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A statistical-mechanical treatment of the solubilization in micelle is presented in combination with
molecular simulation. The micellar solution is viewed as an inhomogeneous and partially finite,
mixed solvent system, and the method of energy representation is employed to evaluate the
free-energy change for insertion of a solute into the micelle inside with a realistic set of potential
functions. Methane, benzene, and ethylbenzene are adopted as model hydrophobic solutes to
analyze the solubilization in sodium dodecyl sulfate micelle. It is shown that these solutes are more
favorably located within the micelle than in bulk water and that the affinity to the micelle inside is
stronger for benzene and ethylbenzene than for methane. The micellar system is then divided into
the hydrophobic core, the head-group region in contact with water, and the aqueous region outside
the micelle to assess the relative importance of each region in the solubilization. In support of the
pseudophase model, the aqueous region is found to be unimportant to determine the extent of
solubilization. The contribution from the hydrophobic-core region is shown to be dominant for
benzene and ethylbenzene, while an appreciable contribution from the head-group region is
observed for methane. The methodology presented is not restricted to the binding of a molecule to
micelle, and will be useful in treating the binding to such nanoscale structures as protein and
membrane. © 2006 American Institute of Physics. �DOI: 10.1063/1.2186324�

I. INTRODUCTION

Micelle is a self-assembled aggregate of amphiphilic sur-
factants in water. It involves a hydrophobic core and pro-
vides a favorable environment for organic compounds. Upon
formation of a micelle, the solubility is often enhanced for an
organic compound which is insoluble or sparingly soluble in
water. This phenomenon is called solubilization, and is a
most important function of a micelle.1–3 The solubilization
results from the contrast of the interactions among water,
surfactants, and organic compounds. A well-defined
statistical-mechanical framework is thus desirable to be de-
veloped for the molecular understanding and control of the
solubilization.

Since the solubilization is of central importance in inter-
face sciences and technologies, it has been extensively stud-
ied in strong connections to pharmaceutical and biological
applications.1–3 In the past, however, an enormous set of ex-
perimental data on the solubilization were processed with
phenomenological or coarse-grained models.1–6 A statistical-
mechanical framework could not be implemented in practice
when a direct reference to intermolecular interactions was
desired. In the present, a theoretical-computational treatment
of a micellar solution is feasible at atomic resolution with the
advance of molecular simulation methodology.7–25 The struc-
ture and dynamics of a micellar aggregate and the surround-
ing medium can be quantitatively analyzed through a nano-
scale simulation. In this paper, we provide a molecular ap-
proach to the solubilization. We extend the method of energy
representation developed in previous papers,26–28 and com-

bine it with a large-scale molecular simulation to evaluate
the solubility change induced by micelle formation.

The basic idea of our scheme is to view a micellar solu-
tion as a mixed solvent. The surfactant molecules are treated
not as solute species, but as part of the mixed solvent system.
In this view, the solvation free energy of a solute molecule of
interest in a micellar solution denotes the free-energy change
for turning on the interactions of the solute with the solvent
water, surfactants, and counterions if present. The solubiliza-
tion is described by the difference in the solvation free en-
ergy between the micellar system and the neat solvent �pure
water� system. When the micelle is dilute, in particular, it is
natural to set the origin of the solution at �or near� the mi-
cellar center. The mixed solvent system then consists of the
surfactant molecules forming the micelle, water, and distrib-
uted counterions �when the surfactant is ionic�. Water is de-
ficient in the interior of the micelle, and the surfactant mol-
ecules belonging to the micelle are localized around the
origin and are finite in number. The mixed solvent is thus
inhomogeneous even before the solute insertion, and is par-
tially finite in the sense that the number is finite for the
surfactant �and counterion� involved as solvent species in the
dilute micellar solution. The point of our scheme is to evalu-
ate the solvation free energy of a solute in an inhomogeneous
and partially finite, mixed solvent system.

Even when the system is inhomogeneous and partially
finite, a formally exact free energy calculation is possible by
the standard free-energy perturbation and thermodynamic in-
tegration methods.29,30 These methods are notorious for the
heavy computational demand, however, since an explicit ref-
erence needs to be made to the intermediate states of the
gradual variation process of the system. In this work, we
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develop an approximate approach to the solvation free en-
ergy of a solute molecule in a micellar solution on the basis
of the method of energy representation.26–28 The method of
energy representation is a theory of distribution functions in
solution with strong emphasis on the solvation free energy.
In the energy representation, the solute-solvent interaction
energy is adopted for the coordinate of the distribution func-
tions, and a functional for the solvation free energy is con-
structed in terms of energy distribution functions in the so-
lution and reference solvent systems of interest. Since the set
of configurations �structures� with the equal solute-solvent
interaction energies are grouped into one at the outset, any
approximation in the energy representation respects the
statistical-mechanical principle that the configurations with
the same solute-solvent interaction energies have equal
weights in the solvation free energy. An approximate func-
tional was presented in Refs. 27 and 28, with well-
established performance for nonpolar, polar, and ionic sol-
utes in water over a wide range of thermodynamic
conditions. Actually, none of the system homogeneity, the
thermodynamic limit, and the rigidity of molecule �and ion�
is assumed in the formulation of the method of energy rep-
resentation. A straightforward application of the method is
thus possible to an inhomogeneous and partially finite sys-
tem containing flexible species. In the practical implementa-
tion, the computation is required to be performed only at the
initial and final states of the solute insertion process. The
computational demand for the free-energy evaluation then
becomes comparable to that for obtaining simple distribution
functions in the systems of interest.31

In this work, we treat the solubilization of typical hydro-
phobic solutes in sodium dodecyl sulfate �SDS� micelle.
Methane, benzene, and ethylbenzene are employed as the
solutes, and their free energies of solvation are quantitatively
discussed to assess the solubility change caused by the pres-
ence of a SDS micelle. To highlight the effect of the structure
of the micellar aggregate, it is useful to conceptually divide
the micellar system into the hydrophobic core, the head-
group region in contact with water, and the aqueous region
outside the micelle. We evaluate the contribution from each
region and show the extent of localization of the micelle-
induced effect.

The organization of the paper is as follows. In Sec. II, a
relationship is established between the free energy of solva-
tion and the solubility change of a solute induced by micelle
formation, and an approximate scheme is developed to
evaluate the free energy in the micellar system. In Sec. III,
the systems to be examined are identified and the computa-

tional procedures are described. In Sec. IV, the solvation free
energy is presented over a set of regions in the micellar sys-
tem, and its difference between the micelle inside and bulk
water is discussed for the quantitative and molecular-level
evaluation of the solubilization.

