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Theory of solutions in the energy representation. Ill. Treatment
of the molecular flexibility

Nobuyuki Matubayasi® and Masaru Nakahara
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

(Received 8 July 2003; accepted 5 August 2003

The method of energy representation for evaluating the solvation free energy is extended to a solute
molecule with structural flexibility. When the intramolecular structure of the solute molecule
exhibits a strong response to the solute—solvent interaction, the approximate functional for the
solvation free energy needs to be modified from the original form presented previdusiiem.

Phys. 117, 3605 (2002; 118 2446 (2003]. In the modification of the functional, the
solvation-induced change in the distribution function of the solute structure is taken into account
with respect to the intramolecular energy of the solute. It is then demonstrated over a wide range of
thermodynamic conditions that the modified form of functional provides an accurate and efficient
route to the solvation free energy of a flexible solute molecule even when the structural distribution
function of the solute in solution overlaps barely with that of the solute at isolatior20@3
American Institute of Physics[DOI: 10.1063/1.1613938

I. INTRODUCTION sible only over a low-dimensional set of coordinates. When
the solute degrees of freedom of no interest are multidimen-

In a molecular treatment of solutions, the structural flex- | th desirabl b q licitlv in th
ibility of a molecule is usually excluded from explicit con- S'°N&% they are undesirable to be treated explicitly in the

sideration. This is justified for small molecules since the vi-construction of the solvation free energy. Therefore, a
brational modes are of high frequency and do not influenc&cheme is deswablx developed which eva'luates the IS(')Ivatlon
intermolecular correlations. The flexibility of a molecule in ffé€ energy of a flexible solute molecule without multidimen-
solution is important when the molecule is large and its in-Sional treatment of the intramolecular fluctuations.
tramolecular motion can be coupled to intermolecular inter- [N this paper, we present an approach to the solvation
actions. Especially, biomolecules and polymers often involveree energy of a flexible solute molecule. We adopt the en-
soft modes in their intramolecular degrees of freedom an@rdy representation formulated in previous pafefsand
may exhibit strong conformational responses to the surprOVide a modified form of functional for the solvation free
rounding environments. Toward understanding and controlenergy. In our approach, a one-dimensional coordinate is in-
ling the structure and function of a nanoscale molecule ifroduced to describe the intramolecular state of the flexible
solution, therefore, it is necessary to establish a statistica#olute molecule, and the other coordinates are made implicit
mechanical framework to treat the intramolecular flexibility in the energy distribution functions constituting the func-
of the molecular structure. tional. It is not required to explicitly list and integrate the
The key quantity to determine the intramolecular struc-free energy of solvation over the multidimensional coordi-
ture of a flexible solute molecule in solution is the solvationnates for the solute structure. The explicit treatment of the
free energy. Indeed, once the free energy of solvation isntramolecular degree of freedom is necessary only over a
evaluated at each fixed structure, the distribution functiorone-dimensional coordinate. A practical approach is then em-
can be readily obtained for the structure of the soluteployed, as done in Ref. 5, that computer simulations of the
molecule!™® The full account of all the intramolecular coor- solution and pure solvent systems of interest are performed
dinates is difficult and even unnecessary, however, unles® obtain the distribution functions constituting the functional
their dimension is lowtypically one. A coarse-grained rep- for the solvation free energy. This approach to the solvation
resentation of the structural distribution function needs to béree energy utilizes the exact solution structure, and its per-
introduced for conceptually transparent and computationallformance is dominated by the degree of approximation in-
convenient description. In a coarse-grained parametrizatiofiglved in the functional.
of the solute structure, a set of solute intramolecular coordi-  The purpose of the previous papers was to develop the
nates are chosen as the variables of physical interest and thgsthod of energy representation for evaluating the solvation
other coordinates are not of explicit interest. The solvatiorfee energy of a solute molecule in solutibif.In the energy
free energy is then to be expressed in a reduced form ovgpresentation, the coordinate of a solvent molecule around
the solute coordinates of interest, and is obtained formallyhe sojute molecule is the solute—solvent interaction energy
through the integration over the coordinates of no direct inyng the solvent distribution around the solute is expressed
terest. The difficulty in practice is that the integration is pos-gyer the one-dimensional coordinate for any type of solute—
solvent interaction potential. A functional for the solvation
dAuthor to whom correspondence should be addressed. free energy was then constructed in terms of energy distribu-
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tion functions of the solution and pure solvent systems ofdegrees of freedom are collectively written @’ The
interest, and its performance was demonstrated for nonpolasplute—solvent interaction potential of interestvisand is
polar, and ionic solutes in water over a wide range of therfixed at the outset in our developments. Of coursds a
modynamic conditions including both ambient and superfunction of » andx. It may be expressed ad(y,x) in the
critical. Actually, the method presented in Refs. 4 and 5 isfull coordinate representation, where a superscfigs at-
applicable without modification to a solution of flexible mol- tached to emphasize that a function is represented over the
ecules. The energy distribution functions constituting thefull coordinate.

functional for the solvation free energy can be defined with-  The solvation free energiyu is the free energy change
out referring to whether the molecules are rigid or flexible;corresponding to the gradual insertion process of the solute
see Appendix A of Ref. 4. When the distribution function for molecule® In Ay, only the contribution from the potential
the solute intramolecular degrees of freedom changes signifenergy is involved and the ideétinetic) contribution is ex-
cantly through the interaction with the solvent, however, thecluded. When the intramolecular energy of the solut#(g)
solute—solvent interaction potential at the typical structure oind the solvent—solvent interaction energyJiéxX), Au is

the solute is different between the solution and pure solvengxpressed as

systems. In this case, an unmodified application of the apéxr(—BA )
proximate method in Refs. 4 and 5 may lead to deterioration »
of the performance. The developments in the present paper JdydX exp(—B{W () +Zv (g, x)+U(X)})

are made t_o t_ake_ into account a significant change in the TdydX exp(— B{¥ () +U(X)}) o (@
structural distribution of the solute. We extend the approach

in Refs. 4 and 5 and demonstrate the performance for simpl@hereX represents the solvent configuration collectively and
model systems over a wide range of thermodynamici is the full coordinate of théth solvent moleculeg is the
conditions. inverse ofkgT, as in the usual notational convention, with

