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Gravitational waves in cosmological models of Haava-Witten theory

Osamu Seto and Hideo Kodama
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 12 December 2000; published 14 May 2001

We study the behavior of gravitational waves and their back reaction on the background in cosmological
solutions of the five-dimensional Fava-Witten theory. As a dynamical background, we consider two cosmo-
logical solutions with spatially flat expanding FRW branes, callgdand (|) solutions, in which the orbifold
size increases and decreases in time, respectively. For these background solutions, the wave equation for the
tensor perturbation can be solved by the method of separation of variables, and the mode functions are
classified by a separation constant which can be regarded as a graviton mass. We show that the spatial behavior
of the mode functions is the same for both background solutions but the temporal behavior is significantly
different. We further show that for the ) solution the background bulk geometry is unstable against the back
reaction of the perturbation, while for the)(solution the back reaction on the bulk geometry can be neglected.

We also show that, in contrast with the effect to the bulk geometry, the back reaction of the perturbation
significantly alters the intrinsic geometry of the brane for th§ golution.

DOI: 10.1103/PhysRevD.63.123506 PACS nuni®er98.80.Cq, 04.56:-h, 11.25.Mj

I. INTRODUCTION the cosmic microwave backgrouf@MB) anisotropy.
As pointed out in Ref[17], it is expected that all gravi-

Over the past few years, a considerable number of studig®ns on the brane become massive in a dynamical brane-
have been made on the brane-world scenario in which owvorld model. Then, the excitation of massive graviton would
Universe is realized as a boundary of a higher dimensiondbecome a crucial defect in the brane-world scenario, or pro-
spacetime[1-16]. In particular, inspired by the recent vide a new model of dark matter in the brane-world cosmol-
progress in heterotic M theor2], five-dimensional brane- ogy. It is therefore important to study the evolution of per-
world models in which 3-branes are embedded in an effecturbations on a dynamical brane model in order to explore
tive five-dimensional spacetime compactified $7, [3,4]  the cosmological consequences of the brane-world idea.
have attracted much attention. For example, cosmological Recently, formalisms for cosmological perturbations on
solutions in the five-dimensional Hawa-Witten theory have the brane world have been developed by several authors
been discoverefb—9]. The five-dimensional models of Ran- [17-22. In particular, for general cosmological brane-world
dall and Sundrum, which were proposed to solve the hierarmodels, the evolution equations for the metric and matter
chy problem[12] and to demonstrate an alternative to com-perturbations in the bulk and the boundary conditions for
pactification[13], also have many similarities to the five- them at the brane have been established by Kodeinah
dimensional Hoava-Witten theory. [17] in terms of gauge-invariant variables. The perturbations

In the brane-world scenario, all ordinary matter fields areon a brane are inevitably coupled to the perturbations on the
confined on the brane, while a graviton can propagate in thbulk. The evolution equations and boundary conditions for
fifth dimension. Hence, in order to test the idea of the braneosmological perturbations, in particular, the scalar and vec-
world, one needs to study the nature of gravity in this scetor perturbations on the cosmological brane are too compli-
nario. The behavior of linearized gravity in the Randall- cated to solve. On the other hand, as showiiif], when the
Sundrum models has recently been studied in detail. It haanisotropic stress perturbation vanishes, the tensor perturba-
been shown that massless modes of the metric perturbatigions decouple from the matter perturbation and the bound-
are decoupled from massive modes and Einstein gravity iary condition becomes a Neumann type. Hence, as far as the
recovered at low energy scalesee, e.g[12—-15). However  tensor perturbations are concerned, the problem is easier to
these investigations have been done only in the highly symdeal with.
metric background models such that four-dimensional maxi- In this paper, as a first step to investigate the perturbations
mally symmetric branes, i.e., Minkowski brand®,13 and  on a dynamical brane world, we study the behavior of tensor
de Sitter brane$15], are embedded in a five-dimensional perturbations on two cosmological brane-world models in
anti—de Sitter spacetime, which also is locally maximallyfive-dimensional Hava-Witten theory. In general, the equa-
symmetric in five dimensions. tions for perturbations are no longer separable for a dynami-

