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Gravitational waves in cosmological models of Horˇava-Witten theory

Osamu Seto and Hideo Kodama
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 12 December 2000; published 14 May 2001!

We study the behavior of gravitational waves and their back reaction on the background in cosmological
solutions of the five-dimensional Horˇava-Witten theory. As a dynamical background, we consider two cosmo-
logical solutions with spatially flat expanding FRW branes, called (↑) and (↓) solutions, in which the orbifold
size increases and decreases in time, respectively. For these background solutions, the wave equation for the
tensor perturbation can be solved by the method of separation of variables, and the mode functions are
classified by a separation constant which can be regarded as a graviton mass. We show that the spatial behavior
of the mode functions is the same for both background solutions but the temporal behavior is significantly
different. We further show that for the (↑) solution the background bulk geometry is unstable against the back
reaction of the perturbation, while for the (↓) solution the back reaction on the bulk geometry can be neglected.
We also show that, in contrast with the effect to the bulk geometry, the back reaction of the perturbation
significantly alters the intrinsic geometry of the brane for the (↓) solution.

DOI: 10.1103/PhysRevD.63.123506 PACS number~s!: 98.80.Cq, 04.50.1h, 11.25.Mj

I. INTRODUCTION

Over the past few years, a considerable number of studies
have been made on the brane-world scenario in which our
Universe is realized as a boundary of a higher dimensional
spacetime @1–16#. In particular, inspired by the recent
progress in heterotic M theory@2#, five-dimensional brane-
world models in which 3-branes are embedded in an effec-
tive five-dimensional spacetime compactified onS1/Z2 @3,4#
have attracted much attention. For example, cosmological
solutions in the five-dimensional Horˇava-Witten theory have
been discovered@5–9#. The five-dimensional models of Ran-
dall and Sundrum, which were proposed to solve the hierar-
chy problem@12# and to demonstrate an alternative to com-
pactification @13#, also have many similarities to the five-
dimensional Horˇava-Witten theory.

In the brane-world scenario, all ordinary matter fields are
confined on the brane, while a graviton can propagate in the
fifth dimension. Hence, in order to test the idea of the brane
world, one needs to study the nature of gravity in this sce-
nario. The behavior of linearized gravity in the Randall-
Sundrum models has recently been studied in detail. It has
been shown that massless modes of the metric perturbation
are decoupled from massive modes and Einstein gravity is
recovered at low energy scales~see, e.g.,@12–15#!. However
these investigations have been done only in the highly sym-
metric background models such that four-dimensional maxi-
mally symmetric branes, i.e., Minkowski branes@12,13# and
de Sitter branes@15#, are embedded in a five-dimensional
anti–de Sitter spacetime, which also is locally maximally
symmetric in five dimensions.

On the other hand, many people have discussed the pos-
sibility of a homogeneous and isotropic Friedmann-
Robertson-Walker~FRW! brane world in the Horˇava-Witten
theory @5–7# and in the Randall-Sundrum scenario@16#.
However, there have so far been few attempts to investigate
perturbations on such a dynamical cosmological brane
world, although the four-dimensional real Universe has inho-
mogeneous fluctuations as is shown by the observations of

the cosmic microwave background~CMB! anisotropy.
As pointed out in Ref.@17#, it is expected that all gravi-

tons on the brane become massive in a dynamical brane-
world model. Then, the excitation of massive graviton would
become a crucial defect in the brane-world scenario, or pro-
vide a new model of dark matter in the brane-world cosmol-
ogy. It is therefore important to study the evolution of per-
turbations on a dynamical brane model in order to explore
the cosmological consequences of the brane-world idea.

Recently, formalisms for cosmological perturbations on
the brane world have been developed by several authors
@17–22#. In particular, for general cosmological brane-world
models, the evolution equations for the metric and matter
perturbations in the bulk and the boundary conditions for
them at the brane have been established by Kodamaet al.
@17# in terms of gauge-invariant variables. The perturbations
on a brane are inevitably coupled to the perturbations on the
bulk. The evolution equations and boundary conditions for
cosmological perturbations, in particular, the scalar and vec-
tor perturbations on the cosmological brane are too compli-
cated to solve. On the other hand, as shown in@17#, when the
anisotropic stress perturbation vanishes, the tensor perturba-
tions decouple from the matter perturbation and the bound-
ary condition becomes a Neumann type. Hence, as far as the
tensor perturbations are concerned, the problem is easier to
deal with.