II. THEORY

The purpose of this section is to construct an approxi-
mate expression for the solubility change of a solute induced
by micelle formation. The construction consists of three
steps. In Sec. II A, we present a general formulation for the
solubility change and identify the solvation free energy to be
evaluated. In Sec. II B, we introduce a scheme to highlight
the presence of a micelle by dividing the micellar system
into a set of regions. In Sec. II C, we describe the method of
energy representation in an inhomogeneous and partially fi-
nite, mixed solvent system and provide an approximation to
the solvation free energy in a micellar solution.

A. Solubility change induced by micelle formation

The system of our interest is a dilute solution containing
a single solute molecule. The intermolecular interaction is
supposed to be pairwise additive, and the formulation is
based on the classical statistical mechanics. In the present
treatment, a micellar solution is viewed as a mixed solvent
system. The system involves the solvent water and the sur-
factant species forming a micellar aggregate. The other com-
ponent may be the counterions, the surfactant species at the
monomer state, and the cosolvents if prepared in the system.
In the following developments, the micelle is assumed to be
monodispersed, while the effect of polydispersity can be in-
corporated straightforwardly. The solute is also assumed to
be dilute at saturation. In this case, the Boltzmann factor of
the solvation free energy is the solubility expressed in the
form of Ostwald coefficient.32

The solvation free energy is the free-energy change cor-
responding to the gradual insertion process of the solute mol-
ecule. In this free-energy change, only the contribution from
the potential energy is involved and the ideal �kinetic� con-
tribution is excluded at the outset. We let � be the configu-
ration of the solute molecule and xi,k be the configuration of
the ith molecule of the kth solvent species. The configuration
is the collective denotation of the position and orientation
and of the intramolecular degrees of freedom if the molecule
is flexible. When the intermolecular interaction potential be-
tween the solute and the kth solvent species is �k, the solva-
tion free energy ��m in the micellar solution is expressed as

exp�− ���m� =
�dVd�dX exp�− ������ + �i,k�k��,xi,k� + U�X� + PV��

�dVd�dX exp�− ������ + U�X� + PV��
, �1�

where X represents the solvent configuration collectively, U�X� is the total energy among the solvent, ���� is the one-body
energy of the solute, P and V are the pressure and system volume, respectively, and � is the inverse of kBT with the Boltzmann
constant kB and the temperature T. In Eq. �1�, we adopt the isothermal-isobaric ensemble. This is because the solubility change
upon micelle formation is typically examined in the isobaric condition, rather than in the isochoric. To attain the direct
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connection to the common practice of experiment, the solvation free energies in the micellar solution and in the neat solvent
�pure water� are desirable to be evaluated at the same pressure �and temperature�.33

In the following treatment, the micelle is supposed to be dilute. The supposition is certainly valid when the surfactant
concentration is just above the critical micelle concentration.34 In this case, only one micellar aggregate needs to be treated
explicitly and its center can be set to the origin of the system. Equation �1� is then rewritten as

exp�− ���m� =
�*dVd�dXV exp�− ������ + �i,k�k��,xi,k� + U�X� + PV��

�*dVd�dXV exp�− ������ + U�X� + PV��
, �2�

where �* expresses the restriction that the origin of the position coordinate is the micellar center. A factor V is involved in Eq.
�2� since the center of the micelle is fixed. Of course, a restriction of the position of the micelle or solute is absent in Eq. �1�.
Within Eq. �2�, the surfactants are localized near the origin, and the number is finite and equal to the aggregation number of
the micelle. The surfactant molecules at the monomer state can be safely neglected in Eq. �2� when the critical micelle
concentration is not too high. An explicit treatment is necessary for the counterions which may �partially� neutralize the
micelle. They can be present at the micellar surface and interact with the solute molecule solubilized. The mixed solvent
system in Eq. �2� thus consists of water, the surfactant molecules forming the micelle, and the counterions if the surfactant is
ionic.35,36

When the solvent is neat �pure water�, the corresponding free energy ��w of solvation is given by

exp�− ���w� =
�#dVd�dXV exp�− ������ + �i

�1��,xi,1� + Uw�X� + PV��

�#dVd�dXV exp�− ������ + Uw�X� + PV��
, �3�

where X represents the solvent configuration collectively, Uw�X� is the total energy among the solvent �water�, �1 is the
solute-water interaction potential, xi,1 is the configuration of the ith water molecule, and �# denotes the restriction that the
position of the solute is fixed at the �arbitrarily chosen� origin of the system. A factor V in Eq. �3� arises due to this restriction.
Of course, the pure solvent is homogeneous in Eq. �3� and the inhomogeneity is introduced only after the solute insertion.
Since ��w determines the solubility of the solute without the micellar aggregate, it sets the reference for the solubility change
due to the micelle formation. For the following development, we further introduce an auxiliary free-energy change ��̃w as

exp�− ���̃w� =
�#dVd�dXV2 exp�− ������ + �i�1��,xi,1� + Uw�X� + PV��

�#dVd�dXV2 exp�− ������ + Uw�X� + PV��
. �4�

The difference between ��w and ��̃w is vanishingly small in
the limit of large system size �thermodynamic limit� and is
expressed as

��̃w − ��w = − kBT
�Vs

V0
+ o	 1

V0

 , �5�

where �Vs is the excess partial molar volume of the solute
�the volume change upon insertion of the solute at a fixed
position�, V0 is the average volume of the system of interest,
and o�1/V0� denotes a variable which vanishes faster than
1/V0 in the thermodynamic limit �V0→��.37 Although the
distinction between ��w and ��̃w is of first order in 1/V0

and is not necessary in the treatment of a property defined
over a finite region, it becomes important for a property ob-
tained through integration over the whole system, as seen
below.