On the other hand, many people have discussed the posal 3-brane which is not maximally symmetric as a hyper-
sibility of a homogeneous and isotropic Friedmann-surface. Fortunately, for the cosmological solutions in the
Robertson-Walke(FRW) brane world in the Hava-Witten  Horava-Witten model found ifi5,6], the evolution equation
theory [5-7] and in the Randall-Sundrum scenafit6].  of tensor perturbations becomes separable. However, the
However, there have so far been few attempts to investigatevolution equation is still rather complicated to solve ex-
perturbations on such a dynamical cosmological branectly. So in this paper, we consider the late time behavior of
world, although the four-dimensional real Universe has inhothe tensor perturbation by using WKB approximation to ana-
mogeneous fluctuations as is shown by the observations djze the evolution equation. Further, we discuss the back

0556-2821/2001/632)/1235068)/$20.00 63 123506-1 ©2001 The American Physical Society



OSAMU SETO AND HIDEO KODAMA PHYSICAL REVIEW D63 123506

reaction problem and the stability of the background solu- Let x*=y be a coordinate in the orbifold direction with
tions as well as the brane motion using the second-ordeye[— mp,mp] andZ, acting onS' by y— —y. The orbifold
perturbation theory. We shall show that one of the cosmofixed planes are located gt=0,7p. Then, starting from the
logical solutions is unstable if the back reaction of the tensoeffective five-dimensional actio(l) with the metric ansatz
perturbation is taken into account. We shall also show that o

the back reaction from massive modes significantly alters the ds?=age?*(VC(y)(—dt*+ &;dx'dx)) +e?®*(D(y)dy?,

brane motion, i.e., the evolution of the brane universe, for the (2
solution whose bulk geometry is stable against the tensor . . . . . .
perturbation. one obtains the cosmological solutions of five-dimensional

The present paper is organized as follows. In the nex{_| orava-Witten theory with flat FRW bran¢$]

section we briefly recapitulate the five-dimensional &i@- 2
Witten theory and the cosmological solutions which are used C(y)=D(y)¥*=—aly|+1, 3)
as the background for perturbation. In Sec. Il we give the 3
equations of motion for the tensor perturbation and the Q2A_tl-6 2B (25 @

boundary condition for them, and analyze the behavior of the
tensor perturbation by using the WKB method. Then in Secwhereao are constants andi= + \3/2. The fieldV for these
IV we discuss the back reaction of the perturbation on thesolutions is given by

background. Section V is devoted to conclusion and discus-

sion. v=eB80C(y)3, 5)

. Hereafter we shall refer to the upper and lower choices of
Il. COSMOLOGICAL SOLUTIONS OF HOR AVA-WITTEN sign as the {) and (|) solutions, respectively.

THEORY The (|) solution describes the model that the four-

Horava and Witten have shown that the strongly Coup|eodim'ensionr:1I FRW universe expands whille the orb_ifold space
limit of the EgX Eg heterotic string theory has been identi- Shrinks. On the other hand, the)(solution describes the

fied with the M theory compactified ongtZ, orbifold with ~ Model in which both the four-dimensional FRW universe
Es gauge fields on each orbifold fixed plafi2]. After a and the orbifold space expand, and the latter expands faster
compactification on a Calabi-Yau threefold, the fields of theth@n the former does. _

standard model can be confined to the 3-bf@eThus one  FOr @ while, we shall focus our attention on the four-
has an effective model in which our four-dimensional Uni-dimensional brane a=0. In terms of the cosmic proper
verse is a 3-brane embedded in an effective five-dimensiondime 7 defined by

spacetime compactified d8'/Z,. As was shown by Lukas, 2a

Ovrut, Stelle, and Waldrané], the bosonic sector of this TEaOJ eAdt= _Ot(3*5)/2, (6)
effective model contains the five-dimensional metjgy, a 3-¢

modulusV describing the variation of the Calabi-Yau vol-
ume along the orbifold, and the (1) gauge field4,, and
two charged scalarso(,¢) parametrizing the antisymmetric 1da 1-6