In this paper, as a first step to investigate the perturbations
on a dynamical brane world, we study the behavior of tensor
perturbations on two cosmological brane-world models in
five-dimensional Horˇava-Witten theory. In general, the equa-
tions for perturbations are no longer separable for a dynami-
cal 3-brane which is not maximally symmetric as a hyper-
surface. Fortunately, for the cosmological solutions in the
Hořava-Witten model found in@5,6#, the evolution equation
of tensor perturbations becomes separable. However, the
evolution equation is still rather complicated to solve ex-
actly. So in this paper, we consider the late time behavior of
the tensor perturbation by using WKB approximation to ana-
lyze the evolution equation. Further, we discuss the back
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reaction problem and the stability of the background solu-
tions as well as the brane motion using the second-order
perturbation theory. We shall show that one of the cosmo-
logical solutions is unstable if the back reaction of the tensor
perturbation is taken into account. We shall also show that
the back reaction from massive modes significantly alters the
brane motion, i.e., the evolution of the brane universe, for the
solution whose bulk geometry is stable against the tensor
perturbation.

The present paper is organized as follows. In the next
section we briefly recapitulate the five-dimensional Horˇava-
Witten theory and the cosmological solutions which are used
as the background for perturbation. In Sec. III we give the
equations of motion for the tensor perturbation and the
boundary condition for them, and analyze the behavior of the
tensor perturbation by using the WKB method. Then in Sec.
IV we discuss the back reaction of the perturbation on the
background. Section V is devoted to conclusion and discus-
sion.

II. COSMOLOGICAL SOLUTIONS OF HOR ˇ AVA-WITTEN
THEORY

Hořava and Witten have shown that the strongly coupled
limit of the E83E8 heterotic string theory has been identi-
fied with the M theory compactified on aS1/Z2 orbifold with
E8 gauge fields on each orbifold fixed plane@2#. After a
compactification on a Calabi-Yau threefold, the fields of the
standard model can be confined to the 3-brane@3#. Thus one
has an effective model in which our four-dimensional Uni-
verse is a 3-brane embedded in an effective five-dimensional
spacetime compactified onS1/Z2. As was shown by Lukas,
Ovrut, Stelle, and Waldram@4#, the bosonic sector of this
effective model contains the five-dimensional metricgMN , a
modulusV describing the variation of the Calabi-Yau vol-
ume along the orbifold, and theU(1) gauge fieldAM and
two charged scalars (s,j) parametrizing the antisymmetric
tensor field. If we assume that the gauge field and the two
charged scalar fields vanish, the five-dimensional effective
action for the bosonic sector of the Horˇava-Witten theory is
given by @4#

S5
1

2k5
2 F EM5

A2gS R2
1

2V2
~¹V!22

a2

3V2D
12A2E

M4
(1)

A2g
a

V
22A2E

M4
(2)

A2g
a

VG , ~1!

wherek5 is the five-dimensional gravitational constant,a is
a constant, andM5 is the five-dimensional spacetime
bounded by the branesM 4

(1) andM 4
(2) .

The cosmological solutions with flat FRW branes for this
effective action have been constructed by Lukaset al. @5#
and been generalized to include closed and open FRW
branes by Reall@6#. In the present paper, as a simple case,
we shall consider only the model in which expanding flat
FRW branes are embedded in the five-dimensional bulk.

Let x4[y be a coordinate in the orbifold direction with
yP@2pr,pr# andZ2 acting onS1 by y→2y. The orbifold
fixed planes are located aty50,pr. Then, starting from the
effective five-dimensional action~1! with the metric ansatz

ds25a0
2e2A(t)C~y!~2dt21d i j dxidxj !1e2B(t)D~y!dy2,

~2!

one obtains the cosmological solutions of five-dimensional
Hořava-Witten theory with flat FRW branes@5#

C~y!5D~y!1/45
A2

3
auyu11, ~3!

e2A5t12d, e2B5t2d, ~4!

wherea0 are constants andd56A3/2. The fieldV for these
solutions is given by

V5eB(t)C~y!3. ~5!

Hereafter we shall refer to the upper and lower choices of
sign as the (↑) and (↓) solutions, respectively.

The (↓) solution describes the model that the four-
dimensional FRW universe expands while the orbifold space
shrinks. On the other hand, the (↑) solution describes the
model in which both the four-dimensional FRW universe
and the orbifold space expand, and the latter expands faster
than the former does.