To treat the solubility change of the solute, we let Cm be
the concentration of the micellar aggregate and S�Cm� be the
solubility at the concentration of Cm. Of course, S�0� is the
solubility in the neat solvent �pure water�, and a convention

is adopted that Cm and S are expressed in the molarity scale.
With Cm and S, we introduce a measure Km of the solubility
change due to the micelle formation through

Km = lim
Cm→0

1

Cm
	S�Cm�

S�0�
− 1
 , �6�

where the �total� chemical potential of the solute is held fixed
in the limiting procedure for Cm.38 Km is directly related to
commonly used measures of the extent of solubilization. The
solubilization capacity and the micelle-water partition coef-
ficient in the mole fraction scale are equal to S�0�Km /nA and
Cw�Km+Vm� / �nA+S�0�Km+S�0�Vm�, respectively, where nA

is the aggregation number of the micelle, Cw is the water
density in molarity, and Vm is the partial molar volume of the
micellar aggregate.1–3,39,40 It is then seen in the developments
of the Kirkwood-Buff theory32,41,42 that

Km = Gsm + �Vs �7�

holds at low enough concentrations of the solute and the
micellar aggregate. In this equation, Gsm is the Kirkwood-
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Buff integral between the solute and the micelle and is de-
fined as

Gsm = �dx�g�x� − 1� , �8�

where x represents collectively the relative configuration be-
tween the solute and the micellar aggregate and g�x� is the
solute-micelle pair correlation function.41,43 Equations �7�
and �8� show that although Km is directly connected to ob-
servables, Gsm captures the micelle-induced effect more
clearly. Indeed, the excess partial molar volume �Vs of the
solute does not reflect any information about the micelle at
dilute conditions.

In the Appendix, we show that

Km = − V0����m − ��w� + o�1� , �9�

where V0 is the �average� volume of the system and o�1�
denotes a variable which vanishes in the thermodynamic
limit.44 Evidently, Km is determined by the difference be-
tween the solvation free energies with and without the mi-
celle. Actually, the validity of Eq. �9� is not restricted to the
case that the equilibrium is kept between the solution system
of interest and the dilute gas phase. Equation �9� holds even
when the counterpart of the equilibrium is solid or another
solution. As far as the counterpart is common to the micellar
solution and neat solvent, its contribution is canceled in Eq.
�6�. In fact, this is the reason why the ratio of the solubility is
adopted in Eq. �6�, rather than the difference.

As shown in the Appendix, the Kirkwood-Buff integral
Gsm is related to the free energy of solvation through

Gsm = − V0����m − ��̃w� + o�1� , �10�

where ��̃w is the auxiliary free-energy change introduced by
Eq. �4�.44 Due to the presence of the factor V0, the difference

between ��w and ��̃w causes the distinction between Km

and Gsm. Typically, �Vs is less than �10−1 l /mol for small
molecules.32 The �Vs term then affects the solubility change
by a factor of �0.1 with the micelle formation at the unit
concentration �1 mol/ l�. It is shown in Sec. IV, on the other
hand, that Gsm amounts to more than �102 l /mol for model
hydrophobic solutes in a micellar solution of sodium dodecyl
sulfate. Thus, Km can be practically identified with Gsm when
the solubilization is effective.

B. Division of the micellar system

To approach the solubilization on the basis of the
Kirkwood-Buff integral Gsm given by Eq. �10�, it is insight-
ful to highlight the presence of a micelle by dividing the
system into a set of regions. The emphasis needs to be placed
on the region within or close to the micelle since only a
single micelle is contained around the system origin and its
effect diminishes in distant regions. A typical division of the
system is into the hydrophobic core, the head-group region
in contact with water, and the aqueous region outside the
micelle. Of course, the division is not unique, and reflects the
scheme of perceiving the system of interest.

We let �h be the characteristic function for the hth re-
gion. It is unity when the solute molecule is inside the re-
gion, and vanishes when the solute is outside. Since the di-
vision is made over the whole region of the solution,

�
h

�h��,X� = 1 �11�

holds for each configuration � of the solute and �collective�
configuration X of the solvent. The solvation free energy
��mh conditioned by the characteristic function �h is then
defined as

exp�− ���mh� =
�*dVd�dX�h��,X�V exp�− ������ + �i,k�k��,xi,k� + U�X� + PV��

�*dVd�dX�h��,X�V exp�− ������ + U�X� + PV��
, �12�

where �* expresses the restriction given for Eq. �2� that the
micellar center is fixed at the origin of the system. When �h

specifies the micellar interior or interface, ��mh will be sig-
nificantly different from the auxiliary free energy ��̃w of
solvation in the neat solvent �pure water� given by Eq. �4�
and make the most important contribution to the solubiliza-
tion. When the region characterized by �h becomes more
distant from the micelle, the difference between ��mh and
��̃w is expected to be smaller in magnitude and make a less
important contribution.

The conditional free energy ��mh of solvation is related
to the �total� solvation free energy ��m through

exp�− ���m� = �
h

ph exp�− ���mh� , �13�

where ph is given by

ph =
�*dVd�dX�h��,X�V exp�− ������ + U�X� + PV��

�*dVd�dXV exp�− ������ + U�X� + PV��
.

�14�

Correspondingly, the Kirkwood-Buff integral Gsm expressed
as Eq. �10� is written exactly as

Gsm = �
h

�h�exp�− ����mh − ��̃w�� − 1� �15�

in the limit of large system size �V0→��, where V0 is the
�average� volume of the whole system and44,45

�h = V0ph. �16�

According to Eq. �14�, ph is the probability that the solute is
found in the region characterized by �h when it is randomly
inserted into the mixed solvent system as a test particle. �h is

154908-4 Matubayasi, Liang, and Nakahara J. Chem. Phys. 124, 154908 �2006�

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



then equal to the �average� volume of that region, and sets a
weight of geometrical origin in the sum of Eq. �15�.46 Actu-
ally, when the volume �h remains finite in the limit of large
system size, ��̃w constituting the hth term can be safely
replaced by ��w.47 Indeed, the difference between ��̃w and
��w vanishes in the thermodynamic limit and is irrelevant in
the term corresponding to a finite region. It should be noted
that exp�−����mh−��̃w�� is equal to the ratio of the average
concentration of the solute in the region characterized by �h

to that at a position far from the micelle �in the bulk�. Equa-
tion �15� is thus a discrete form of Kirkwood-Buff integral.
On the basis of Eq. �15�, an approximation to Gsm is devised
by retaining only the leading terms in the sum over h and/or
adopting an approximate method for ��mh �and ��w�.