: : _-da_ —(3-5)I2
tensor field. If we assume that the gauge field and the two HO=7 57 2a t : (7)

the Hubble parameter is given by

charged scalar fields vanish, the five-dimensional effective
action for the bosonic sector of the HWIa-Witten theory is Then the wave numbé«H whose Wave'ength Corresponds to

given by[4] the horizon scale is given by
s= 2 [ Vgl r- v i=aH= 5 ®
PARLE 2V? 3Vv?
The scale factor of the four-dimensional FRW brane is writ-
a a ten as
+2\/§J (1)‘_gv_2\/ij oV 9y @
My My 3_5 \(1-9/(3-9
a(r)=ay 2a, T 9

where ks is the five-dimensional gravitational constaatjs

a constant, andM; is the five-dimensional spacetime Comparing this scale factor with that of the no-extra-

bounded by the branest (M and M (). dimension cosmology, we find that the brane expands as if it
The cosmological solutions with flat FRW branes for thiswere a standard four-dimensional flat FRW universe which

effective action have been constructed by Lukasl. [5]  contains a perfect fluid obeying the equation of stpte

and been generalized to include closed and open FRWWp with

branes by Real[6]. In the present paper, as a simple case,

we shall consider only the model in which expanding flat W= 3+4 (10)

FRW branes are embedded in the five-dimensional bulk. 3(1-96)’
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although the brane-world solutions considered here arélere,l represents the level of inhomogeneity in the orbifold
vacuum solutions. In this picture, the FRW brane in thg ( direction andn takes discrete values labeled by an integer
solution looks like an unphysical universe because the domias we shall see in the next subsection. Note that the signature
nant energy condition violates>1. On the other hand, in of the second term in the left-hand side of EtB) is chosen

the (]) case, the FRW brane describes a physical universe iso that the solutions of E13) satisfy the boundary condi-
the sense that the dominant energy condition holdsw0 tion (12).

~0.37<1. In the case oB=0, the last term in Eq(14) provides the
eigenvalue(timeseZA/a(Z)) of the d’Alembertian on the four-
Ill. BEHAVIOR OF TENSOR PERTURBATIONS dimensional brane. Therefore the=0 modes behave as the

massless mode in the brane when the orbifold space is static.
In this sense, we shall refer m=0 (I=0) andm##0 (I
Gravitational perturbations in the bulk are decomposed*0) modes as “massless” and “massive” modes, respec-
into components of the three types: scalar, vector, and tensdiyely.
and each component can be expanded by tensor harmonics of
the same type on the 3-space of constant curvature. Then, the B. Solutions of they-dependent part
tensor perturbations represent gravitational wave modes in
the four-dimensional FRW brane.
For the action(1), the anisotropic stress perturbations
vanish both in the bulk and in the brane. Then, for the back-

A. Wave equation for tensor perturbations

In this subsection, we shall give the solutions of ELp)
which satisfy the boundary conditidd2).
For m=0 modes, Eq(13) reads

ground metric Eqs(2) and (3), the equations of motion for Y,(y)=C,+C,y (16)
the tensor perturbation and the boundary condition are given, '
respectively, by[17] whereC; andC, are integration constants. From the bound-
2_2(A() - B(D) ary condition(12), we find thatC, must vanish. Therefore,
. : . . age - - i - i
Ft [2A(1) + B(t)]H — 0 ST HY+K?H =0, the zero-model=0) solution for they-dependent part is
y
(12) Yi(y)=C;. (17)
Hi=0, aty=0,mp, (12 On the other hand, fan# 0 modes, the solutions of E(L3)

for y=0 are given by

whereH+ is the expansion coefficient of the metric pertur- 2l
bation 8g;; = 2a3e?*C(y)H+T;; , in terms of the tensor-type Y.(y)=C(y)l’z{clH(l}g(gC(y)f”z)
harmonic tensollj; on the flat 3-spacfl7]. Here,—k? is an

eigenvalue of the Laplacian on the flat 3 space, and dots and 2 21 5o
primes denote derivatives with respecttt@ndy, respec- +CoHyg| 5 C(Y)™7 |, (18
tively.

Note that the boundary conditidt2) is simply written as  \yhereC, andC, are constants.
the derivative with respect tg as in the static brane case.  gErom the boundary condition at=0, we find that the
However, the evolution equatidiil) contains an additional 44 of C; andC, becomes
friction term BHy, which does not exist when the back-
ground orbifold space is static, and telerivative term(the C, H(—lz)us(z)
third term), which gives graviton’s mass as we shall see be- AT EY
low. So, these two terms reflect the effect of the dynamics of ! HX25(2)
the background branes model on gravitational waves.