For a while, we shall focus our attention on the four-
dimensional brane aty50. In terms of the cosmic proper
time t defined by

t[a0E eAdt5
2a0

32d
t (32d)/2, ~6!

the Hubble parameter is given by

H~ t ![
1

a

da

dt
5

12d

2a0
t2(32d)/2. ~7!

Then the wave numberkH whose wavelength corresponds to
the horizon scale is given by

kH[aH5
12d

2t
. ~8!

The scale factor of the four-dimensional FRW brane is writ-
ten as

a~t!5a0S 32d

2a0
t D (12d)/(32d)

. ~9!

Comparing this scale factor with that of the no-extra-
dimension cosmology, we find that the brane expands as if it
were a standard four-dimensional flat FRW universe which
contains a perfect fluid obeying the equation of statep
5wr with

w5
31d

3~12d!
, ~10!
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although the brane-world solutions considered here are
vacuum solutions. In this picture, the FRW brane in the (↑)
solution looks like an unphysical universe because the domi-
nant energy condition violatesw.1. On the other hand, in
the (↓) case, the FRW brane describes a physical universe in
the sense that the dominant energy condition holds, 0,w
'0.37,1.

III. BEHAVIOR OF TENSOR PERTURBATIONS

A. Wave equation for tensor perturbations

Gravitational perturbations in the bulk are decomposed
into components of the three types: scalar, vector, and tensor,
and each component can be expanded by tensor harmonics of
the same type on the 3-space of constant curvature. Then, the
tensor perturbations represent gravitational wave modes in
the four-dimensional FRW brane.

For the action~1!, the anisotropic stress perturbations
vanish both in the bulk and in the brane. Then, for the back-
ground metric Eqs.~2! and ~3!, the equations of motion for
the tensor perturbation and the boundary condition are given,
respectively, by@17#

ḦT1@2Ȧ~ t !1Ḃ~ t !#ḢT2
a0

2e2(A(t)2B(t))

C~y!3
HT91k2HT50,

~11!

HT850, at y50,pr, ~12!

whereHT is the expansion coefficient of the metric pertur-
bationdgi j 52a0

2e2AC(y)HTTi j , in terms of the tensor-type
harmonic tensorTi j on the flat 3-space@17#. Here,2k2 is an
eigenvalue of the Laplacian on the flat 3 space, and dots and
primes denote derivatives with respect tot and y, respec-
tively.

Note that the boundary condition~12! is simply written as
the derivative with respect toy as in the static brane case.
However, the evolution equation~11! contains an additional
friction term ḂḢT , which does not exist when the back-
ground orbifold space is static, and they-derivative term~the
third term!, which gives graviton’s mass as we shall see be-
low. So, these two terms reflect the effect of the dynamics of
the background branes model on gravitational waves.

Provided thatHT(t,y)5T(t)Y(y), the equations of mo-
tion ~11! are reduced to the following set of equations for
Y(y) andT(t),

Yl91S m

a0
D 2

C~y!3Yl50, ~13!

T̈l1@2Ȧ~ t !1Ḃ~ t !#Ṫl1k2Tl1m2e2[A(t)2B(t)]Tl50,
~14!

where the dimensionless constantm is defined as follows:

m2[SA2a la0

3 D 2

. ~15!

Here,l represents the level of inhomogeneity in the orbifold
direction andm takes discrete values labeled by an integern,
as we shall see in the next subsection. Note that the signature
of the second term in the left-hand side of Eq.~13! is chosen
so that the solutions of Eq.~13! satisfy the boundary condi-
tion ~12!.

In the case ofḂ50, the last term in Eq.~14! provides the
eigenvalue~timese2A/a0

2) of the d’Alembertian on the four-
dimensional brane. Therefore them50 modes behave as the
massless mode in the brane when the orbifold space is static.
In this sense, we shall refer tom50 (l 50) andmÞ0 (l
Þ0) modes as ‘‘massless’’ and ‘‘massive’’ modes, respec-
tively.

B. Solutions of they-dependent part

In this subsection, we shall give the solutions of Eq.~13!
which satisfy the boundary condition~12!.

For m50 modes, Eq.~13! reads

Yl~y!5C11C2 y, ~16!

whereC1 andC2 are integration constants. From the bound-
ary condition~12!, we find thatC2 must vanish. Therefore,
the zero-mode (l 50) solution for they-dependent part is

Yl~y!5C1 . ~17!