When a set of potential functions is given for the solu-the Boltzmann constarikiz and the temperature. A restric-
tion system of interest, the “exact” solvation free energy of tion of attention to a certain set of solute intramolecular state
the solute molecule can be calculated by the free energg@n be made simply by the corresponding alteration of the
perturbation and thermodynamic integration methbtls. domain of integration over). Especially, when the solute
These methods are difficult for a solute molecule with in-Structure is fixed at a specifig, the solvation free energy
tramolecular degrees of freedom, however, because the codio(#) at thaty is written as
dinate space of the solute needs to be sampled sufficiently at JdX exp(— B{Siv (4,x) +U(X)})
each intermediate state of the gradual process of solute iexp(—BAc(y¢))= X expl — BU (X))
sertion. In contrast, the method developed in this paper and
Ref. 5 requires that the computer simulation be performed\u is then related ta\o(¢) through
only at the initial and final states of the solute insertion pro-
cess. Our method is thus advantageous, especially for a large exp(— BAw)= J dypo()exp— BAa(y)), (3
and/or flexible solute molecule, since the solute is typically
involved at dilute condition. The drawback is, of course, thatwherepg(¢) is the probability distribution function ofs for
the solvation free energy is evaluated from an approximatéhe solute at isolatiofabsence of the solute—solvent interac-
functional. tion) and is given by

The organization of the present paper is as follows: In exp(— BY(1))

Sec. I, a set of distribution functions are introduced to for- ()= ) (4)
mulate a reduced description of the solute intramolecular Jdgrexp(—BY ()

state and the solvent configuration relative to the solute molyt should be noted in Eqg(3) that althoughA is obtained
ecule, and an approximate functional is constructed for thgrom an integration of\a(y) over the solute intramolecular
solvation free energy. In Sec. IlI, the systems to be examinegoordinatey, it is not an averagéweighted sum of Aa(y).
are identified and the computational procedures are de- The distribution of the solute intramolecular coordinate
scribed. In Sec. IV, the performance of the functional for they, js modified from Eq(4) upon introduction of the solute—

solvation free energy is assessed in connection with thgolvent interaction. In the solution system of interest, the
modification of the solute intramolecular structure due to theyropability distribution functiorp(y) is expressed as

solute—solvent interaction.
JdXexp(—B{W () +Ziv (¢,x) +U(X)})

. (2

Il. THEORY p("y):fdt//dx exp—B{Y () +Zv (. x)+UX)H ©®
The system of our interest is a dilute solution containingAccording to Egs(1), (2), and(4),
a single solute molecule. The intermolecular interaction is
g p(1)=Ppo()exp(— BA ()~ Aw)) ©

supposed to be pairwise additi¥@he notations and devel-
opments in this paper are then parallel to those adopted iholds exactly at each value gf'° It should be noted that Eq.
Refs. 4 and 5. The complete set of the position and orienta) corresponds in form to Eq19) of Ref. 11, which relates
tion of a solvent molecule is called the full coordinate and isthe solvation free energy to the total solute—solvent interac-
denoted collectively by. In the present work, the solute tion and its distributions in the solution and pure solvent
molecule involves structural flexibility and its intramolecular systems of interest:*?
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The energy representation is introduced by adopting the pS(e)={(p%(€))o (10)
value of the solute—solvent interactienof interest as the
coordinate e for the distribution of the solvent molecule and
around the solute molecule. The instantaneous distribgfion
is then defined as

xo(€,7)=(p%(€)p%(m))o—(P(€))o(P (7))o, (13
pe( 6):2 S (¥,x)—e), (7) where(Q), is the ensemble average and is given by
i
where the sum is taken over all the solvent molecules and a JdydXQ exp(— B{V¥ (&) +U(X)})
superscripe is attached to emphasize that a function is rep- )o= JdydX exp(— B{¥ () +U(X)})

resented over the energy coordinate. This definition is of

course parallel to that given in Refs. 4 and 5. Note that the f q JdXQ exp(— BU(X))

specification ofv is necessary in Eq7). ¥Po(¥) JdX exp(— BU(X))
In Ref. 5, the solvation free energyu is expressed in

terms of distribution functions constructed frop§ in the  with the distributionpy() of the solute intramolecular co-

solution and pure solvent systems. In our treatments, the s@rdinateys in the absence of the solute—solvent interaction. It

lution system refers to the system in which the solute mol-should be noted in Eq(12) that the solute and solvent de-

ecule interacts with the solvent under the solute—solvent ingrees of freedom are uncoupled from each other in the prob-

teractionv of interest at full coupling. In the solution, the ability distribution. This equation shows that the solute mol-

(12

average distributiop® of thev value is given by ecule is placed as a test particle in the neat solvent system.
p¥(e)=(p%(€)) ® By following the proc_edures in Ref. 5, |t_ is straightfor-
v ward to construct a functional for the solvation free energy
where(Q), represents the ensemble average of a qua@tity A in terms of the energy distribution functiop$, pg, and
and is written as x§ .2 According to the approximation adopted in Ref.Ay

|s given by a set of equations listed as
JdpdXQ exp(— B{W () +Ziv' (,%) +U(X)})
JdydX exp(—B{W () + 2w (¢,%) +U(X)})

JAXQexp(— B{Z v (¢,x) +U(X)})
JdXexp(— B{Ziv (4,x) +U(X)})

Q)=

e(e)——kBTlog( ple )> €, (13
po(€)

- [ aupi

o(e—7) _
O wge= ko [ dn(—e( CORGL
in terms of the distribution functiop(y) of the solute in- Pol€

tramolecular coordinates in the solution system. On the _ X (p%(1) = pS( 1)) (14)
other hand, the pure solvent system denotes the system in
which no interaction is physically present between the solute
and solvent molecules. At an instantaneous configuration o&
the pure solvent systenf® is constructed by placing the
solute molecule in the neat solvent system as a test particle. e
The average distributiopg and the correlation matrixg are ~{a(eF (&) (1~ a(e)Fo(e)}(p%e)~p(e))].
then expressed, respectively, as (15

p=—koT [ del(p(e)~p8e) + w(epi(e)

pwe(e)+ 14+ —PLe) (when we(e)<0)
Fle)= exp(—Bwe(e))—1 (16)

3 BWe(e) (when w(e)=0),

. log(1— Bw{(e)) o
Fo(e)= —Iog(l—ﬁwo(e))+1+w (when wg(€)=<0) an

3BwW5(e) (when wi(€)=0),

1 (when p%(&)=p(e))

ale)= _(pe(e>—p8(e> 2

ren of(e1 ot 8
P roge) Menpa=rie):
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The above set of equations for the solvation free enérgy The reference solute molecule is defined in terms of these
is exactly the same in form as that given in Ref. 5. The onlyprobability distribution functions. When the solute is subject
difference is the trivial redefinition of the instantaneous dis-to the intramolecular potential functio#(¢) in its original
tribution p€ by Eq.(7). In this sense, the method presented inform, the reference solute molecule adopts
Refs. 4 and 5 is applicable to a flexible solute molecule with- P(D(1))
out modification. V() —kgTlog| =<