In the Appendix, we show that the difference between
��mh and ��̃w is of order o�1/V0� when the region charac-
terized by �h corresponds to the limit of large distance from
the micelle. The contribution from that region to Gsm can
then be neglected since the volume of the region is of order
O�V0� in size. This means that the nonlocal component in the
sense given in Ref. 48 is absent in the expression of Eq. �15�
and that only the local contribution around the micelle needs
to be taken into account to evaluate Gsm.48,49 Actually, an
expression similar to Eq. �15� holds also for Km by replacing
��̃w with ��w.47 The difference between ��mh and ��w is
of first order in 1/V0, however, in the region corresponding
to the limit of large distance from the micelle. Thus, a non-
vanishing contribution to Km in the thermodynamic limit is
still present from the region far from the micelle and Km is
not suitable to probe the local response around the micelle.

When the micellar system is divided into a set of re-
gions, the leading contribution to the solubilization is ex-
pected from the micellar interior and/or interface. The ap-
proximation meeting this expectation is to retain the terms
corresponding to the micellar interior and/or interface region
in Eq. �15�. The validity of such as approximation can be
assessed within the line of solvation shell analysis48,50,51 by
examining the convergence behavior of the summation of the
partial contribution from each region. In Sec. IV, we show
for model hydrophobic solutes in a micellar solution of so-
dium dodecyl sulfate that the contribution to the Kirkwood-
Buff integral Gsm is the most important from the hydropho-
bic core and is negligible from the aqueous region outside
the micelle.

C. Approximation to the solvation free energy

To approximately evaluate the solvation free energy
��mh defined by Eq. �12�, we employ the method of energy
representation. The energy representation is introduced by
adopting the value of the solute-solvent interaction of inter-
est as the coordinate for the distribution of the solvent mol-
ecule around the solute. For a mixed solvent system, the
energy coordinate is assigned to each solvent species. The
coordinate for the kth solvent species is denoted by 	k and
the corresponding instantaneous distribution 
̂k

e is defined as


̂k
e�	k� = �

i

���k��,xi,k� − 	k� , �17�

where �k is the interaction potential between the solute and
the kth solvent species, xi,k is the configuration of the ith
molecule of the kth species relative to the solute, and the sum
is taken over all the kth solvent molecules. A superscript e is
attached to emphasize that a function is represented over the
energy coordinate. The definition is of course parallel to that
given in Refs. 26–28, and the distribution functions in the
energy representation are generated from the averages of
products of 
̂k

e in the system of interest. Even when the sys-
tem involves more than one solvent species, the one-to-one
correspondence is valid between the set of solute-solvent in-
teraction potential functions and the set of one-body distri-
bution functions in the energy representation. With the intro-
duction of the energy coordinate for each solvent species, the
relevant solute-solvent interaction is an array of functions
whose kth component is defined over the kth coordinate 	k.
The distribution function of concern is an array of energy
distributions whose kth component is the average of 
̂k

e under
a given �array of� solute-solvent interaction potential func-
tion. The one-to-one correspondence can then be proved in
the energy representation through a procedure similar to that
given in Refs. 26 and 28.52

To present an approximate expression for ��mh, it is
convenient to introduce a notational convention for the aver-
age of a quantity Q in the systems of interest. Two systems
are actually of interest and are explicitly treated. In one of
the systems, the solute is physically present and the solute-
solvent interaction affects the probability distribution of the
system configuration. The ensemble average is then denoted
by �Qmh and is expressed as

�Qmh =
�*dVd�dX�h��,X�VQ exp�− ������ + �i,k�k��,xi,k� + U�X� + PV��
�*dVd�dX�h��,X�V exp�− ������ + �i,k�k��,xi,k� + U�X� + PV��

. �18�

In the other, the solute is placed as a test particle and its configuration is uncoupled from the solvent configuration. The average
is written as �Qmh,0 and is given by

�Qmh,0 =
�*dVd�dX�h��,X�VQ exp�− ������ + U�X� + PV��
�*dVd�dX�h��,X�V exp�− ������ + U�X� + PV��

. �19�
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The evaluation through Eq. �19� needs only the ensemble for
the mixed solvent system in which no interaction is physi-
cally present between the solute and solvent molecules. The
solute is a test particle and is to be inserted according to the
probability distribution of the configuration � generated by
the one-body energy ����.

The formulation of an approximate functional for the
solvation free energy ��mh is then parallel to that described
in Ref. 27. According to the approximations adopted in Ref.
27, ��mh is given by a set of definitions and equations listed
as


k
e�	k� = �
̂k

e�	k�mh, �20�


k,0
e �	k� = �
̂k

e�	k�mh,0, �21�

�kl,0
e �	k,l� = �
̂k

e�	k�
̂l
e�l�mh,0 − �
̂k

e�	k�mh,0�
̂l
e�l�mh,0,

�22�

wk
e�	k� = − kBT log	 
k

e�	k�

k,0

e �	k�

 − 	k, �23�

wk,0
e �	k� = − kBT�

l
� dl	�kl��	k − l�


k,0
e �	k�

− ��kl,0
e �−1�	k,l�
�
l

e�l� − �
l,0
e �l��� , �24�

�� = − kBT�
k
� d	k��
k

e�	k� − 
k,0
e �	k�� + �wk

e�	k�
k
e�	k�

− ��k�	k�Fk�	k� + �1 − �k�	k��Fk,0�	k���
k
e�	k�

− 
k,0
e �	k��� , �25�

Fk�	k� = ��wk
e�	k� + 1 +

�wk
e�	k�

exp�− �wk
e�	k�� − 1

�when wk
e�	k� � 0�

1
2�wk

e�	k� �when wk
e�	k� � 0� ,

� �26�

Fk,0�	k� = �− log�1 − �wk,0
e �	k�� + 1 +

log�1 − �wk,0
e �	k��

�wk,0
e �	k�

�when wk,0
e �	k� � 0�

1
2�wk,0

e �	k� �when wk,0
e �	k� � 0� ,

� �27�

�k�	k� = � 1 �when 
k
e�	k� � 
k,0

e �	k��

1 − 	
k
e�	k� − 
k,0

e �	k�

k

e�	k� + 
k,0
e �	k�


2

�when 
k
e�	k� � 
k,0

e �	k�� . � �28�

Since the formulation is generally applicable to a mixed sol-
vent system, the subscript mh is omitted for 
k

e, 
k,0
e , �kl,0

e , wk
e,

wk,0
e , ��, Fk, Fk,0, and �k. In Eq. �24�, ��kl,0

e �−1 is the inverse
of the correlation matrix �kl,0

e satisfying53

�
n
� d�n�kn,0

e �	k,�n���nl,0
e �−1��n,l� = �kl��	k − l� . �29�

It should be noted in Eqs. �20�–�28� that the solvation free
energy �� is constructed from the energy distribution func-
tions 
k

e, 
k,0
e , and �kl,0

e defined by Eqs. �20�–�22�, respec-
tively. These distribution functions are the inputs to the ap-
proximate functional for �� and are obtained from the two
simulations corresponding to Eqs. �18� and �19�.