On the other hand, formÞ0 modes, the solutions of Eq.~13!
for y>0 are given by

Yl~y!5C~y!1/2FC1H1/5
(1)S 2l

5
C~y!5/2D

1C2H1/5
(2)S 2l

5
C~y!5/2D G , ~18!

whereC1 andC2 are constants.
From the boundary condition aty50, we find that the

ratio of C1 andC2 becomes

C2

C1
52

H24/5
(1) ~z!

H24/5
(2) ~z!

U
z52l /5

~19!

for eachl. From the boundary condition aty5pr, we obtain

H24/5
(1) ~z!

H24/5
(2) ~z!

U
z52l /5

5
H24/5

(1) ~z!

H24/5
(2) ~z!

U
z52l (A2apr/311)5/2/5

. ~20!

This gives the value ofl for each excited mode.
For the case of 2l /5@1, l can be written as

l'
5

2

np

~A2apr/311!5/221
, ~21!

wheren51,2, . . . .apr!1 is satisfied in the context of the
five-dimensional Horˇava-Witten theory, except for inflation-
ary epoch@8#. In this case, Eq.~21! reads
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m'
a0n

r
. ~22!

Thus the reduced KK mass defined by

mKK,l[
m

a0eB(t)AC~y!
~23!

takes a typical value of the orbifold energy scale.
The norm squared ofYl(y) is then given by

uYl~y!u2'cos2F2l

5
$~A2auyu/311!5/221%G . ~24!

ThereforeuYl(y)u2 has a peak at each boundary~at y50 and
y5pr).

C. Solutions of t-dependent parts

In this subsection, we shall examine the behavior of solu-
tions to Eq.~14!. For simplicity, we omit the suffixl hereaf-
ter.

For them50 modes, Eq.~14! is exactly solved to yield

T5D1H0
(1)~kt!1D2H0

(2)~kt!, ~25!

whereD1 and D2 are constants. In contrast, for themÞ0
modes, Eq.~14! cannot be solved exactly. Therefore, we ana-
lyze the behavior of solutions by means of the WKB method
by rewriting Eq.~14! as

~ t1/2T!¨1S~ t !2t1/2T50, ~26!

whereS(t) is defined by

S~ t ![Ak21
1

4t2
1m2t123d. ~27!

In the region whereuṠu!S2 holds, we can use the WKB
method to obtain the approximate solution

T~ t !'D1~k!„tS~ t !…21/2expF2 i E t

S~ t8!dt8G
1D2~k!„tS~ t !…21/2expF i E t

S~ t8!dt8G . ~28!

SinceṠ/S2 is written as

uṠu

S2
5

2u2112~123d!m2t3(12d)u

„114~kt!214m2t3(12d)
…

3/2
, ~29!

the WKB approximation is good in the region wheret
@m22/„3(12d)… or t@1/(2k). The former relation, which is
equivalent tomKKt@1, is satisfied when the time scale is
larger than the orbifold radius, while the latter is satisfied
when the wavelength is shorter than the Horizon radius, i.e.,
k@kH .

In the (↑) background case, sincet123d is a monotoni-
cally decreasing function, the mass term becomes negligible
compared with thek2 term on the right-hand side of Eq.~27!.
Therefore, solutions to Eq.~26! are well approximated by the
solutions~25! in the massless case in a sufficient late time for
any fixed k. In contrast, in the (↓) background case, the
m2t123d term increases with time, and the solutions deviate
from those for the massless case in late times. In particular,
for 4m2t3(12d)@114(kt)2, the WKB solution is given by

T'~mt3(12d)/2!21/2S D1~k!expF2 i
2mt3(12d)/2

3~12d! G
1D2~k!expF i

2mt3(12d)/2

3~12d! G D , ~30!

after an appropriate redefinition of the constantsD1 andD2.
Note that the late time solution~30! does not depend on the
wave numberk explicitly, and the argument of the exponen-
tial function in Eq.~30! is proportional tomKKt. In particu-
lar, from Eq.~25! and Eq.~30! or from Eq.~27! and Eq.~28!,
we see that the ratio of the amplitude of a massive mode to
that of a massless mode behaves as

TmÞ0

Tm50
}S~ t !21/2;e[B(t)2A(t)]/25t (3d21)/4 ~31!

for mKK@k/a. This apparently shows that the massive
modes become negligible in late times. However, if we con-
sider their back reaction, the conclusion changes signifi-
cantly, as we will see in the next section.