In Eq. (3), the solvation free energ¥u is expressed as Po(®(¢))
an integral over the solute intramolecular coordingtdt is  as the intramolecular potential. In E@1), the second term
then seen by virtue of Ed6) that the main contribution to incorporates the effect of the solute—solvent interaction on
the integral comes from the region @fin which the distri-  ®(y) in the form of distribution and gives rise to the differ-
bution functionp(#) in the solution system is larg8 When  ence between the original and reference solute molecules. It
the energy distribution functiop® is to be obtainedys is  should be noted that Eq21) is a function of the intramo-
sampled in the solution system ap(l) is realized. To con- lecular coordinate) of the soluteP and P, are constructed
structpg and g in the pure solvent system, in contrast, the from Egs.(19) and (20), respectively, and their arguments
sampling of ¢ is performed according to the distribution ®(¢) are defined overr. When Eq.(21) is taken to be the
function pg(#), not top(y). The variation in the structural solute intramolecular energy in the absence of solvent, the
distribution of the solute is accompanied by the change in th@robability distribution functiorpy(i) of ¢ is expressed as
solute—solvent interaction potential at typical valuesiof P(d ()
When p(#) overlaps barely withpg(#), in particular, the Po(h) = =—————po( ). (22)
content of the energy coordinateis effectively different Po(P(#))
between the solution and pure solvent systems. In this casEguation(22) shows that the conditional probability distri-
the approximate scheme may not perform well in the originabution of ¢ at a fixed valuep of ®(¢) is the same between
form given by Egqs(13)—(18), and needs to be modified to the original and reference solute molecules and that¢the
take into account the difference betwepfy) and py(#). distribution for the reference solute molecule is identical to
Our modification for treating a flexible solute molecule is tothe distribution in the solution system of interest. When the
devise a reference solute molecule for which the distributiomeference solute molecule is placed in the neat solvent sys-
function of the solute intramolecular coordinatds revised tem as a test particle, the corresponding ensemble average
from po(y) and reflects some representative features ofQ)gq of a quantityQ is given by
p(). _

In order to introduce the reference solute molecule, we <Q>¢=f d¢"po(¢)fde exp(— BUIX))
employ a function®(¢) defined over the solute intramolecu- JaXexp(—BU(X))
lar coordinatef. ®(y) characterizes the solute intramolecular
state in a conceptually and computationally convenient man- =f doP()(Q) g, (23
ner. Of course®(y) can be taken to be itself. This choice _ - ] _
is not useful, however, wheg is multidimensional. It is Where(Q), is the conditional average at a fixgtland is
advantageous in practice to adopt a one-dimensidnaly  Written as
reducing the information content for the solute structure. At JdydXS(p—D () Q exp(— BIW () +U(X)})
the end of this sectionb is actually set to the intramolecular (Q)y TdgdX8(p— (%) exp — BV (¥ +U(X)H) (-

(21)

potential ' of the solute, although the following develop-

ments can be made without specifying the explicit form of

the functiond. Since the formulation is common to any form

of ®, we keep the form generic until the end of the section.
The probability distribution functioriP(¢) of the value

¢ of the function® () is expressed in the solution system as

(Q), is not affected by the replacement ¥f(y) with Eq.
(21). In other words, the conditional average at a fixgds
invariant when the solute molecule is changed from the
original to the reference. The modification of the solute in-
tramolecular state in the solution is reflected only through
P(¢) in Eq. (23). It should be noted furthermore that the
solute and solvent degrees of freedom in the probability dis-
tribution are apparently uncoupled from each other in
Eq. (23).

With its value ¢, the functiond(y) specifies the domain
of the solute intramolecular coordinage When a condition
d ()= ¢ is imposed, the free energy chanfe(¢) for the
solute insertion is expressed as

P<¢>=f dyd($—D(9))P(). (19

Similarly, the probability distribution functioR( ¢) for the
solute molecule at isolatiofabsence of the solute-solvent
interaction is given by

Po(¢):J dy6(p—D(4))Po( ). (20

JdydX (=P ()exp — B{V () + 0 (%, %) +UX)})
JdydXo(h—D(y))exp —B{¥ () +U(X)}) '

This equation is similar in form to Eq3) and is rewritten as

exp(—BAv(¢))= (29
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Jdypo(p—D())po(h)exp — BAo (1))
Jdio(p—D(4))po( ) ’

exp(— BAv(¢))= (26)

whereAo(y) is introduced by Eq(2). According to Eqs(3) set of systems with an identical probability distributi®(e)
and (26), Ar(¢) is the conditional solvation free energy of the valueg of the functiond(y). An approximation ta\ z
specified by® () = ¢, and is related to théotal) solvation  can then be formulated in parallel with that presented in Ref.

free energyAu given by Eq.(1) through 5. The detail of the formulation is described in Appendix A,
and only the final expression is shown in this section.
exp(—,BA,u)zf doPo(d)exp— BAV(¢)). (27) When the solvation free energyu is to be evaluated

through the original form of approximation listed as Eqgs.
The hierarchical structure is evident in Eq8), (26), and  (13)—(18), the inputs needed are the energy distribution func-
(27). The coordinatep provides a coarse-grained description tions p¢, pg, and xg given by Eqgs.(8), (10), and (11), re-
of the solute intramolecular state, and(¢) is an “interme-  spectively. The approximation tAz is expressed, on the
diate” betweenAo(y) and Au in the construction of the other hand, in terms gf® in the solution system of interest
solvation free energy. and two distribution functiongg and’g in the pure solvent

The probability distribution function®(¢) and Py(¢) system which involves the reference solute molecule as a test

are related to each other through an expression similar to Egarticle.pg is the average of the instantaneous distribution
(6). Indeed, it follows from Eqs(19), (20), and(26) that p€(e) defined by Eq(7) and is written as

P(¢p)=Po(P)exp—B(Av(¢)—Apu)) (28)

holds exactly at each value @f for any choice of the func-
tion ®(¢).1° Especially, the solvation free enerdy is writ-
ten in terms of its conditional counterpaXi(¢) as