When the solute molecule is flexible and its �intramo-
lecular� structure varies significantly with the solvation, the
approximate scheme given by Eqs. �20�–�28� may not per-
form well in the original form. In this case, a modified form
of functional is needed for the solvation free energy. The
formulation of the modification is described in Ref. 28 and
its extension to a mixed solvent system is straightforward.

In this section, the free energy of binding of a molecule
to micelle is approximately treated by viewing the micellar
solution as an inhomogeneous and partially finite, mixed sol-
vent system. A natural fluctuation according to the potential
functions is allowed for the configurations of the micelle and
its constituent surfactant. Our development is possible be-
cause none of the system homogeneity, the thermodynamic
limit, and the rigidity of molecule or ion is assumed in the
method of energy representation. Thus, the treatment is not
restricted to the solubilization in micelle, and will be equally
applicable to the binding of a molecule �ligand� to such
nanoscale structures as protein and membrane.

III. COMPUTATIONAL PROCEDURES

In the present work, the surfactant is sodium dodecyl
sulfate �SDS�. The structure of the dodecyl sulfate anion
�CH3�CH2�11OSO3

−1� is illustrated in Fig. 1. The united-atom
approximation was adopted for the methyl and methylene
groups, and the hydrogen atoms were not explicitly treated.
The bond lengths and angles are fixed. Their values were
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taken from Refs. 11 and 54, and are listed in Table I. Each of
C–C–C–C, C–C–C–O, C–C–O–S, and C–O–S–O in Fig. 1
was subject to the torsional motion. The Ryckaert-Bellemans
potential in the form of

�
i=0

5

Ci�cos����i �30�

was used for the C–C–C–C torsion, where � is the dihedral
angle with �=0 at the trans conformation and C0-C5 are
2.22, 2.91, −3.14, −0.73, 6.27, and −7.53 kcal/mol,
respectively.55 For the dihedral-angle degrees of freedom in-
volving the head-group atoms �C–C–C–O, C–C–O–S, and
C–O–S–O�, the AMBER form of potential56 was adopted with
the parameters given in Table 1 of Ref. 57.

The solute molecules to be solubilized are methane, ben-
zene, and ethylbenzene. The methane molecule and the me-
thyl and methylene groups of ethylbenzene were described
as united atoms, while the hydrogens attached to the phenyl
rings of benzene and ethylbenzene were treated explicitly as
interaction sites. The �intramolecular� structure was sup-
posed to be rigid for all of the three solute molecules. The
bond lengths and angles of benzene and ethylbenzene were
obtained from Refs. 58 and 59 and are shown in Table I. For
ethylbenzene, the interaction sites corresponding to the me-
thyl and methylene groups were placed so that the dihedral
angle formed by the methyl, methylene, and the two adjacent
carbon sites is 90° and that the molecule has a perpendicular
structure.

The water molecule was treated as rigid and nonpolariz-
able, and the TIP3P model was adopted as the potential
function.60 The sodium ion was set to be a nonpolarizable,
single-site particle. The pairwise additivity was assumed, and
the Lennard-Jones and Coulombic interactions were opera-
tive between a pair of sites belonging to different molecules
and two sites separated by three or more bonds in the dode-
cyl sulfate anion. The potential parameters �Lennard-Jones 	
and � and partial charges� for the SDS and solute molecules
were taken from Refs. 11, 54, 58, 61, and 62 and are listed in
Table I. The standard Lorentz-Berthelot combining rule was
used to construct the Lennard-Jones part of the interaction
between different sites.29 For the intramolecular interaction
of the dodecyl sulfate anion, the Lennard-Jones and Coulom-
bic interactions between two sites with three-bond separation
were reduced by factors of 2.0 and 1.2, respectively.63

The aggregation number of the micelle was set to 60, a
value close to the experiment.1–3,64 To simulate the micellar
system, 60 dodecyl sulfate anions, 60 sodium cations, 10 000
water molecules, and a single solute molecule were located
in a cubic unit cell. For the solute position in the micelle, six
regions with respect to the distance r of the center of mass of

the solute from that of the 60 dodecyl sulfate anions were
examined by concentrically dividing the domain of r
�30 Å with an equal interval of 5 Å. Two systems were
explicitly treated for each r region, as described in Sec. II C.
To treat the system containing the solute physically and ob-
tain the ensemble average in the form of Eq. �18�, the restric-
tion on the solute position was implemented with the poten-
tial given by

�
Kr

2
	 r − rmin

rw

2

, �when r � rmin� ,

0, �when rmin � r � rmax� ,

Kr

2
	 r − rmax

rw

2

, �when r � rmax� ,� �31�

where rmin and rmax are the lower and upper limits of the r
region of interest, respectively, and Kr and rw were taken to
be 20 kcal/mol and 0.2 Å, respectively. In this case, the sys-
tem configuration was counted for the ensemble average
only when rmin�r�rmax. When the simulated system in-
volves the solute as a test particle and the ensemble average
is expressed as Eq. �19�, the solute was simply inserted with
the condition of rmin�r�rmax at random orientation.

The system was sampled with the molecular dynamics
method in the isothermal-isobaric ensemble. The temperature
and the pressure were set to 25 °C and 1 atm, respectively.
The Martyna-Tobias-Klein algorithm was adopted for the
control of the temperature and pressure,65 and the particles
and barostat were coupled to the same Nosé-Hoover chain of
length 5.66 The characteristic frequency was taken to be 1.0
and 0.5 ps−1 for the thermostat and barostat, respectively, and
the masses of the thermostat and barostat were determined
with the procedure recommended in Refs. 65 and 66. The
equation of motion for the rigid body was integrated using
the velocity Verlet algorithm30,67 for the translational part
and a quarternion algorithm68 for the orientational part, and
the RATTLE algorithm69 was employed for the flexible par-
ticle. The time step of integration was 2 fs, and the electro-
static potential was handled by the Ewald method with the
surrounding medium of infinite dielectric constant. The en-
ergy distribution functions were constructed by averaging the
instantaneous histogram given by Eq. �17�, and each of the
water molecule, sodium cation, dodecyl sulfate anion was
treated as a distinct solvent species. The system containing
the solute physically was simulated for 500 ps. The solute-
solvent pair energy was sampled every 10 fs and used to
construct the energy distribution function. For the system
involving the solute as a test particle, the simulation was
performed for 500 ps. The �instantaneous� configuration of
the mixed solvent system was sampled every 100 fs, and the
solute insertion was performed 1000 times at each solvent
configuration sampled.70