IV. BACK REACTION OF THE PERTURBATION

In this section, we study the back reaction of the tensor
perturbation on the bulk background geometry and on the
intrinsic geometry of the brane with the help of the second-
order perturbation theory.

First note that if we expand the deviation of the bulk
geometry from the background in terms of some small pa-
rameter, the second order partd2g satisfies the equation

~L (1)d2g!MN5k5
2~TGW

MN1d2TMN!, ~32!

whereL (1) is the differential operator for the metric pertur-
bation obtained from the linear perturbation of the Einstein
equations,TGW

MN is the effective energy-momentum tensor
for the linear perturbationd1g of geometry, which is qua-
dratic in d1g, and d2TMN is the second-order perturbation
with respect to the fieldV of the bulk energy-momentum
tensor

k5
2TMN5

1

2V2
]MV]NV2

1

2
gMNS 1

2V2
~¹V!21

a2

3V2D .

~33!

The explicit expression forTGW
MN is given in the Appendix.

In contrast to the linear perturbation, the spatial average in
the three-dimensional sense does not vanish in general and
produces a spatially homogeneous contribution tod2g. This
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contribution can be regarded as the back reaction of the per-
turbation on the background geometry.

In particular, for the tensor perturbation in the models
considered in the present paper, the effective energy density
rGW is given by

2k5
2rGW[22k5

2^TGW
0
0& ~34!

5„a0
2e2A(t)C~y!…21~ uḢTu21k2uHTu2!

1e22BuHT8 u21•••, ~35!

under the normalization of the tensor harmonics as^Ti j T
i j &

51. The leading term ofrGW is given by the first term,
which behaves ase22A(t)ḢT

2;t221dS. Meanwhile, the lead-
ing term for the energy density of theV field determining the
bulk background geometry is given by the potential energy
a2/(3V2)}t22d, and its second-order perturbation is given
by

2k5
2d2T0

052
d2V

V
k5

2T0
01

Ḃ2

2a2

~d2V̇!

V̇
1

a2

V2

d2V8

V8

;2
d2V

V
k5

2T0
0 . ~36!

From these equations, in the (↓) case we find that the ratio of
rGW to theV field energy density decreases in proportion to
t23(11udu)/2. Further, since the field equation forV is given by

hg1^d2g&@ ln~V1^d2V&!#1
2a2

3~V1^d2V&!2
50, ~37!

up to the second order,^d2V&/V is small if ^d2g& is negli-
gible. Hence, in this case the back reaction can be neglected
in late times. In contrast, for the (↑) model, the decrease of
rGW is slower than2T0

0. Hence, this model is unstable
against the back reaction of the tensor perturbation. Of
course the linear perturbation around the original background
solution gives a good approximation for the behavior of the
system up to some time determined by the initial amplitude
of the tensor perturbation, and the instability becomes impor-
tant only after that time.

Next, we consider the back reaction effect on the intrinsic
geometry of the brane. Since a full treatment of this problem
is very difficult, we only make a rough estimate using the
Hamiltonian constraint along the brane,

(4)R522k5
2T''1K22KmnKmn , ~38!

where (4)R is the Ricci scalar of the four-dimensional metric
gmn of the brane,T'' is the component of the energy-
momentum tensor along the unit normal to the brane, and
Kmn is the extrinsic curvature of the brane. As explained
above, if we take into account the back reaction of the tensor
perturbation on the brane geometry,T'' should be replaced
by T5

51TGW
5
51d2(T'') in the second-order perturbation

framework. Here,Kn
m is related to the intrinsic energy-

momentum tensor(4)Tn
m of the brane by the junction condi-

tion

Kn
m5

1

2
k5

2S (4)Tn
m2

1

3
(4)Tdn

mD57
A2a

6V
dn

m . ~39!

Further, the boundary condition onV at the brane is ex-
pressed as

¹'V56A2a. ~40!

Hence we obtain

(4)R~g1^d2g&!5 (4)R~g!22k5
2^TGW

5
5&

1
Ḃ2

a2 S ^d2V&
V

2
^ḋ2V&

V̇
D , ~41!

where from the Appendix̂TGW
5
5& is given by

k5
2^TGW

5
5&52

3

2a2
~ḢT

22k2HT
2!1G5

5HT
21

2

a2
~Ȧ1Ḃ!HTḢT

2
2

b2
HTHT9 , ~42!

with b5eB(t)C2 and

G5
55

1

4b2

~V8!2

V2
1

1

4a2

V̇2

V2
2

a2

6V2
5

a2

3C6
t22d1

d2

4a0
2C

td23.