P = (Do | dGP(BH ), 32

where P(¢) is the probability distribution function in the
solution system given by Eq19) and(---)q and(---), are

e P(¢) the averages introduced by E@23) and(24), respectively.
Au=AltksT | dgP(d)log Po(#))’ (29 X6 is the correlation matrix set to
whereA7Z is given by Xole,m)=(p()p% (7))o
ATFJ dgP($)Av(). (30 —f dBP(S)(D%(€)) (P g
Unlike Egs.(3), (26), and(27), Eq.(30) introducesA as an
integral of Au(¢) weighted byP(¢). Aw is simply the av- :f doP (o) ((p%(€)p%(1)) 4
erage of the component free energy changég). The sec-
ond term of Eq.(29) represents the cross entropy of the —(p%(€) (P(M)) ). (33
distribution P(¢) relative to Py(¢) in the unit of —KkgT. ] ) R .
This term is always non-negativéso that It is actually different from t_he second cumulant@f(e) in
5 the pure solvent system with the reference solute molecule
Au=An (3D by

is an exact inequality. Equatid@9) is actually of the form of

free energy whemk1(¢) is considered an effective “energy” doP()(p%(€)) (P (7)) g

at the state specified bg. The first term is the average

“energy” and the second term makes the entropic

contribution* —f d¢P(¢)<fJe(6)>¢f dEP(E)(P(m))e- (34)
An average of the free enerdgghangé of the form Eq.

30 appears commonly in the theoretical treatment of the sygAs shown in Appendix A, the form of Eq33) reflects the

tems with quenched degrees of freedom, such as spin glagsoperty that the probability distribution functioR(¢) of

and fluid in confined mediurt’?° The standard technique the value¢ of the functiond(y) is unchanged during the

for studying this type of average is the replica metiahd  process of solute insertion. Equatit®¥) is similar in struc-

is recently extended to fluid systelfr.?°In the present work, ture to the blocking term in the theory of fluid in confined

we formulate an approximate expression AGi on the basis medium.”‘zo The bIocking term expresses the correlation

of the density-functional theory in the energy representatiopetween different replicas within the framework of the rep-

established in Ref. 4. When the energy coordinaigintro-  lica method. In the developments of Appendix A, it is not

duced with respect to the solute—solvent interactioof in-  necessary to treat E¢34) explicitly. Our approximate ex-

terest, the correspondence is one-to-one in the energy repreression forAz is then listed as

sentation from the solute—solvent interaction potential to the %(e)

solvent distribution around the solute. In Ap_pend|x A,_ it is We(e)=—kgT |09(T) —€, (35)

proven that the one-to-one correspondence is also valid for a pol€)
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~e o(e—7) ~e\— e ~e
WO(G):_kBTf dﬂ(%_()(o) Yem) | (p°(m)—Po(m), (36)
Ap= —kBTf de[(p°(e)—P5(€))+ BW(€)p°(€) —{@(€)F (€) +(1—a(€))Fo(€)}(p(€) = PG(€))], (37)
g+ 1+ — PR e (when W°(€)<0)
E(e)= exp(— BWe(e))—1 (38
3 BWe(e) (when W(e)=0),
log(1— W5 (€))
—log(1— BW 1+ ——— hen W <0
£ o] TIOIAT () F1H e (when WG(6)<0) 9
3 BWs(e) (when W§(e)=0),
1 (when p%(e)=p§(e))
a(e)= (40

_(p%e)—?)S(e)

2
- h e $~e .
pe(e)+730(6)) (when p%(e)<p3(e))

This set of approximation is exact to second order in thed is not changed in the modification of the approximate
solvent density and in the solute—solvent interaction for anyscheme. The probability distribution function of tfkevalue

choice of the functiorb(y).?* Equationg35)—(40) are coin-
cident with Eqs(13)—(18), furthermore, whe(y) is a con-
stant independent of the solute intramolecular coordigate
In the present work, we sd(i) simply to the intramo-
lecular potential functionV'(y) of the solute through

D(p)=V (). (41)

becomes common, on the other hand, to the solution system
of interest and the reference solute molecule by adopting Eq.
(41). The sampling scheme is then optimized straightfor-
wardly with respect to the solvent effect on the solute in-
tramolecular energy.

The intramolecular potential for the reference solute moldll. PROCEDURES

ecule introduced by Eq21) then reduces to

et Iog( P(¥ ()

Q0T (9) 42

A. System

The purpose of Secs. Ill and IV is to illustrate the per-
formance of the approach to the solvation free enekgy
described in Sec. Il. The accuracy of an approximate func-

within an additive constant independent of the solute inviona for Ay under a given set of potential functions can be

tramolecular coordinaté, whereP is the distribution of the
W value given by Eq(19) and(}, is the density of states for
the potentiall’ expressed as

0o(6)= | duotg—w(u). 43

In summary, Eqs(29) and(35)—(41) constitute the modified
form of approximation in the present wofk.

assessed through the exact evaluatios @funder the same
set of potential functions! When such common techniques
as the free energy perturbation and thermodynamic integra-
tion methods are uséd, however, the calculation of the ex-
act Au is difficult in practice for a solute molecule with
structural flexibility. For the purpose of obtaining the exact
Apu, the number of intramolecular degrees of freedom needs
to be small. In the present work, we employ a set of model

When the solute molecule is at isolation and is subject tsolute molecules which involve a one-dimensional intramo-
the original formW¥ of intramolecular potential, the condi- lecular coordinate. This is done so due to the limit of prac-
tional probability distribution function of the intramolecular tical computational effort for calculating the exa&j, al-

coordinateys is independent of/ at each fixed value o¥.
Equation(22) then shows that when the functidnis set to
Eq. (41), the conditional distribution under a fixebl is also

though the method in Sec. Il is developed to treat a solute
molecule with intramolecular coordinates of any dimension.
The solvent is water. The water molecule is treated as

constant for the reference solute molecule. The conditionaligid and nonpolarizable, and the SPC/E model is adopted as
probability distribution function is thus always more local- the intermolecular potential function between water
ized in solution than at isolation under a particular choicemolecules’® Four thermodynamic states are then examined.
expressed as E@41). In Sec. IV B, we see that the perfor- One is an ambient state of 1.0 g/t@nd 25 °C and the oth-
mance of the original form of approximation does not dete-ers are supercritical states of 1.0, 0.6, and 0.2 g/amd
riorate when the solute—solvent interaction localizes thet00°C. In the following, the thermodynamic state of each
structural distribution of the solute. Therefore, it is justified system of interest is specified by the water density and tem-
that the conditional probability distribution @fat each fixed perature.
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The solute molecules employed in the present work ar¢ion with the images is canceled so that the intramolecular
comprised of two interaction sites. In this case, the intramopotential is completely flat as a function of the site—site dis-
lecular potential of the solute molecule is determined by th@ance within the available range.
distance between the sites. Two types of potential functions ~ When a molecule involves two sites, its invariant mea-
are adopted for the intramolecular degree of freedom. One isure for the relative coordinate of the intramolecular motion

harmonic in the form given B is r2drdQ, wherer is the radial distance between the sites
5 andd() denotes the directional part. In the present work, the
K(r—re)?, (44 measure is instead taken to Bed(). This is done in order

that the probability distribution function affor the solute at

isolation (absence of the solute—solvent interactiasim-

0 (when |r—rJ<A/2) ply proportional to the Boltzmann factor of the intramolecu-

(45) lar energy without the? factor of no interest for the purpose
of assessing the performance of approximation. Especially,