Provided thatH(t,y)=T(t)Y(y), the equations of mo- for eachl. From the boundary condition §it= 7p, we obtain
tion (11) are reduced to the following set of equations for

(19

z=2l/5

Y(y) andT(t), H%)5(2) B H%)5(2) 20
) T H©@
2 H¥45(2) z=21/5 H¥5(2) 2=21(\2ampl3+1)5/2/5
Y/ +| =] C(y)®Y,=0, (13 o .
ao This gives the value of for each excited mode.
_ _ _ For the case of @551, | can be written as
Ti+[2A(1) +B(t)] T + KT, + m?e?A~BOIT =,
(14 5 nwT
=2 Rampl3+1)52-1" el
where the dimensionless constamis defined as follows: (N2amp
5 wheren=1,2, ... .amp<<l is satisfied in the context of the
mZE( V2alag (15 five-dimensional Hava-Witten theory, except for inflation-
3 ' ary epoch8]. In this case, Eq(21) reads

123506-3
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agn
m~ —. (22
p
Thus the reduced KK mass defined by
" @3
Mgk |= ————
T ageB0C(y)
takes a typical value of the orbifold energy scale.
The norm squared of,(y) is then given by
2l
Yi(y)|?~cod| £ {(V2alyl/3+1)%*-1} . (24)

ThereforeY,(y)|? has a peak at each bound4ayy=0 and
y=mp).

C. Solutions oft-dependent parts

In this subsection, we shall examine the behavior of solu

tions to Eq.(14). For simplicity, we omit the suffix hereaf-
ter.

For them=0 modes, Eq(14) is exactly solved to yield

T=D;H{P(kt)+D,HP (kt), (25

whereD,; and D, are constants. In contrast, for tines+ 0

modes, Eq(14) cannot be solved exactly. Therefore, we ana
lyze the behavior of solutions by means of the WKB method

by rewriting Eq.(14) as

(tY2T) "+ 5(1)%t?T=0, (26)
whereS(t) is defined by
1
S(t)= \/k2+ 4—t2+ m2tl =32, (27

In the region wherdS|<S? holds, we can use the WKB

method to obtain the approximate solution
t
T(t)~D1(k)(tS(t))Wex;{—if S(t')dt’}

+D2(k)(tS(t))‘1’2exr{i JtS(t’)dt’}. (29)

SinceS/S? is written as

S| 2[-1+2(1-38)m?t3(19)]
S (L+A(KY2+4m23 932

(29

the WKB approximation is good in the region whete
>m~ 2179 or t>1/(2k). The former relation, which is

PHYSICAL REVIEW D63 123506

In the (1) background case, sindé 3° is a monotoni-
cally decreasing function, the mass term becomes negligible
compared with thé&? term on the right-hand side of E(7).
Therefore, solutions to E¢26) are well approximated by the
solutions(25) in the massless case in a sufficient late time for
any fixed k. In contrast, in the () background case, the
m?t1~3% term increases with time, and the solutions deviate
from those for the massless case in late times. In particular,
for 4m?t3(1~ 9> 1+ 4(kt)?, the WKB solution is given by

omp3(i—9)2
T~(mt3<l—5>’2)—1/2( Dl(k)exp[—i EEOR
. om3(1-9)2
+D2(k)ex+w ) (30)

after an appropriate redefinition of the constabtsandD,.
Note that the late time solutiof80) does not depend on the
wave numbek explicitly, and the argument of the exponen-
tial function in Eq.(30) is proportional tomyk 7. In particu-

Tar, from Eq.(25) and Eq.(30) or from Eq.(27) and Eq.(29),

we see that the ratio of the amplitude of a massive mode to
that of a massless mode behaves as

Tmzo «S(t) ~12__ g[B(O) - A2 (36-1)/4
m=0

(31)

for myx>k/a. This apparently shows that the massive
modes become negligible in late times. However, if we con-
sider their back reaction, the conclusion changes signifi-
cantly, as we will see in the next section.

IV. BACK REACTION OF THE PERTURBATION

In this section, we study the back reaction of the tensor
perturbation on the bulk background geometry and on the
intrinsic geometry of the brane with the help of the second-
order perturbation theory.

