, is given

by

��1 ¯ �2n�t
ª �1n

− Aab
�� �x

2��− 1x
�

if a�b, and if a=b, it is defined by the derivation � on the noncommutative torus T�a

2n=T�b

2n in Eq.
�18� with �a=�b=0.

For a ,b ,c�Ob�C�=0,E
pre � and �ab�HomC

�=0,E
pre �a ,b�, �bc�HomC

�=0,E
pre �b ,c�, the product

m :HomC
�=0,E
pre �b ,c� � HomC

�=0,E
pre �a ,b�→HomC

�=0,E
pre �a ,c� is given as follows:

• For a=b, it is the right action of T2n on HomC
�=0,E
pre �b ,c�.

• For b=c, it is the left action of T2n on HomC
�=0,E
pre �a ,b�.

• For a=c, the product m :HomC
�=0,E
pre �b ,a� � HomC

�=0,E
pre �a ,b�→T2n is given by

m��ba,�ab��x,�� = 	
m�Zn

	
��Zn/AabZ

n

Um�
Rn

dxn�ba�x,����ab�x,− ��U−m�

for �ab�HomC
�=0,E
pre �a ,b� and �ba�HomC

�=0,E
pre �b ,a�, where Um�HomC

�=0,E
pre �a ,a�=T2n. For the

remaining general case, it is given by

m��bc,�ab��x,�� = 	
u�Zn

�bc�x + Abc
−1�u − AabAac

−1��,− u + ���ab�x − Aab
−1�u − AabAac

−1��,u� .

�27�

These structures, together with the trace map, defined by Eq. �14� form a category C�=0,E
pre and

the corresponding cyclic CDG category C�=0. In particular, we have d2=0 for d :Vab
→Vab with any pair a ,b�Ob�C�=0�. Thus, C�=0 is a cyclic DG category.

For any a ,b�Ob�C�=0�, a�b, the bases of the zeroth cohomology of Vab are given by
Gaussians39 �see also Ref. 6� and called theta vectors, though here we are discussing the �=0 case.
We shall give examples of these theta vectors in the noncommutative case ��0 in the next

subsection. The mirror dual T̂2n of this complex torus T2n
ªCn / �Zn � �−1Zn� is the real

2n-dimensional torus with a symplectic structure �ª
� 0n−1n

1n0n
�. In this mirror dual torus T̂2n, a line

bundle specified by Aa corresponds to an affine Lagrangian submanifold La. Then, the intersection

of La and Lb is a point v̂ab on T̂2n, which defines the set Ṽab of the infinite copies of the points on
the covering space Cn. The structure constant Cabc,�

�� �C can be identified with the sum of the

exponentials of the symplectic areas of the triangles ṽabṽbcṽac for any ṽab� Ṽab, ṽbc� Ṽbc, and

ṽac� Ṽac with respect to �, where the triangles related by parallel translations on the covering
space are identified with each other and not overcounted �see Ref. 34 �two-tori case�, Refs. 8 and
17�.
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B. Noncommutative deformations of holomorphic line bundles

Let us consider a real 2n-dimensional noncommutative torus T�
2n with its generators

U1 , . . . ,U2n with the following relation:

UiUj = e−2��−1�ij
UjUi, � ª ��1 − �2

�2
t �3

� .

Since ��Mat2n�R� is antisymmetric, �1 ,�3�Matn�R� are antisymmetric and �2�Matn�R� can be
an arbitrary n	n matrix.

A Heisenberg module Eg,�, g�SO�2n ,2n ,Z�, on this noncommutative torus T�
2n is associated

with two notions, the K0 group element and the Chern character �see Ref. 25�. The Chern character
of Eg,� is defined by its constant curvature F, a skew symmetric 2n	2n matrix with entries in R.
On the other hand, the K0 group element of Eg,� is defined by F0, the constant curvature of Eg,�

when we set �=0. Thus, the K0 group element is independent of the noncommutativity �. A
Heisenberg module Eg,� is thought of as a noncommutative analog of a line bundle if g
�SO�2n ,2n ,Z� is of the form

g = �12n 02n

F0 12n
�

for a skew symmetric matrix F0�Mat2n�Z�. In fact, F0 corresponds to the first Chern character of
a line bundle if �=0. Since we shall discuss noncommutative deformations of the line bundles,
discussed in the previous subsection, let us consider, in particular, the case that F0 is of the
following form:

F0 = � 0n A

− A 0n
� ,

where A�Matn�Z� is a nondegenerate symmetric matrix. For the Heisenberg modules Eg,� with g
given as above, we shall consider noncommutative tori in the following three cases: type �1: �2

=�3=0; type �2: �1=�3=0; type �3: �1=�2=0. In each case, the endomorphism algebra, T��, ��
ª �1n�+0n��F0�+1n�−1, turns out to be as follows. In the type �1 case and �3 case,

� = ��1 0n

0n 0n
�, � = �0n 0n

0n �3
� ,

we have ��=�. However, in the type �2 case, one obtains

�� = � 0n − �2�1n + A�2�−1

�2
t �1n + A�2

t �−1 0n
�, � ª �0n − �2

�2
t 0n

� . �28�

Now, for the cyclic DG category C�=0 in the previous subsection, we construct its noncom-
mutative deformations of each of the three types above explicitly as CDG categories. Namely, we
construct noncommutative deformations of C�=0,E

pre in the previous subsection.
Type �1. A category C�,E

pre is constructed as follows. Any object a�Ob�C�,E
pre � is associated with

a pair Eaª �Ega,� ,�a�. The basic module Ega,� is defined by

Ega,� = S�Rn 	 �Zn/AaZ
n��

for a nondegenerate symmetric matrix Aa�Matn�Z�, where

ga = � 12n 02n

Fa,0 12n
�, Fa,0 ª � 0n Aa

− Aa 0n
� .

For �a�Ega,�, the action of each generator is defined by
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��aUi��x;�� = �a�x;�� � e2���−1�xi+�Aa
−1��i��,

��aUī��x;�� = �a�x + Aa
−1ti;� − ti�, i = 1, . . . ,n .

Here � :C��Rn� � C��Rn�→C��Rn� is the Moyal star product32 defined by

�f � g��x� ª f�x�e−��−1/4����x�1��xg�x� ,

where ��x�1��xª	p,q=1
n ��xp

�1
pq��xq

. The generator of the endomorphism is then given by

�Zi�a��x;�� = e2���−1�xi+�Aa
−1��i�� � �a�x;�� ,

�Zī�a��x;�� = �a�x + Aa
−1ti;� − ti� .

A constant curvature connection �a :Ega,� � L�→Ega,� is given as

��a,1 ¯ �a,n�t = � 1n

− �1/2�Aa�1 − Aa
�� �x

2��− 1x
� ,

whose the constant curvature is

Fa = � 0n Aa

− Aa Aa�1Aa
� .

We assume that Aab is nondegenerate for any a ,b�Ob�C�,E
pre �, a�b. For any a ,b�Ob�C�,E

pre �, the
space HomC

�,E
pre�a ,b� is defined as follows. If a�b, HomC

�,E
pre�a ,b�ªHom�Ega,� ,Egb,��=S�Rn

	 �Zn /AabZn��; the right action of T�a
, generated by Ui and Uī, and the left action of T�b

, generated
by Zi and Zī, are defined by

��abUi��x;�� = �ab�x;�� * e2��−1��xi+�Aab
−1��i��,

��abUī��x;�� = �ab�x + Aab
−1ti;� − ti� ,

�Zi�ab��x;�� = e2��−1��xi+�Aab
−1��i�� * �ab�x;�� ,

�Zī�ab��x;�� = �ab�x + Aab
−1ti;� − ti� .

If a=b, then HomC
�,E
pre�a ,b�=T�a

=T�b
and these actions are defined by the usual product of the

noncommutative torus T�a
=T�b

. The constant curvature connection � :HomC
�,E
pre�a ,b� � L�

→HomC
�,E
pre�a ,b� is given by

��1 ¯ �2n�t
ª � 1n

− �1/2�Aab
+ �1 − Aab

�� �x

2��− 1x
�, Aab

+
ª Aa + Ab

if a�b, and if a=b, it is defined by the derivation � of the noncommutative torus T�a
=T�b

in Eq.
�18�.