In both potential functionst, is taken to be 3 A. Further- ther distribution for the FL-3-0, FL-5-0, FL-3-1, and FL-5-1

more, two values of 2 and 5 kcal/mol#are examined fokK solutes is constant within the accessible region wfhen no
of Eq. (44), and 3 and 5 A forA of Eq. (45). solvent is present.
The intermolecular interaction between the solute and
water molecules consists of the Lennard-Jones and Couloné- Simulation
bic terms, as usual, and is given by E83) of Ref. 5 with '
the truncation factoiS(x) set to unity. The Lennard-Jones The inputs needed to evaluate the solvation free energy
parameters for the two-site solute molecule are taken fromhu of the solute through Eqg29) and (35)—(41) are the
Ref. 25. The values for the sodium ion in Table | of Ref. 25distribution functionsp®(€), pg(€), andxg(e, ») introduced
are assigned to one of the sites, and those for the chloride idsy Egs. (8), (32), and (33), respectively. We obtaip®(e)
to the other. The Lennard-Jones part of the solute—water pdrom a Monte Carlo simulation of the solution system of
tential function is then constructed by the standard Lorentz-interest, andpg(e) and xg(e,7) from a simulation of the
Berthelot combining rulé. For the Coulombic interaction, pure solvent system. For comparison, we also calculate
two cases are examined. One is the nonpolar case, in whighf(e) and xg(e, ») given by Eqs(10) and(11), respectively,
no charge is given to any of the sites. In the other case, thend evaluaté\x through the original form of approximation
solute is polar and the charge 6fl in the unit of elementary listed by Eqgs.(13)—(18). It should be noted for the FL-3-0,
charge is placed at the Ndike site. The CI-like site in-  FL-5-0, FL-3-1, and FL-5-1 solutes thaf(e) andxg(e, 7)
volves the corresponding negative charge, so that the mokre the same gsg(€) and xg(€,7), respectively. For these
ecule is neutral in total. solutes, the original and reference solute molecules intro-
The number of solute molecules treated in the presenmluced in Sec. Il are identical to each other under a particular
work is 8 according to the form of intramolecular potential, choice expressed as E@1).
the parameter in the potential, and the charges on the sites. In each Monte Carlo simulation of the solution system,
Thus, a convention to specify the solute type is necessary fane solute molecule of interest and 300 water molecules
convenience in the rest of the paper. When E44) is  were located in a cubic unit cell and the standard Metropolis
adopted for the intramolecular potential function, the solutesampling scheme in the canonical ensemble was imple-
molecule is called with a prefix “HM.” The nonpolar solute mented without the method of preferential samplinghe
is then termed HM-2-0 and HM-5-0, respectively, when theMonte Carlo simulation was performed for 50 K passes,
parameterK is set to 2 and 5 kcal/mol/A Similarly, the  where one pass corresponds to the generation of 300 con-
polar solute involves & 1 charge at the Nalike site, and is ~ figurations. The periodic boundary condition was employed
denoted by HM-2-1 and HM-5-1, respectively, i§,=2 and  in the minimum image convention, and the electrostatic po-
5 kcal/mol/A2. When Eq.(45) is employed for the intramo- tential was handled by the Ewald method with the surround-
lecular potential, the solute molecule is labeled with a prefixing medium of infinite dielectric constant. The screening pa-
“FL.” In this case, the nonpolar solute is identified as FL-3-0 rameter was then set tol5/whereL is the length of the unit
and FL-5-0, respectively, wheA is taken to be 3 and 5 A. cell, and 514 reciprocal lattice vectors were used. The trun-
The polar solute is FL-3-1 and FL-5-1 in compliance with cation atL/2 was applied on the site—site basis to the real-
the A value. space part of the electrostatic interaction in the Ewald
As described in Sec. Il B, the electrostatic potential ismethod and the Lennard-Jones part of the intermolecular in-
handled by the Ewald method in the present work. A mol-teraction. The instantaneous distributipfi(e) defined by
ecule then interacts with its own images when the moleculé&q. (7) was sampled every pass. It was averaged through Eq.
involves (partia) charges on its sites. This interaction is (8) over 50 K configurations of the solution system to con-
taken to be part of the intramolecular potential of the mol-struct the energy distribution functigsf(e).
ecule concernetf. In particular, the intramolecular energy of Po(e) and yg(e, ) were obtained by carrying out a
the HM-2-1 and HM-5-1 solutes is the sum of E¢4) and  Monte Carlo simulation of the pure solvent system. In the
the interaction with the images, and is not exactly harmonicsimulation, the standard Metropolis sampling scheme was
For the FL-3-1 and FL-5-1 solutes, we actually set(tio¢al) implemented in the canonical ensemble by locating 300 wa-
intramolecular potential to the form of EG15). The interac-  ter molecules in a cubic unit cell. The size of the unit cell

and the other is flat and is simply

o (when |r—rg/>A/2).
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was identical to that of the corresponding simulation of theof the neat solvent system, and did not affect the configura-
solution system consisting of one solute molecule and 30@ion of the solvent molecules. The position, orientation, and
water molecules. The simulation length was 10 K passes, andtramolecular state of the solute molecule were sampled
the boundary condition and Ewald sum parameters were theéarough the standard Metropolis scheffi&Vhen the solute
same as those for the solution system. In parallel, a Montes HM-2-0, HM-5-0, HM-2-1, or HM-5-1, the intramolecular
Carlo simulation was performed for the solute molecule. Thepotential was modified from Eq42) in the actual Monte
solute molecule was placed as a test particle in the unit celCarlo calculation for the reference solute molecule. It reads