First note that if we expand the deviation of the bulk
geometry from the background in terms of some small pa-
rameter, the second order pag satisfies the equation

(LM 8,9)un=r5(T"n+ 82 Twn), (32)
where £ (%) is the differential operator for the metric pertur-
bation obtained from the linear perturbation of the Einstein
equations;T®W,,\ is the effective energy-momentum tensor
for the linear perturbatiord;g of geometry, which is qua-
dratic in 6,9, and 8,Tyy is the second-order perturbation
with respect to the field/ of the bulk energy-momentum
tensor

! (VV)2+ o
2V? 3Vv?

, 1 1
KSTMN:ﬁanaNV_ 5 9uN
(33

equivalent tomy, 71, is satisfied when the time scale is The explicit expression foF %W, is given in the Appendix.
larger than the orbifold radius, while the latter is satisfiedin contrast to the linear perturbation, the spatial average in
when the wavelength is shorter than the Horizon radius, i.ethe three-dimensional sense does not vanish in general and

k>ky, .

produces a spatially homogeneous contributiod4g. This
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contribution can be regarded as the back reaction of the peframework. Here,K# is related to the intrinsic energy-

turbation on the background geometry. momentum tens&PT# of the brane by the junction condi-
In particular, for the tensor perturbation in the modelstjon

considered in the present paper, the effective energy density

Pow IS given by K#:EKE, @i S| == \2a 8. (39
5 ) 0 Vo2 v 3 v 6V
2kEpow=—2k5(TW0) (34
Further, the boundary condition ovi at the brane is ex-
:(ageZA(t)C(y))fquTlZ_'_k2|HT|2) pressed as
+e 2B H2 4. . (35) V.V=*2a. (40)

under the normalization of the tensor harmonicg BsT") Hence we obtain

=1. The leading term opgyw is given by the first term, @WR(g+(5,9)) = DR(g) — 2kX(TEWS
which behaves as™?A(0H2~t~2"%S Meanwhile, the lead- 0+(%0) J (T8
ing term for the energy density of théfield determining the B2[(8,V) (8,V)

. (4D

bulk background geometry is given by the potential energy 5

v .
a?/(3V?)xt~2% and its second-order perturbation is given a v
by where from the AppendixT®WV2) is given by
5,V B2 (8,V) a? 8,V
2o 0_5%Y 2.0 2 2 3 . 2 . . )
TKe02To=2mKksTot o T 2 Ty Kg(TGWg>=——ZaZ(H$—k2H$)+G§H$+ (At BIHrHy
8,V
_p22% 210 36 2
v <510 (36) _EHTHT' (42

From these equations, in th¢)(case we find that the ratio of
pow to theV field energy density decreases in proportion to
t=3+19)2 Fyrther, since the field equation fdris given by

with b=eBVC? and

2 /2 2 2 2
_1 O iv__a_:a_fzmr g {53
o? ° 4p? V2 4a’V? 6Vv2 3CP 4a2C
0, (37 (43)

_ _ _ _ By putting the asymptotic estimates fbl; into this ex-
up to the second orde(s,V)/V is small if (5,9) is negli-  pression, we find that in the § background case, thé%/a2
gible. Hence, in this case the back reaction can be neglectgd,y,  gominates  and decays asr (3t9/(G-9)
in late times. In contrast, for thelf model, the decrease of _  -1+2/5/(3+/3)  gjnce the background value ¢fR(g)

pcw is slower than—Tg. Hence, this model is unstable yecreases in proportion to 72/~t°3, <-|-ng> decreases
against the back reaction of the tensor perturbation. Of, ;e slowly than®R(g). Thus in this casQTGWS) domi-

course the linear perturbation around the original backgroun ates the background value ¥8R(g) in the late BStage and
solution gives a gooq approximation for the _b_e_hawor O_f them order for the FRW nature of the brane to be preserved
system up to some time determined by the initial amplitud '

e . A .

. ; o X 6,VIV must become much larger than unity. This implies
of the tensor perturpatlon, and the instability becomes IMPOTthat the back reaction of the tensor perturbation significantly
tant only after that time.