~43!

By putting the asymptotic estimates forHT into this ex-
pression, we find that in the (↓) background case, theḢT

2/a2

term dominates and decays ast2(31d)/(32d)

5t2112udu/(31udu). Since the background value of(4)R(g)
decreases in proportion to 1/t2;td23, ^TGW

5
5& decreases

more slowly than(4)R(g). Thus in this casêTGW
5
5& domi-

nates the background value for(4)R(g) in the late stage and
in order for the FRW nature of the brane to be preserved,
d2V/V must become much larger than unity. This implies
that the back reaction of the tensor perturbation significantly
modifies the evolutionary behavior of the four-dimensional
universe on the brane.

V. CONCLUSION AND DISCUSSION

In the present paper we have studied the evolution of
gravitational wave perturbations in the dynamical FRW
brane-world models of the five-dimensional Horˇava-Witten
theory. As the background spacetime, we have used two cos-
mological solutions, i.e., the (↑) and (↓) solutions, in which
the branes represent the spatially flat expanding FRW uni-
verses. The most important feature of these solutions was the
fact that we can solve the evolution equation for the tensor
perturbation with help of the method of separation of vari-
ables in spite of the dynamical nature of the brane. Thus we
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were able to study the spatial and the temporal behavior of
the tensor perturbation separately.

Since the model is compact in the fifth dimension, we
obtained a discrete spectrum for the separation constant
which can be interpreted as the graviton mass, and wave
functions for the massless modes and for the massive modes
were decoupled as in the case of the static brane solutions.
However, we found that the spatial behavior of the wave
functions for the massive modes is different from that in the
Randall-Sundrum model@13#: in our case they have maxima
at the branes, but in the RS model they have minima at the
branes when expressed in terms of the variableHT adopted
in the present paper. This suggests that the coupling between
the massless modes and the massive modes on the branes
may become important when we consider nonlinear correc-
tions in the models considered in the present paper.

Although the spatial behavior of perturbations for the two
solutions was exactly the same, their temporal behavior was
quite different. Namely, we have found that in the (↑) back-
ground the temporal behavior of massive modes approaches
that of massless modes in a late time, while in the (↓) back-
ground the massive modes decay more rapidly than the
massless modes. We can understand this difference as being
caused by the difference in the behavior of exp@A(t)2B(t)#,
i.e., the difference between the expansion rate of the four-
dimensional FRW brane and that of the orbifold space.
Roughly speaking, waves become massless whenl mKK
!1, while they become massive whenl mKK@1, wherel
[a0eA(t)AC(y)k21 is the reduced proper wavelength.
Therefore, in the (↑) background, since exp@A(t)2B(t)# is a
decreasing function andl mKK→0, every mode becomes ef-
fectively massless in the late time. On the other hand, in the
case of the (↓) background, exp@A(t)2B(t)# is an increasing
function, and the modes become more and more massive
with time. Then, as the WKB approximation shows, they
suffer from an extra damping in proportion to 1/(lmKK).

This result shows that in both models the tensor perturba-
tion is dominated by massless modes. In models such as the
Randall-Sundrum model in which the bulk geometry is de-
termined by a cosmological constant, massless modes of the
tensor perturbation are expected to have no important effect
on the bulk geometry. In contrast, in the (↑) solution of the
Hořava-Witten theory, the energy density of the bulk space-
time decreases in time. Hence, the back reaction of the en-
ergy density of the tensor perturbation may become impor-
tant. In fact, we have shown that in the second-order
perturbation framework, the contribution of the tensor per-
turbation supersedes the original background energy density
determining the bulk geometry in the (↑) case. Hence, this
background solution is unstable against nonlinear correc-
tions. Although this result was obtained for a special brane
motion obtained under the assumption that the brane con-
tains no matter apart from thef field, it is expected to hold
also for a more realistic brane which contains ordinary mat-
ter, it is because the essential feature of the temporal behav-
ior of the tensor perturbation does not depend on the bound-
ary condition at the brane.

We have also examined the second-order back reaction of
the tensor perturbation on the intrinsic geometry of the

branes, and have found that the back reaction effect signifi-
cantly alters the time evolution of the brane geometry for the
(↓) solution, although the back reaction on the bulk geom-
etry is negligible for this solution. This result is consistent
with the naive expectation that the massive modes of the
tensor perturbation behave as dark matter.