(1=q)P(V(¥))+al max min)

o0 (When ‘P(w)<¢min or \P(’ﬂ)>¢max)v

(46)

whereq= 0.1 and¢,,, is the minimum possible value of the solute molecule present as a test partipfée) is the histo-
intramolecular energW¥ (i) of the solute moleculep,oxwas  gram for the interaction potential energies between the test
set t0 (pmint+15kgT) for the HM-2-0 and HM-5-0 solutes solute particle and the solvent molecules, and was averaged
and to (pmin+40kgT) for the HM-2-1 and HM-5-1, where  to give p§(e) andXS(e,7) according to Eqs(32) and (33).

kgT is the thermal energyP(¥(¢)) in Eq. (46) is intro-  Of course, the method of umbrella sampling was utilized for
duced by Eq(19) and can be obtained from the simulation {he HM-2-0, HM-5-0, HM-2-1, and HM-5-1 solutes since the
of the corresponding solution systeflo(V(¢)) is SIMply  jntramolecular energy for the Monte Carlo scheme was

the density of states given by EG3) and its calculation is g ified into Eq.(46). The configuration of the neat solvent
trivial for our model potentials. The modification was made

. , system was sampled every 100 passes. At each solvent con-
in the present work because the equienergy surfaces are rﬁy

. . éuration used to calculatg®(€), the solute molecule was
connected for the solute intramolecular potential employedSam led 5 K times with an interval of 50 stens of its Monte
When the solute is FL-3-0, FL-5-0, FL-3-1, or FL-5-1, it P P

. L —~e .
Monte Carlo simulation was conducted under the originalCarlo simulation.po(€) and o(e,7) were thus obtained

form of intramolecular energy introduced by E45). In this from the avgragln.g Of’,e(e) qver 590 K sgts of solute and
case, the statistical weight for each intramolecular state of0!vent configurations in a single simulation of the pure sol-
the solute at isolatiofabsence of the solute—solvent interac- VENt System.

tion) cannot be modified on the basis of the intramolecular ~ When the solute is HM-2-0, HM-5-0, HM-2-1, or HM-
energy, and Eq46) is different from Eq(45) only withinan ~ 5-1, po(€) and xg(e,») are distinct from Bg(e) and
additive constant. The instantaneous distribufiSte) was ~ Xo(€,7), respectively. In the calculation opg(e) and
constructed by sampling dinstantaneoysconfiguration of  xg(€,7), the intramolecular energy of the solute adopted for
the neat solvent system and énstantaneoysstate of the its Monte Carlo sampling is

(1=q)Po(W(y))+al max min)
_kBT |Og q 0( &’(;f(q}(;)g(ﬁ ¢ (When ¢min$q}(‘/’)$¢max)

% (when W(§)<dmin OF ¥(4)> dmad,

(47)

where P, is the distribution function for the solute at isola- solute molecule is subject to the potential given by &),

tion and is introduced by E@20). Of course, the calculation the simulation of the solution system needs to be done first.
of Py is trivial for the model potentials employed in the P(W(¥)) is then provided as an output, and is used as an
present work. The other parameters in E47) were set input for the subsequent simulation of the pure solvent sys-
equal to their counterparts in E@6). Except for the poten- tem. For each solute and at each thermodynamic state, we
tial function of the solute, the procedure for obtainjsi{ €) performed six sets of simulations and estimated the average
and xg(e,7) was the same as that f@(e) and’xg(e,») and error of the solvation free energy through the standard
described above. expressions shown by Eg®5) and (26) of Ref. 5.

One set of simulations to approximately evaluate the sol-  In a simulation of the pure solvent system, the correla-
vation free energy consists of two simulations. One is of theion matricesyg and’yg are obtained according to Eq4.1)
solution system, and the other is of the pure solvent systerand (33). Their inversion is then needed through E¢&4)
involving the solute molecule as a test particle. When theand(36), respectively, when the solvation free energy is to be
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evaluated. The inversion is not possible, however, when ththe free energy change to the system at the hewias cal-
number of solvent molecules interacting with the solute isculated for 5 K passes. The variation)ofrom 0 to 1 corre-
invariant against the change in the configuration of the syssponds to the creation of the solute molecule and the reverse
tem. In this case, Eq$14) and(36) cannot be processed as variation from 1 to O corresponds to the annihilation. We
they are, and their treatment is described in Appendix B. Irperformed three sets of free energy perturbation calculations
the present work, all the solvent molecules, including thosdor both the creation and annihilation processes. Six values
with zero solute—solvent interaction energy, are alwaysvere then obtained for the solvation free energy, and the
counted in constructing the energy distribution functiogfs. average and error were estimated by E@$) and (26) of
and’yg calculated are then not invertible, and the procedureRef. 5.
in Appendix B is employed to evaluate the solvation free
energy. In qddition, Appendix C 'provides the'numericallv_ RESULTS AND DISCUSSION
schemes which supplement those in the Appendix of Ref. 5.

In order to assess the accuracy of an approximate procé. Solute intramolecular structure

dure for the solvation free energyu under a given set of In this section, we first describe the effect of solvent on
potential functions, its exact evaluation is required under thgne solute structure. The structure of the solute in solution is
same set of potential function$.As noted at the beginning fylly characterized by the probability distribution functipn

of Sec. llIA, however, the calculation of the exak is  of the intramolecular coordinate expressed as &Y. The
difficult for a solute molecule with structural ﬂeX|b|I|ty We So|vent effect is then seen from the Comparisop wlth the
circumvent this difficulty by resorting to E6). In Eq.(6),  distribution functionp, for the solute at isolatiofabsence of
p(¢) is the probability distribution function of the solute the solute-solvent interactipgiven by Eq.(4). In Fig. 1, we
intramolecular state) in the solution of interest and is an showp andp, of the nonpolar solutes HM-2-0 and HM-5-0
output of the simulation of the solution system describedas functions of the distanaebetween the sites. It is evident
above.po(¢) is the distribution for the solute molecule in the for each solute and at each thermodynamic state that the
absence of the solute—solvent interaction and can be straighiolute—solvent interaction shifts the peak of thaistribution
forwardly obtained for the model potentials in the presento a shorter distance. In other words, the solute molecule
work. The (overal) solvation free energAu can then be becomes compact through its interaction with water, in
evaluated by calculating the solvation free enefgy() at  agreement with the common notion of hydrophobicity. When
a fixed intramolecular stat#; of the solute. In this scheme, the (solven) density is fixed at 1.0 g/ctn the solvent effect
the exact free energy calculation is necessary only for a rigién ther distribution is apparently observed more strongly at
solute molecule with the structure identified gy. p(¢;)  a supercritical temperature of 400 °C than at an ambient tem-
andpg(ys) correct the difference betweeu andAo (),  perature of 25 °C. This observation reflects the fact kna

so thaty; is desirable to be “typical” in the solution system Eq. (44) is taken to be invariant against the change in the
for achieving good precision afu.?” In our treatmentsy;  thermodynamic state. The intramolecular potential of the sol-
was set to the site—site distance of 3.0 A for the HM-2-0,