- . ... modifies the evolutionary behavior of the four-dimensional
Next, we consider the back reaction effect on the 'nt”ns'cuniverse on the brane y

geometry of the brane. Since a full treatment of this problem
is very difficult, we only make a rough estimate using the
Hamiltonian constraint along the brane,

5

g+ (5,9l INV+(3,V)) ]+ W =

V. CONCLUSION AND DISCUSSION

@ 5 5 In the present paper we have studied the evolution of
R=—2k5T, | +K*=KH'K,,, (38)  gravitational wave perturbations in the dynamical FRW
brane-world models of the five-dimensional idwa-Witten
where (YR is the Ricci scalar of the four-dimensional metric theory. As the background spacetime, we have used two cos-
g, of the brane,T,, is the component of the energy- mological solutions, i.e., thel) and (|) solutions, in which
momentum tensor along the unit normal to the brane, anthe branes represent the spatially flat expanding FRW uni-
K, is the extrinsic curvature of the brane. As explainedverses. The most important feature of these solutions was the
above, if we take into account the back reaction of the tensofiact that we can solve the evolution equation for the tensor
perturbation on the brane geometiy,, should be replaced perturbation with help of the method of separation of vari-
by T§+ TGW§+ 8,(T, ) in the second-order perturbation ables in spite of the dynamical nature of the brane. Thus we

123506-5
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were able to study the spatial and the temporal behavior dfranes, and have found that the back reaction effect signifi-
the tensor perturbation separately. cantly alters the time evolution of the brane geometry for the
Since the model is compact in the fifth dimension, we(]) solution, although the back reaction on the bulk geom-
obtained a discrete spectrum for the separation constaetry is negligible for this solution. This result is consistent
which can be interpreted as the graviton mass, and wavwith the naive expectation that the massive modes of the
functions for the massless modes and for the massive modésnsor perturbation behave as dark matter.
were decoupled as in the case of the static brane solutions. These results suggest that the stability against the back
However, we found that the spatial behavior of the wavereaction can be used as a criterion to physically acceptable
functions for the massive modes is different from that in thebrane-world models and to discuss cosmological implica-
Randall-Sundrum mod¢IL3]: in our case they have maxima tions of models. Thus it will be interesting to analyze the
at the branes, but in the RS model they have minima at theonlinear stability of the Randall-Sundrum models as well as
branes when expressed in terms of the variébjeadopted  of more realistic solutions in the Hava-Witten theory, in
in the present paper. This suggests that the coupling betweayhich matter fields in the bulk and on the brane may play
the massless modes and the massive modes on the brarggnificant roles in the stability problem.
may become important when we consider nonlinear correc-
tions in the models considered in the present paper. ACKNOWLEDGMENTS
Although the spatial behavior of perturbations for the two ) ) . .
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ground the temporal behavior of massive modes approachd@-Aid for the Scientific ResearctC2) of the Ministry of
that of massless modes in a late time, while in th fack- Education, Science, Sports and Culture in Jadd640273.
ground the massive modes decay more rapidly than the

massless modes. We can understand this difference as being APPENDIX

paused bY the difference in the behaV|o.r of [éx(p —B(1)], In this appendix, we give the expression for the second
ie., the_ difference between the expansion rate of the foury, yor part with respect to the perturbations of the
dimensional FRW brane and that of the orbifold SPacCe 1 n)-dimensional Einstein-Hilbert action

Roughly speaking, waves become massless wkeny

<1, while they become massive wharmmy>1, wherex

1
=a,e’®C(y)k™! is the reduced proper wavelength. S=——| d"""xy-g(R-2A), (A1)
Therefore, in the {) background, since ekf(t)—B(t)] is a 2k

decreasing function andmyx— 0, every mode becomes ef-
fectively massless in the late time. On the other hand, in th . . o o
case of the {) background, exiA(t)—B(t)] is an increasing m+ n)-_d|men5|ona}l gravitational cpnstant and Ricci scalar,
function, and the modes become more and more massiJ&SPectively, and\ is the cosmological constant.

with time. Then, as the WKB approximation shows, they —BY decomposing the metrig,,, into the background,,,

nd its energy-momentum tensor, wheteand R are the

suffer from an extra damping in proportion to Lfick). and the perturbatioh ,, as
This result shows that in both models the tensor perturba- _
tion is dominated by massless modes. In models such as the 9 =9t Ny (A2)