The simulation was also conducted for the solute mol-
ecule solvated in neat water. In this case, 10 000 water mol-
ecules and a single solute molecule were located in the unit

FIG. 1. The structure of the dodecyl sulfate anion �CH3�CH2�11OSO3
−1�. The

united-atom approximation is adopted for the methyl and methylene groups,
and the hydrogen atoms are not shown.
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cell, and the system is homogeneous when the system in-
volves the solute as a test particle. The interaction potential
and the simulation condition and procedure were the same as
those for the micellar system, except that the simulation
length was 100 and 50 ps when the solute is treated as physi-
cal and test particles, respectively.70

IV. RESULTS AND DISCUSSION

In Fig. 2, we show the densities of the hydrophobic tail,
the head group, and water as functions of the distance r from

the micellar center identified as the center of mass of the 60
dodecyl sulfate anions. Since the eccentricity of sodium
dodecyl sulfate micelle was found to be small,11,12,21 it is
natural to divide the micellar system into a set of regions on
the basis of Fig. 2. As described in Sec. III, we introduce six
regions in terms of the center-of-mass distance r of the solute
from the micellar center by concentrically dividing the do-
main of r�30 Å with an equal interval of 5 Å. In the fol-
lowing, the regions are numbered I, ¼, VI from the micelle
inside to outside. According to Fig. 2, regions I–III corre-
spond to the hydrophobic core, where water is scarcely

TABLE I. The bond lengths and angles, the Lennard-Jones 	 and �, and the partial charges for sodium cation,
dodecyl sulfate anion, and solute molecules.

Site or group
Bond

length �Å�
Bond

angle �degree� 	 �kcal/mol� � �Å�
Partial
chargea

Dodecyl sulfate anionb

CH3 0.175 3.905 0
CH2 �internal� 0.118 3.905 0
CH2 �attached to O� 0.118 3.905 0.137
O�ester� 0.170 3.000 −0.459
S 0.250 3.550 1.284
O�SO3� 0.200 3.150 −0.654
C–C 1.53
C–O�ester� 1.42
O�ester�–S 1.58
S–O�SO3� 1.46
C–C–C 111.0°
C–C–O�ester� 109.5°
C–O�ester�–S 112.6°
O�ester�–S–O�SO3� 102.6°
O�SO3�–S–O�SO3� 115.4°

Sodium cation
Na+ 0.115 2.275 1

Methane
CH4 0.294 3.730 0

Benzene
C 0.07 3.55 −0.115
H 0.03 2.42 0.115
C–C 1.40
C–H 1.08
C–C–C 120.0°
C–C–H 120.0°

Ethylbenzene
C�phenyl� 0.07 3.55 −0.115
H�phenyl� 0.03 2.42 0.115
CH3 0.175 3.905 0
CH2 0.118 3.905 0.115
C�phenyl�–C�phenyl� 1.40
C�phenyl�–H�phenyl� 1.08
C�phenyl�–C�CH2� 1.51
C�CH2�–C�CH3� 1.53
C�phenyl�–C�phenyl�–C�phenyl� 120.0°
C�phenyl�–C�phenyl�–H�phenyl� 120.0°
C�phenyl�–C�phenyl�–C�CH2� 120.0°
C�phenyl�–C�CH2�–C�CH3� 114.0°

aThe partial charge is expressed in the unit of elementary charge.
bFor the dodecyl sulfate anion, O�ester� denotes the oxygen site connected to both C and S, and O�SO3� is the
oxygen site connected only to S.
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present. Region IV refers to the head-group region in contact
with water, and is the transition region from the hydrophobic
core to the aqueous region outside the micelle represented by
regions V and VI.71

In Fig. 3, we show the solvation free energy �� of the
solute in micellar regions I–VI and in bulk water. The bulk
denotes the region far from the micelle, and �� in the bulk is
the solvation free energy of the solute in neat water. It is
evident in Fig. 3 that each of methane, benzene, and ethyl-
benzene is free-energetically stabilized in hydrophobic-core
regions I–III. �� is not significantly different from the bulk
value, on the other hand, in aqueous regions V–VI outside
the micelle. A transition behavior is seen in head-group re-
gion IV. The �� reduction relative to the bulk value is
present in the transition region, but is weaker than in the
hydrophobic core. Figure 3 is thus a quantitative demonstra-
tion that the micelle inside is a favorable environment for
hydrophobic solutes, in agreement with the conventional
ideas1–3 and a molecular simulation study of small nonpolar
solutes in a nonionic micelle of octyl pentaethylene glycol
ether �C8E5�.23

In our procedure described in Sec. II C, �� in Fig. 3 is
directly connected to the distribution functions at the mo-
lecular level. Figure 4 illustrates the energy distribution func-
tions 
k

e and 
k,0
e of methane and benzene in region III and the

bulk for the solute-water and solute-dodecyl sulfate anion
pair interaction. Obviously, 
k

e and 
k,0
e of the solute-water

pair are more concentrated near 	=0 in region III than in the
bulk. Indeed, water is scarcely present in the hydrophobic
core. When 	 is large, 
k,0

e is smaller in the micelle inside, on
the whole. This shows that the excluded volume effect is
weaker within the micelle than in the bulk. In the attractive 	
domain, 
k

e and 
k,0
e are larger for dodecyl sulfate than for

water. Actually, the favorable component of the benzene-

dodecyl sulfate interaction is more than the thermal energy
�kBT� by several times in magnitude. Thus, both the excluded
volume effect and the dispersion attraction contribute posi-
tively to the micelle-induced enhancement of the solubility.
When methane and benzene are compared, 
k

e and 
k,0
e are

larger for benzene in both region III and the bulk except
when the energy coordinate 	 is close to 0. Benzene carries
more interaction sites than methane, and the repulsive and
attractive interactions are both stronger. The competition of
the attractive interaction against the repulsive is more favor-
able for benzene than for methane. As seen in Fig. 3, the
extent of stabilization in regions I–IV relative to the bulk is
stronger for benzene and ethylbenzene than for methane.