HM-5-0, FL-3-0, and FL-5-0 solutes. For the polar solutes, it

was taken to be 4.5 A for the HM-2-1 and FL-3-1 solutes and I S I I SR B
5.5 A for the HM-5-1 and FL-5-1. L5 7 \ 10gem’25°C
The calculation ofAo(¥;) was performed by the free 1.0 1 /\ C
energy perturbation method. In each free energy calculation, 0.5 74 N
a Monte Carlo simulation was carried out using the standard 0 £ e "
Metropolis sampling scheme in the canonical ensemble. One 1.0 S s, O gm 400°C |
solute molecule of interest and 300 water molecules were 05 ] N i
then located in a cubic unit cell, and the preferential sam- 7:: T , . -
pling method was not used. The size of the unit cell, the < 07 ; n
boundary condition, and the Ewald sum parameters were < 1.0 om0
taken to be identical to those of the corresponding simula- 0.5 “ B
tions of the solution and pure solvent systems. - 7 \ -
In the free energy perturbation method, the solute- 07 -
solvent interaction is controlled by the coupling parameter 1.0 0.2 glem’, 400 °C C
A(0O=\=1). For the nonpolar solutes, the Coulombic term 0.5 L
is absent in the solute—solvent interaction. In this case, the - B
Lennard-Jones term was turned on according to the expres- O
sion obtained by replaciny of Eq. (27) of Ref. 5 with \/3. ! 2 f(A) 4 .

For the polar solutes, the Lennard-Jones and Coulombic
terms were varied through Eq®7) and (28) of Ref. 5. In FIG. 1. The probability distribution functions and p, of the distancer

our calculations, the coupling parameterwas discretely between the two sites of the HM-2-0 and HM-5-0 solutes at an ambient state

. of 1.0 g/cn? and 25 °C and supercritical states of 1.0, 0.6, and 0.2 3/cm
changed in 50 and 90 steps for the nonpolar and polar SOEnd 400 °C. For each gf andp,, the broader and sharper curves corre-

utes, respectively, with the eql@"y spaced intervals. At eacBpond to the HM-2-0 and HM-5-0 solutes, respectively. It should be noted
value of\, the system was equilibratedrf& K passes and thatp, is common to the three supercritical states.
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@) FIG. 3. The relative distribution functiop/p, of the distance between the

FIG. 2. The probability distribution functions and p, of the distancer two sites of the FL-3-0, FL-5-0, FL-3-1, and FL-5-1 solutes at an ambient
between the two sites of the HM-2-1 and HM-5-1 solutes at an ambient statétate of 1.0 g/ch and 25°C and supercritical states of 1.0, 0.6, and
of 1.0 g/cni and 25 °C and supercritical states of 1.0, 0.6, and 0.2 3/cm 0.2 g/cn? and 400 °C. The dashed curve with a sharp peak at 4.5 A repre-
and 400 °C. For each qf and p,, the broader and sharper curves corre- Sents the FL-3-1 solute and the other dashed curve corresponds to the FL-
spond to the HM-2-1 and HM-5-1 solutes, respectively. Due to the interac3-0. The solid curve peaked at 5.5 A stands for the FL-5-1 solute and the
tion of the solute with its own imagegy, in the Ewald method depends other solid curve is for the FL-5-Q/p, for the FL-3-0 and FL-5-0 solutes
S“ghtly on the density even when the temperature is fixed. refer to the left Ordinate, and those for the FL-3-1 and FL-5-1 to the rlght

For each solute and at each thermodynamic sfajeis constant in the

accessible region af given by Eq.(45), andp/p, is not available outside

. . " " . the accessible region. Within a factor independent,ob/p, is coincident
ute is effectlvely softer” at a hlgher temperature. When the between the FL-3-0 and FL-5-0 solutes and between the FL-3-1 and FL-5-1

temperature is fixed at 400 °C, the density reduction leads t@y virtue of Eq.(6).
a weaker effect of solvation. Actuallyy and p, are barely
distinguishable from each other at a low density of

0.2 g/cnt. of the solute approach each other and their overlap is
The probability distribution functiongp and p, are  significant.
shown in Fig. 2 for the polar solutes HM-2-1 and HM-5-1. It In Sec. Il, a reduced form of description of the solute