For any a ,b ,c�Ob�C�,E
pre � and �ab�HomC

�,E
pre�a ,b�, �bc�HomC

�,E
pre�b ,c�, the product

m :HomC
�,E
pre�b ,c� � HomC

�,E
pre�a ,b�→HomC

�,E
pre�a ,c� is given as follows:

• For a=b, it is the right action of T�a
=T�b

on HomC
�,E
pre�b ,c�.

• For b=c, it is the left action of T�b
=T�c

on HomC
�,E
pre�a ,b�.

• For a=c, the product m :HomC
�,E
pre�b ,a� � HomC

�,E
pre�a ,b�→T�a

is given by
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m��ba,�ab��x,�� = 	
m�Zn

	
��Zn/AabZ

n

Um�
Rn

dxn�ba�x,�� � ��ab�x,− ��U−m� .

For the remaining general case, it is given by

m��bc,�ab��x,�� = 	
u�Zn

�bc�x + Abc
−1�u − AabAac

−1��,− u + �� * �ab�x − Aab
−1�u − AabAac

−1��,u� .

The trace map is then given by Eq. �17�.
Type �2. A category C�,E

pre is constructed as follows. An object a�Ob�C�,E
pre � is associated with a

pair Eaª �Ega,� ,�a�, where we assume that det�1n+�2Aa��0, which is always satisfied if one of
the entries of �2 is irrational. The basic module Ega,� is defined by

Ega,� = S�Rn 	 �Zn/AaZ
n��

for a nondegenerate symmetric matrix Aa�Matn�Z�, where

ga = � 12n 02n

Fa,0 12n
�, Fa,0 = � 0n Aa

− Aa 0n
� .

For �a�Ega,�, the action of each generator is defined by

��aUi��x;�� = �a�x;��e2��−1��xi+�Aa
−1��i��,

��aUī��x;�� = �a�x + �1n + �2Aa�Aa
−1ti;� − ti� .

The action of the generators of the endomorphism is then given by

�Zi�a��x;�� = e2��−1����1n + �2Aa�−1x�i+�Aa
−1��i���a�x;�� ,

�Zī�a��x;�� = �a�x + Aa
−1ti;� − ti� ,

where the relation is

ZiZj = e−2��−1�aZjZi, �a = � 0n − �1n + �2Aa�−1�2

�2
t �1n + Aa�2

t �−1 0n
� .

A constant curvature connection �a :Ega,� � L�→Ega,� is given as

��a,1 ¯ �a,2n�t = �1n 0n

0n − �Aa
−1 + �2�−1 �� �x

2��− 1x
� ,

with its curvature

Fa = � 0n �Aa
−1 + �2

t �−1

− �Aa
−1 + �2�−1 0n

� .

We assume that Aab is nondegenerate for any a ,b�Ob�C�,E
pre �, a�b.

For any a ,b�Ob�C�,E
pre �, the space HomC

�,E
pre�a ,b� is defined as follows. If a�b,

HomC
�,E
pre�a ,b�ªHom�Ega,� ,Egb,��=S�Rn	 �Zn /AabZn��; the right action of T�a

, generated by Ui

and Uī, and the left action of T�b
, generated by Zi and Zī, are defined by

��abUi��x;�� = �ab�x;��e2��−1����1n + �2Aa�−1x�i+�Aab
−1��i��,
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��abUī��x;�� = �ab�x + �1n + �2Ab�Aab
−1ti;� − ti� ,

�Zi�ab��x;�� = e2��−1����1n + �2Ab�−1x�i+�Aab
−1��i���ab�x;�� ,

�Zī�ab��x;�� = �ab�x + �1n + �2Aa�Aab
−1ti;� − ti� .