These results suggest that the stability against the back
reaction can be used as a criterion to physically acceptable
brane-world models and to discuss cosmological implica-
tions of models. Thus it will be interesting to analyze the
nonlinear stability of the Randall-Sundrum models as well as
of more realistic solutions in the Horˇava-Witten theory, in
which matter fields in the bulk and on the brane may play
significant roles in the stability problem.
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APPENDIX

In this appendix, we give the expression for the second
order part with respect to the perturbations of the
(m1n)-dimensional Einstein-Hilbert action

S5
1

2k2E dm1nxA2g~R22L!, ~A1!

and its energy-momentum tensor, wherek and R are the
(m1n)-dimensional gravitational constant and Ricci scalar,
respectively, andL is the cosmological constant.

By decomposing the metricgmn into the backgroundḡmn

and the perturbationhmn as

gmn5ḡmn1hmn , ~A2!

and substituting it into Eq.~A1!, we obtain the following
expression for the second-order part with respect to the per-
turbation hmn of the (m1n)-dimensional Einstein-Hilbert
action:

S25
1

2k2E dm1nxA2ḡ$ 1
4 @hmn

;r~2hr
m;n2hmn

;r!

1h;m~h;m22hmn
;n!#1 1

8 ~h222hmnhmn!R̄

1 1
2 ~2hmrhr

n2hhmn!R̄mn2 1
4 L~h222hmnhmn!%.

~A3!

By taking the variation of this action with respect to the
background metricḡmn ,

dS25E dm1nxA2ḡ 1
2 Tmndḡmn , ~A4!

we obtain the following energy-momentum tensorTmn :
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4k2Tmn52gmn@ 1
2 hrs

;lhrs
;l2 1

2 h;rh;r2h;rshrs1hrs
;shr

l
;l12hrs

;slhr
l1 1

2 h~h222hrshrs!1~hrlhl
s2hhrs! ;rs

1Rs
l

rahsahr
l2~hrlhl

s2hhrs!Rrs#2 1
2 ~h222hrshrs!~Rmn2 1

2 gmnR1gmnL!1hrs
;mhrs;n22hn

rhhrm

22hrs
;mrhns22hrs

;mhns;r12hr
m;nshs

r12hr
m;nhs

r;s2h;mh;n1hmnhh12h;mhr
n;r2h;rhmn;r22h;r

;nhrm

22hm
r

;rhn
s

;s12hrs
;shmn;r14hrs

;smhrn16Rm
r

slhn
lhs

r12~hr
mhs

n2hmnhrs! ;rs2~R22L!~hhmn

22hmrhr
n!1 1

2 ~h222hrshrs! ;mn24Rmr~hn
shs

r2hhr
n!22Rrs~hr

nhm
s2hrshmn!2h~hm

rhrn2hhmn!

12~hrlhln2hhr
n! ;mr , ~A5!

whereh is the (m1n)-dimensional d’Alembertian.
Under the notation adopted in@17#, the unperturbed back-

ground geometry in brane-world models is expressed as

ds̄25ḡmndzmdzn5gab~y!dyadyb1r 2~y!dsn
2 , ~A6!

where the metric

dsn
25g i j ~x!dxidxj ~A7!

is that of then-dimensional space with a constant sectional
curvatureK. The tensor mode of the metric perturbation is
expanded as

hab50, hai50, hi j 52r 2HTi j . ~A8!

For this tensor perturbation, the spatial average of the
energy-momentum tensor~A5! in the spatially flat (K50)
case is given by

k2^Tab
GW&5gabF3

2 H ~DHT!21
k2

r 2
HT

2J
1

2

r
HTDr •DHT1LHT

2G2DaHTDbHT

22HTDaDbHT2
4

r
HTDarD bHT1GabHT

2 ,

~A9!

k2^Tai
GW&50, ~A10!

k2^Ti j
GW&5r 2d i j F3

2 H ~DHT!21
k2

r 2
HT

2J 1S L1
1

n
Gk

kDHT
2G

2F2$r 2~DHT!21k2HT
2%

14r 2S 1

n
Gk

k1L DHT
2GCi j 1kikjHT

2 , ~A11!

where we have normalized aŝTi j T
i j &51 and ^TikT

k
j&

5Ci j .
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