Randall-Sundrum model in which the bulk geometry is de- d substituting it into Ea(AL btain the followi
termined by a cosmological constant, massless modes of ti1d Subst l]f m?hl Into dq( d)’ we to _g:n N (:tOV\;'hng
tensor perturbation are expected to have no important effe§Pression for the second-oraer part with respect to the per-

on the bulk geometry. In contrast, in thg¢)(solution of the turtlc.)atl.on hy, of the (m+n)-dimensional Einstein-Hilbert
Horava-Witten theory, the energy density of the bulk space-aC lon:

time decreases in time. Hence, the back reaction of the en- 1

ergy density of the tensor perturbation may become impor- :_f d™ =gl i ThAY. (2hP . —h P
tant. In fact, we have shown that in the second-order = 22 OLalh™ (2" = N )
perturbation framework, the contribution of the tensor per-

wv

turbation supersedes the original background energy density +h,,(h#=2h*" )]+ 5(h*=2h*"h,,)R
determining the bulk geometry in thg ) case. Hence, this L , s 5 ,
background solution is unstable against nonlinear correc- +2(2h*Ph,"—hh*)R,,, — 2 A(h"=2h*"h )}
tions. Although this result was obtained for a special brane (A3)

motion obtained under the assumption that the brane con-

tains no matter apart from thg field, it is expected to hold By taking the variation of this action with respect to the

also for a more realistic brane which contains ordinary matbackground metri@,w,

ter, it is because the essential feature of the temporal behav-

ior of the tensor perturbation does not depend on the bound- =

ary condition at the brane. 5Sz:f dm iy giTe 6 (A4)
We have also examined the second-order back reaction of

the tensor perturbation on the intrinsic geometry of thewe obtain the following energy-momentum tengoy, :
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4K2TM= - gﬂv[%h""mhpg;"— %h;ph;”— h.,-h*7+ h"”;ahp)‘;)\—k 2h"”;0)\hp)‘+ $0(h2- 2h?7h,,)+ (h? h,o— hh??). .o

+R M

o pa

—2h*?. h

sultvasp

+2h°7. h

—2h#7., h +2he

up!lvo
—-2h,. h“?

wipllv o

he,+2he .,

nive

po
MV§P+4h joullpy H

haahp)\_ (hp}\h)\g_ hhpg) Rpcr] - %(hz_ 2hpghpcr)(Rp.V_ %gp.vR—i_ g,uVA) +hre

h,,+6R,°

;/thtr;v_ Zthth#
Vh”p;,,— h;Mh;,,-f— hWDh-f—Zh;th,,;p— h;phw;p—Zh;p;Vhp'u

U)\hv)‘h"P-F 2(h?,h7,—h, h*?). . —(R=2A)(hh,,

—2h,,h*,)+1(h?=2h*"h,,).,,— 4R, (h,’h,P—hh?,) = 2R ,(h?,h,”~h*?h,,) —O(h,*h,,—hh,,)

+2(h**h,,—hh*,).

up

where is the (m+n)-dimensional d’Alembertian.
Under the notation adopted 7], the unperturbed back-
ground geometry in brane-world models is expressed as

ds?=g,,dz'dz" = gay(y)dy dy*+ ri(y)doy,  (AG)
where the metric

do= y;;(x)dx'dx (A7)

is that of then-dimensional space with a constant sectional

curvatureK. The tensor mode of the metric perturbation is
expanded as

hab=0, hai=0, hij:2r2HTij . (A8)

For this tensor perturbation, the spatial average of the

energy-momentum tensd@A5) in the spatially flat K=0)
case is given by

(A5)

k2
KX(Tep")=ap| 5| (DHD)*+ 5 H7

2 oo

— D, HDHT

2
+FHTDr-DHT+AH$

4
—2HDaDpH— —HDarDpHr+ GapH?,

(A9)
(T =0, (A10)
2/T7GW 2 3 2 k2 2 1 k 2
K <T|] =r 5” = (DHT) +_HT + A+—Gk HT
2 rz n
—[2{r2(DHT)2+k2H$}
+4r2 1G'<+A)H2 Cij +kikjH3 (A11)
n k T ij iviHr,

where we have normalized a&l};T"y=1 and (T;T%)

:Cij'
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