If a=b, then HomC
�,E
pre�a ,b�ªT�a

=T�b
and these actions are defined by the usual product of non-

commutative torus T�a
=T�b

. Note that HomC
�,E
pre�a ,b�=Hom�Ega,� ,Egb,�� is isomorphic to Egbga

−1,�;
for a�b, an element �ab�Hom�Ega,� ,Egb,�� is identified with �ab� �Egbga

−1,� by the following
relation:

�ab� �x�,�� = �ab� ��1n + �2Aa�−1x,�� = �ab�x,�� .

A constant curvature connection � :HomC
�,E
pre�a ,b� � L�→HomC

�,E
pre�a ,b� is given by

��1 ¯ �2n�t = �1n 0n

0n − �Ab
−1 + �2�−1 + �Aa

−1 + �2�
�� �x

2��− 1x
�

if a�b, and if a=b, it is defined by the derivation � of the noncommutative torus T�a
=T�b

in Eq.
�18�.

For any a ,b ,c�Ob�C�,E
pre � and �ab�HomC

�,E
pre�a ,b�, �bc�HomC

�,E
pre�b ,c�, the product

m :HomC
�,E
pre�b ,c� � HomC

�,E
pre�a ,b�→HomC

�,E
pre�a ,c� is given as follows:

• For a=b, it is the right action of T�a
=T�b

on HomC
�,E
pre�b ,c�.

• For b=c, it is the left action of T�b
=T�c

on HomC
�,E
pre�a ,b�.

• For a=c, the product m :HomC
�,E
pre�b ,a� � HomC

�,E
pre�a ,b�→T�a

is given by

m��ba,�ab��x,�� = 	
m�Zn

	
��Zn/AabZ

n

Um�
Rn

dxn�ba�x,����ab�x,− ��U−m� .

For the remaining general case, it is given by

m��bc,�ab��x,�� = 	
u�Zn

�bc�x + �1n + �2Ac�Abc
−1�u − AabAac

−1��,− u + ��

	�ab�x − �1n + �2Aa�Aab
−1�u − AabAac

−1��,u� .

The trace map is then given by Eq. �17�.
Type �3. A category C�,E

pre is constructed as follows. Any object a�Ob�C�,E
pre � is associated with

a pair Eaª �Ega,� ,�a�. The basic module Ega,� is defined by

Ega,� = S�Rn 	 �Zn/AaZ
n��

for a nondegenerate symmetric matrix Aa�Matn�Z�, where

ga = � 12n 02n

Fa,0 12n
�, Fa,0 = � 0n Aa

− Aa 0n
� .

For �a�Ega,�, the action of each generator is defined by

��aUi��x;�� = �a�x;��e2��−1��xi+�Aa
−1��i��,
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��aUī��x;�� = �a�x + Aa
−1ti;� − ti�e��−1xtAa�3ti, i = 1, . . . ,n ,

and the endomorphisms are generated by

�Zi�a��x;�� = e2��−1��xi+�Aa
−1��i���a�x;�� ,

�Zī�a��x;�� = e−��−1xtAa�3ti�a�x + Aa
−1ti;� − ti� .

A constant curvature connection �a :Ega,� � L�→Ega,� is given as

��a,1 ¯ �a,2n�t = �1n �1/2�Aa�3Aa

0n − Aa
�� �x

2��− 1x
� ,

with its curvature

Fa = �Aa�3Aa Aa

− Aa 0n
� .

We assume that Aab is nondegenerate for any a ,b�Ob�C�,E
pre �, a�b.

For any a ,b�Ob�C�,E
pre �, the space HomC

�,E
pre�a ,b� is defined as follows. If a�b,

HomC
�,E
pre�a ,b�ªHom�Ega,� ,Egb,��=S�Rn	 �Zn /AabZn��; the right action of T�a

, generated by Ui

and Uī, and the left action of T�b
, generated by Zi and Zī, are defined by

��abUi��x;�� = �ab�x;��e2��−1��xi+�Aab
−1��i��,

��abUī��x;�� = �ab�x + Aab
−1ti;� − ti�e��−1xtAab�3ti,

�Zi�ab��x;�� = e2��−1��xi+�Aab
−1��i���ab�x;�� ,

�Zī�ab��x;�� = e−��−1xtAab�3ti�ab�x + Aab
−1ti;� − ti� .