According to Eq. �15� and Fig. 3, the Kirkwood-Buff
integral Gsm is estimated as �4±1��102, �5±1��105, and
�7±2��107 l /mol for methane, benzene, and ethylbenzene,
respectively, where the sum over h in Eq. �15� is taken over
regions I–VI.40 As described with respect to Eq. �10�, Gsm is
essentially equal to the measure Km of the solubility change
given by Eq. �6� and represents the ability of the micelle to
incorporate a hydrophobic solute. The common practice to
analyze Gsm �or Km� in terms of the distinction between the
micelle inside and the bulk water is the pseudophase model,
in which the micellar portion of the system is viewed as a
separate phase.1–3 In the pseudophase model, the aqueous
region outside the micelle is considered unimportant and the
hydrophobic core is typically assumed to make a dominant
contribution in determining the extent of solubilization. To
examine the importance of each region in the determination
of Gsm on the basis of Eq. �15�, we introduce the relative
contribution Ph from the hth region by

Ph =
�h�exp�− ����mh − ��̃w�� − 1�

Gsm
, �32�

where the variables were defined in Sec. II. Of course, the
sum of Ph over h=I , . . . ,VI is unity. In Fig. 5, we show Ph

over regions I–VI. Evidently, Gsm �or Km� is essentially de-

FIG. 3. The solvation free energy �� in micellar regions I-VI and in the
bulk. Regions I-VI are numbered from the micelle inside to outside by
identifying the solute position in terms of the center-of-mass distance r from
the micellar center and dividing the domain of r�30 Å concentrically with
an equal interval of 5 Å. The bulk denotes the region far from the micelle,
and �� in the bulk is equal to the solvation free energy of the solute inserted
into neat water. The error bar is expressed at the 95% confidence level, and
is smaller than the size of the corresponding data symbol when it is not
shown. The lines connecting the data are drawn for the eye guide.

FIG. 2. The densities of the hydrophobic tail, the head group, and water as
functions of the distance r from the center of mass of the dodecyl sulfate
anions forming the micelle. The density of the hydrophobic tail refers to the
sum of the �number� densities of the methyl and methylene groups of the
dodecyl sulfate anion, and the density of the head group is the sum �number�
density of the sulfur and oxygen atoms. The water density is expressed with
respect to the center of mass of the water molecule. Six regions are intro-
duced by dividing the domain of r�30 Å with an interval of 5 Å, and are
numbered I,¼, VI from the micelle inside to outside.
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termined by the contributions from regions II–IV. Region I is
not significant simply because its volume ��h of Eq. �32�� is
small. The importance of head-group region IV relative to

hydrophobic core II and III is appreciable for methane. In
other words, the solubilization of benzene and ethylbenzene
is more sharply characterized as a transfer from the aqueous
to hydrophobic environment. For all the solutes examined,
the contribution is negligible from aqueous regions V and VI
outside the micelle. This is a support to the pseudophase
model. The support is stronger for benzene and ethylbenzene
since the hydrophobic-core region makes a dominant contri-
bution.

Within the ordinate scale of Fig. 5, Ph is hardly distin-
guishable from the probability of finding the solute in the hth
region among regions I–VI.72 The above description con-
cerning Ph can then be rephased in terms of the probability.
Figure 5 shows that the solute is more localized in the hy-
drophobic core for benzene and ethylbenzene than for meth-
ane. The distribution within the hydrophobic interior is rather
diffuse, in agreement with experimental reports of benzene
in sodium dodecyl sulfate micelle.73,74
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APPENDIX: PROOF OF EQS. „9… AND „10…

In this appendix, we analyze the ensemble dependence
of the averages involved in the Kirkwood-Buff integral and
prove Eq. �10�. Equation �9� simply follows from Eqs. �5�,
�7�, and �10�.

We start with an expression for the Kirkwood-Buff inte-

gral Gsm in the grand canonical ensemble. Let N̂s and N̂m be

FIG. 4. The energy distribution functions 
k
e and 
k,0

e against the solute-
solvent interaction energy 	 �a� for methane-water pair in region III and the
bulk, �b� for benzene-water pair in region III and the bulk, and �c� for
methane and benzene with dodecyl sulfate anion in region III. When 	
�5 kcal/mol, the abscissa is linearly graduated and the ordinate refers to
the left. When 	�5 kcal/mol, the graduation for the abscissa is logarithmic
and only 
k,0

e is shown with respect to the right ordinate. In �a�, the gradu-
ation is also changed at 	=0. The logarithmic graduation is adopted for both
the left and right ordinates.

FIG. 5. The relative contribution Ph from the hth region �h=I , . . . ,VI� to the
Kirkwood-Buff integral Gsm. The error of Ph at the 95% confidence level is
50%–70% of the Ph value itself since the �� error is incorporated into Eq.
�32� in the exponential form.
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the instantaneous numbers of the solute molecule and the
micellar aggregate, respectively. The micellar aggregate is
treated as a single particle with intra-aggregate degrees of
freedom. Gsm is then expressed as

Gsm = V0	 �N̂sN̂m�VT

�N̂s�VT�N̂m�VT

− 1
 , �A1�

where �¯�VT denotes the ensemble average in the grand
canonical ensemble and V0 is the volume of the system.41,44

The next step is to transform Eq. �A1� into a form simi-
lar to Eq. �2�. To do so, it is notationally convenient to in-
troduce a variable Z as

Z =� d� exp�− ������ + W��,X��� , �A2�

where � is the configuration of the solute, ���� is the one-
body energy of the solute, X represents the solvent configu-
ration collectively, and W�� ,X� is the sum of the interaction
energy between the solute and solvent molecules. The trans-
lational degrees of freedom of the solute is incorporated in
the definition of �, and Z is of order O�V0�. It is then pos-
sible to show that

Gsm = V0	 �N̂mZ�VT

�N̂m�VT�Z�VT

− 1
 = V0	 �Z�VT,m

�Z�VT
− 1
 ,

�A3�

where �¯�VT,m is the grand-canonical ensemble average
with a single micellar aggregate whose center is fixed at the
origin.32 While �¯�VT is the average for an homogeneous
system, �¯�VT,m is for an inhomogeneous system with an
external field produced by a micellar aggregate at the origin.
Since the position of the solute is not restricted,

�Zm

V0
=

�Z
V0

+ o�1� �A4�

holds, where �¯m and �¯ represent the ensemble averages
with and without the external field by the micelle, respec-
tively, and o�1� denotes a variable which vanishes in the
limit of large system size �thermodynamic limit�. In Eq.
�A4�, the suffix �VT is omitted since the equation is valid in
any ensemble.