If a=b, then HomC
�,E
pre�a ,b�ªT�a

=T�b
and the left and right actions on it are defined by the usual

product of noncommutative torus T�a
=T�b

.
A constant curvature connection �a :HomC

�,E
pre�a ,b� � L�→HomC

�,E
pre�a ,b� is given by

��1 ¯ �2n�t = �1n �1/2�Aab
+ �3Aab

0n − Aab
�� �x

2��− 1x
�

if a�b, and if a=b, it is defined by the usual derivation � of noncommutative torus T�a
=T�b

�Eq.
�18��.

For any a ,b ,c�Ob�C�,E
pre � and �ab�HomC

�,E
pre�a ,b�, �bc�HomC

�,E
pre�b ,c�, the product

m :HomC
�,E
pre�b ,c� � HomC

�,E
pre�a ,b�→HomC

�,E
pre�a ,c� is given as follows:

• For a=b, it is the right action of T�a
=T�b

on HomC
�,E
pre�b ,c�.

• For b=c, it is the left action of T�b
=T�c

on HomC
�,E
pre�a ,b�.

• For a=c, the product m :HomC
�,E
pre�b ,a� � HomC

�,E
pre�a ,b�→T�a

is given by

m��ba,�ab��x,�� = 	
m�Zn

	
��Zn/AabZ

n

Um�
Rn

dxn�ba�x,����ab�x,− ��U−m� .

For the remaining general case, it is given by
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m��bc,�ab��x,�� = 	
u�Zn

�bc�x�,− u + ��exp���− 1x�tAbc�3Aabx���ab�x�,u� ,

where x�ªx+Abc
−1�u−AabAac

−1�� and x�ªx−Aab
−1�u−AabAac

−1��. The trace map is then given by Eq.
�17�. By direct calculations, one obtains the following.

Lemma 4.1: For a fixed noncommutative parameter of type �1, �2, or �3, the composition m
of morphisms is associative (associativity) and the constant curvature connections on morphisms
satisfy the Leibniz rule (Leibniz rule). �

Then, in any case of type �s, s=1,2 ,3, C�,E
pre forms a category in Definition 3.1 and then the

corresponding category C forms a cyclic CDG category.
In particular, by looking at the condition that d :Vab→Vab satisfies d2=0 explicitly, one can

see the following:
Proposition 4.1: For type �1, type �2 such that �2

t =−�2, and type �3, two objects a ,b

�Ob�C� in the CDG category C together form a full sub-DG category C f̂, defined in Proposition

3.1 (ii), of C for some f̂ �2�V2 if and only if

Aa�sAa = Ab�sAb, s = 1,2,3, �29�

holds. �

Thus, we have obtained the cyclic DG categories C f̂ on noncommutative tori with three types
of noncommutativities �1, �2, and �3.

Let us calculate the compositions of the morphisms of the zeroth cohomologies H0�V�ª
�a,b�Ob�C f̂�H

0�Vab� of these DG categories C f̂. They define ring structures on H0�V�, which are
subrings of the full cohomologies H*�V�. We shall observe that the ring H0�V� actually depends on
the noncommutative parameter �s, as opposed to the complex one-tori case.14,22,33,16 We remark
that, from a homotopy algebraic viewpoint, a DG category is homotopy equivalent to a minimal
A� category. Then, by forgetting the higher compositions of the minimal A� category, one obtains
the ring H*�V�. Thus, if at least the subring H0�V� is deformed, the minimal A� structure is also
deformed.

Recall that H0�Vab� is given by Ker�d :Vab
0 →Vab

1 �=�i=1
n Ker��̄i :Vab

0 →Vab
0 �.

Type �1. For a ,b�Ob�C�,E
pre �, a�b, the holomorphic structure �̄i :HomC

�,E
pre�a ,b�

→HomC
�,E
pre�a ,b� is given by

��̄1 ¯ �̄n�t = �1n −
�− 1

2
Aab

+ �1��x + 2�Aabx .

The cohomology H0�Vab� is spanned by the basis elements of the form

eab
� �x;�� ª Cab��Aab�

�
� exp�− ��xtMabx��, � � Zn/AabZ

n, �30�

where Cab�C is an appropriate rescaling and Mab�Matn�C� should be a symmetric matrix,
satisfying

��̄1 ¯ �̄n��exp�− ��xtMabx��� = 0. �31�

Condition �31� turns out to be

− �1n −
�− 1

2
Aab

+ �1�Mab + Aab = 0.

This Mab is symmetric if and only if condition �29� holds,

Aa�1Aa = Ab�1Ab,

and then the explicit form of Mab is given by
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Mab = Aab�Aab +
�− 1

2
�Ab�1Aa − Aa�1Ab��−1

Aab.

Here the real part of Mab�Matn�C� should be positive definite in order for eab
� to exist in H0�Vab�.

Note that the real part of Mab is positive definite if and only if Aab is positive definite. This eab
�

�H0�Vab� in Eq. �30� is a theta vector. Thus, for a ,b�Ob�C� such that Aa�1Aa=Ab�1Ab and Aab

is positive definite, dim�H0�Vab��= � �Zn /AabZn�=det�Aab�. For the rescaling Cab in Eq. �30�, we
set

Cab ª
det�1n − �− 1Aa�1�1/4 det�1n − �− 1Ab�1�1/4

det�1n − ��− 1/2�Aab
+ �1�1/2

.

Now, for a ,b ,c�Ob�C� such that Aa�1Aa=Ab�1Ab=Ac�1Ac, assume that Aab and Abc are positive
definite. Then we get the product formula

m�eab
� ,ebc

� � = 	
��Zn/AacZ

n
	

u�Zn

��Aab�−u+�
� ��Abc�u

�exp�− ��u − AbcAac
−1��t��Aab

−1 + Abc
−1��1n − �− 1Ab�1�−1��u

− AbcAac
−1��� · eac

� .

Note that the n	n matrix �Aab
−1+Abc

−1��1n−�−1Ab�1�−1 is automatically symmetric due to the con-
dition Aa�1Aa=Ab�1Ab=Ac�1Ac.

In this type �1 case, these theta vectors �eab
� � can be described by theta functions, where the

product of two theta vectors just corresponds to the Moyal product of two theta functions.17

Type �2. For a ,b�Ob�C�,E
pre �, a�b, the holomorphic structure �̄i :HomC

�,E
pre�a ,b�

→HomC
�,E
pre�a ,b� is given by

��̄1 ¯ �̄n�t = �x + 2���Ab
−1 + �2�−1 − �Aa

−1 + �2�−1�x .

The theta vectors are of the form

eab
� �x,�� = ��Aab�

�
� exp�− �xtMabx�, � � Zn/AabZ

n,

where Mab�Matn�R��Matn�C� is given by

Mab ª �Ab
−1 + �2�−1 − �Aa

−1 + �2�−1 = �1n + Ab�2�−1Aab�1n + �2Aa�−1, �32�

which should be a symmetric positive definite matrix. Then, one has dim�H0�Vab��=det�Aab�.
Now, for a ,b ,c�Ob�C� such that Mab and Mbc are symmetric, assume that Mab and Mbc are

positive definite. Then, Mac is also a symmetric positive definite matrix. The product of eab
� with

ebc
� is then

m�eab
� ,ebc

� � = 	
��Zn/AacZ

n
	

u�Zn

��Aab�−u+�
� ��Abc�u

�exp�− ��u − AbcAac��t��Aab
−1 + Abc

−1�

	�1n + Ab�2
t ��1n + Ab�2�−1��u − AbcAac��� · eac

� ,

where the n	n matrix �Aab
−1+Abc

−1��1n+Ab�2
t ��1n+Ab�2�−1�Matn�C� is automatically symmetric. In

particular, one can see that the structure constants do not depend on �2 if and only if �2 is
symmetric: �2

t =�2. This gives the reason that the structure constant of the product does not depend
on the noncommutative parameter in the case of noncommutative real two tori.14,33,16 See also
Refs. 24 and 23, where for a complex two tori with noncommutativity of type �2 with symmetric
�2, such structure constants are computed and checked to be independent of the noncommutativity
�2.