To show the equivalence of Eqs. �10� and �A3�, we con-
nect the grand-canonical and isothermal-isobaric ensemble
averages with a canonical ensemble average. When the av-
erage numbers of particles in the grand-canonical ensemble
are adopted as the �input� numbers of particles in the canoni-
cal ensemble, �Z�VT,m is related to the corresponding ca-
nonical ensemble average by

�Z�VT,m = �ZNVT,m +
kBT

2 �
i,j

�Ni

�� j

�2

�Ni�Ni
�Z + o�1� , �A5�

where �¯NVT,m is the canonical ensemble average with an
external field by the micelle at the origin, Ni and �i are the
number and chemical potential of the ith species,
respectively.30,75 In the second term of Eq. �A5�, the en-
semble is not necessary to be specified for �Z since the

ensemble dependence leads to an o�1� correction. The sec-
ond term is of order O�1� and represents a nonvanishing
effect of the ensemble dependence, where O�1� denotes a
variable which does not grow with V0 in the thermodynamic
limit. The last term is of o�1� due to Z=O�V0�.

An expression similar to Eq. �A5� holds also for �Z�VT.
Actually, the second term of Eq. �A5� deviates from the cor-
responding term for �Z�VT only by o�1� regardless of the
presence of the micelle at the origin. The terms beyond the
first are thus coincident within o�1� between �Z�VT,m and
�Z�VT. It should be noted that the �input� number of particles
is different between �¯NVT,m and �¯NVT by O�1�, where
�¯NVT is the average in the canonical ensemble without the
micelle. Since the solute and micelle are dilute, only the
difference for water needs to be taken into account as the
number of particles for the canonical ensemble. The differ-
ence is determined by the Kirkwood-Buff integral Gmw be-
tween the micelle and water in a form similar to Eq. �A3�,
and Gsm reduces by virtue of Eq. �A4� to

Gsm =
V0

�Z
��ZNVT,m − �ZÑVT� +

GmwNw

�Z
��ZNVT

�N
+ o�1� ,

�A6�

where Nw is the number of water molecules for �¯NVT, and
�¯ÑVT is the average in the canonical ensemble for which a
micelle is not involved and the number of particles is equal
to that for the ensemble with a micelle up to the order O�1�.
The ensemble is not necessary to be specified for the average
of Z when it is written as �Z in Eq. �A6�. In such cases, the
ensemble dependence leads only to an o�1� correction.

We now turn to the isothermal-isobaric ensemble aver-
ages. According to Eqs. �2� and �4�, the difference between
��m and ��̃w is expressed as

exp�− ����m − ��̃w�� =
�VZPVT,m�V2PVT

�V2PVT,m�VZPVT
, �A7�

where �¯PVT,m and �¯PVT are the isothermal-isobaric en-
semble averages with and without a micellar aggregate fixed
at the origin, respectively, and the intramolecular contribu-
tion of the solute in the absence of the solute-solvent inter-
action is considered to be independent of the system volume.
The connection of Eq. �A7� to the canonical ensemble coun-
terpart can be seen by noting

�VZPVT,m

�VPVT,m
= �ZNVT,m +

kBT�T

2

�2

�V0
2V0�Z + o�1� , �A8�

and the corresponding expressions for �VZPVT, �V2PVT,m,
and �V2PVT, where the average volume in the isothermal-
isobaric ensemble is taken to be the �input� volume of the
canonical ensemble and �T is the isothermal compressibility
of the system.30,75 As in the case of Eq. �A5�, the terms
beyond the first in the expression of the form of Eq. �A8� are
coincident within o�1� between �VZPVT,m and �VZPVT and
between �V2PVT,m and �V2PVT. The �input� volume is differ-
ent by O�1�, on the other hand, between �¯NVT,m and
�¯NVT. The volume of the system changes by the excess
partial molar volume �Vm of the micelle upon its insertion at
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the origin. As done for deriving Eq. �A6� from Eq. �A3�, we
rewrite Eq. �A7� as

V0�exp�− ����m − ��̃w�� − 1�

=
V0

�Z
��ZNVT,m − �ZNṼT�

+
�VmV0

2

�Z
�

�V0
	 �ZNVT

V0

 + o�1� , �A9�

where �¯NṼT is the average in the canonical ensemble with-
out a micelle for which the volume is equal to that with a
micelle up to O�1�.

In the first terms of Eqs. �A6� and �A9�, the number of
particles and the volume are the same up to O�1� with and
without the external field produced by the micelle. The first
term is thus coincident within o�1� between Eqs. �A6� and
�A9�. The second term represents the effect of the overall
change in the number or the volume. Actually, �Vm=−Gmw

holds since the solute and micelle are dilute. Furthermore,
�Z /V0 is an intensive variable, and the second terms of Eqs.
�A6� and �A9� become equal in the thermodynamic limit.
Equation �10� is therefore proved since ���m−��̃w� is of
order O�1/V0�.

When the integrand of Eq. �A2� at a solute configuration
� is denoted by z���, it is possible to show that

Gsm =
V0

�Z � d���z���NVT,m − �z���NVT� + o�1� . �A10�

It should be noted in Eq. �A10� that when the �input� volume
of the canonical ensemble is V0 for �¯NVT, it is equal to
V0+�Vm for �¯NVT,m. An argument similar to that given in
Ref. 48 can then be developed and prove that �z���NVT,m and
�z���NPT,m deviate from �z���NVT and �z���NPT, respec-
tively, only by o�1/V0� terms at the � corresponding to the
limit of large distance from the micelle. Thus, the thermody-
namic limit and the limit of integrating over the whole sys-
tem can be interchanged in Eq. �A10�, and the nonlocal com-
ponent in the sense introduced in Ref. 48 is absent for Gsm

when the local estimator is �z���. In the case of Km, a simi-
lar argument shows that the nonlocal component is present
with respect to the local estimator �z��� and that the region
far from the micelle makes a nonvanishing contribution in
the thermodynamic limit. Actually, we introduced an auxil-
iary free-energy change ��̃w by Eq. �4� to identify the local
component for the micelle-induced change in the solvation
free energy of the solute. The extra V factor in Eq. �4� serves
to simplify the complications arising from the ensemble de-
pendence and the volume difference in the presence and ab-
sence of a micelle.
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