On the other hand, if �2 is antisymmetric, Mab in Eq. �32� is symmetric if and only if
Aa�2Aa=Ab�2Ab.
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Type �3. For a ,b�Ob�C�,E
pre �, a�b, the holomorphic structure �̄i :HomC

�,E
pre�a ,b�

→HomC
�,E
pre�a ,b� is given by

��̄1 ¯ �̄n�t = �x + 2��1n +
�− 1

2
Aab

+ �3�Aabx .

The theta vectors are of the form

eab
� �x,�� = ��Aab�

�
� exp�− �xtMabx�, � � Zn/AabZ

n,

where Mab�Matn�C� is given by

Mab ª �1n −
�− 1

2
Aab

+ �3�Aab,

which should be a symmetric matrix whose real part is positive definite. Here, again, the real part
of Mab is positive definite if and only if Aab is positive definite. Then, one has dim�H0�Vab��
=det�Aab�. The condition that Mab above is symmetric is equal to

Aab
+ �3Aab = �Aab

+ �3Aab�t,

which is, in fact, equivalent to Aa�3Aa=Ab�3Ab.
Now, for a ,b ,c�Ob�C� such that Aa�3Aa=Ab�3Ab=Ac�3Ac, assume that Aab and Abc are

positive definite. The product of two theta vectors is given by

m�eab
� ,ebc

� � = 	
��Zn/AacZ

n
	

u�Zn

��Aab�−u+�
� ��Abc�u

�exp�− ��u − AbcAac
−1��t��Aab

−1 + Abc
−1�

	�1n + �− 1Ab�3���u − AbcAac
−1��� · eac

� .

One can show that the matrix �Aab
−1+Abc

−1��1n+�−1Ab�3� defining a quadratic form in the expression
above is symmetric,

�Aab
−1 + Abc

−1��1n + �− 1Ab�3� = �1n − �− 1�3Ab��Aab
−1 + Abc

−1� .

Thus, we have seen that the structure constants Cabc,�
�� depend on the noncommutative parameter �

in all these three cases.
Though in this paper we have fixed a constant curvature connection for a Heisenberg module,

we can also take all the constant curvature connections on a Heisenberg module into account in a
similar way as in the noncommutative complex one-tori case.14,16 The moduli space of the �con-
stant curvature� connections on a Heisenberg module Eg,� on T�

2n is known to form a commutative
torus T2n. It might also be interesting to investigate the details of various structures on the moduli
space.

We end with showing an example for the case of a noncommutative complex two torus �n
=2�. In this case, for any fixed �s ,s=1,2 ,3, condition �29� reduces to

det�Aa� = det�Ab� .

Thus, for the objects of C f, one can in general have an infinite number of objects. For instance,
diagonal matrices A�Matn�Z� with det�A�=−4 are

Aa = �1 0

0 − 4
�, Ab = �2 0

0 − 2
�, Ac = �4 0

0 − 1
� ,

and Aa�ª−Aa, Ab�ª−Ab, Ac�ª−Ac. Since the zeroth cohomologies of morphisms between
�a ,b ,c� and �a� ,b� ,c�� are absent, the algebra on the zeroth cohomologies is the direct sum of the
one on �a ,b ,c� and the one on �a� ,b� ,c��. If we concentrate on the one side �a ,b ,c�, all Aab, Abc,
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and Aac are positive definite, and the dimensions of the zeroth cohomologies are

dim�H0�Vab�� = 2, dim�H0�Vbc�� = 2, dim�H0�Vac�� = 9.

However, there exist infinite symmetric matrices A�Matn�Z� with det�A�=−4 if nondiagonal ones
also are taken into consideration, since the matrix gtAg has det�A�=−4 for any SL�2,Z� element g.
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