is observed for each case that the solute—solvent interactidntramolecular state was introduced over the intramolecular
favors the charge separation of the solute and gives rise to gotential energyp in connection with the solvation free en-
extended structure. Actually, the solvent effect is strong anergy. The probability distribution functioR of ¢ in solution
p overlaps barely wittpy. The variation of the density and is derived fromp through a projection given by E¢L9), and
temperature leads only to a weak change in the peak positiahe distributionP, at isolation is fronp, through Eq(20). It
within the thermodynamic range examined, while the peak iss then insightful to illustrate the behaviors &f and P
broader at the higher temperature. Of coupsesduces t@, before discussion about the solvation free energy. In Fig. 4,
in the limit of zero solvent density. The density of 0.2 gicm P and P, are shown for the HM-2-0 solute at the ambient
is then not “low enough” in the sense thatat 0.2 g/cmd  state of 1.0 g/cthand 25 °C and the high-density supercriti-
and 400°C is closer tgp at the high-density states of cal state of 1.0 g/cfhand 400 °C and for the HM-2-1 solute
1.0 g/cnt and 25 and 400 °C than to,. This is consistent at the ambient state and the low-density supercritical state of
with a previous finding that the hydration of a polar or ionic 0.2 g/cnt and 400 °C. It should be noted that eachPoénd
species even at low-density supercritical states ofP, diverges at thep which is equal to an extremum of the
~0.1 g/cn? is comparable to that at ambient states? intramolecular potential of the solute. This is caused by the
For the FL-3-0, FL-5-0, FL-3-1, and FL-5-1 solutes, the corresponding divergence of the density of states expressed
solvent effect dominates the structural distribution funcfion as Eq.(43) when the solute intramolecular degree of freedom
in solution since the distributiop, at isolation is constant is one-dimensional. Thep distribution is shifted to the
within the accessible range of the site—site distanoéthe  higher-energy region by the solute—solvent interaction. Ac-
solute molecule. In Fig. 3, we shop/p, of these solutes. tually, the deviation ofP from P, is weak for the HM-2-0
The behavior is parallel to that observed for the HM-2-0,solute, while the peak position is different by more than 10
HM-5-0, HM-2-1, and HM-5-1 solutes. When the solvent kcal/mol for the HM-2-1 solute.
water is present, the nonpolar solute becomes compact and The solvent effect on the distribution of the solute in-
the polar solute is extended. For the FL-5-0 solyifp,  tramolecular energy is reflected in the solvation free energy
reduces with the decrease of the distancie the smallr through the second term of E9). The HM-2-1 and HM-
region. This reflects the property that the solute—solvent inb-1 solutes are strongly affected by the solvent, and the sec-
teraction is effectively less attractive when the two sitesond term of Eq(29) amounts to 11—-13 kcal/mol. The term is
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] L not affected by the modification of the approximation. Nu-
4] T..; :n(\)/[-z-o 3 asec | merical troubles were observed, on the other hand, when the
2 1 ’ O glem’, C original form of approximation is employed to calculatg
0 e ——— for the polar solutes HM-2-1 and HM-5-A\u for the polar
0 0.5 1.0 1.5 solute could not be determined due to numerical instability
T L or was estimated only roughly with a discretization error
2y HM-2-0 C typically of a few kcal/mol. Thus, the observation for the
1:L‘ 1.0 glem’, 400°C [ HM-2-1 and HM-5-1 solutes limits the utility of Egs.
% 0 ] LN B e B S B O - (13)_(18)'31
= 0 1 2 3 4 5 To see the nature of the modification of the approximate
g . scheme, it is insightful to examine the FL-3-0, FL-5-0, FL-
E’ 3 HM-2-1 N 3-1, and FL-5-1 solutes. Indeedu of these solutes are not
O s 1.0 gfem®,25°C [ affected by the modification of the approximation and are
1\ C helpful to characterize the choice specified by E{). The
L S UL '2' ' approximate values afu are shown in Table | and are found
0 3 10 13 0 to agree with the corresponding exact values. The connection
104 HMo2-1 K with the solvent effect on the solute structure is then seen
054 0.2 glem®, 400°C |- from the distribution function of the solute intramolecular
1h, - coordinatey. When the distribution functiop in the solu-
07T T T T T tion expressed as Ed5) is compared to the distribution
0 10 20 function p, at isolation given by Eq(4), it is illustrated in
¢ (kcal/mol)

Fig. 3 thatp is more localized in the) space thamp,. The

FIG. 4. The probability distribution functior and P, of the intramolecu- Iocallzgtlon is actually inevitable when the mtramOIePu'ar
lar potential energyp of the HM-2-0 solute at an ambient state of 1.0 glem Potential of the solute takes the form of E@L5) and is

and 25°C and a high-density supercritical state of 1.0 §/and 400°C  constant within the accessible regiongafTable | thus dem-

and of the HM'Zr%l S%'U:g g‘tg‘e ?r':“b_igtr;t rST:atle a':dra '02"";1?rl‘s_itYnS‘iPef%”t_ic%nstrates that when the presence of solvent localizes the
Zfé?k?gtv?l.:egliheaSM—Z—o and HI\j—IZ—lasoﬁJ?ecsu;nggt?]elzoler sooll(J:tOeI iglter—strucwral distribution of the solute, _the pe_rfo_rmar?c_e of the
acts with its own images in the Ewald method.is set to zero at the a@Pproximate scheme does not deteriorate in its original form
minimum of the intramolecular potential, and eachPoaind P, diverges at  listed by Eqs(13)—(18). Our choice of Eq(41) relies on the

the minimum . fact that the conditional probability distribution function of

for the solute at isolation does not dependioat each fixed
value of the intramolecular potential. When E@1) is

smaller than 0.1 kcal/mol, on the other hand, when the solutgdomed’ the conditional distribution is always more local-

. . . ._Ized in solution than at isolation. Th roximat heme i
is nonpolar and is HM-2-0 or HM-5-0. In this case, the dis- ed in solution than a solation. The approXimate Scheme 15
S . . then necessary to be optimized with respect only to the sol-
tribution function of the solute intramolecular energy re- .
. . vent effect on the solute intramolecular energy, and (Ej).
sponds weakly to the solvation and the solvation free energ

. . ) ¥ the choice to meet this necessity.
is dominated by the first term of EG9). For the HM-2-0, HM-5-0, HM-2-1, and HM-5-1 solutes,

the effect of the modification of the approximate scheme is

B. Solvation free energy clarified by comparing the distribution function of the solute
In Sec. II, we presented two forms of approximation tointramolecular energy in the solution. wi'th that at isqlation.

the solvation free energiu. One is the original form for- When the solute is npnpolar, 'the distribution function re-
mulated in Ref. 5 and is written as Eq$3)—(18). The other spond_s weak_ly o the mtrod_ucﬂon of t_he solute—solver_\t_ n-
is a modified form and is given by Eq9) and (35)—(41). teraction, as illustrated in Fig. 4. In this case, the modifica-
The two approximate values fdru of the HM-2-0, HM-5-0, tion pr_esented in Sec. Il causes only a minor revision o_f the
HM-2-1, and HM-5-1 solutes are listed in Table | and areSa@mpling scheme for the solute intramolecular coordinate
compared to the exact values obtained from the free ener d does not Iegd to |mprovement of the approximation.
calculations. According to Table I, thieu values evaluated hen the solute is polar, in 90"‘.“""5" the mtramolecglar en-
from the modified form of approximation are in good agree_ergy of the solute changes significantly through the interac-

ment with the corresponding exact values. Therefore, théion with the solvent and the performance of the approximate
single functional expressed as E@®9) and(35—(41) pro-

scheme is improved by employing the modified form.
vides an efficient and accurate route to the solvation free

energy of a flexible solute molecule over a wide range ofC Solute—solvent interaction
thermodynamic conditions. '

For the HM-2-0 and HM-5-0 solutes, however, thg The modified form of approximation for the solvation
values obtained from the modified form of approximation arefree energy was formulated in Sec. Il by introducing the
essentially coincident with the corresponding values calcunotion of reference solute molecule. The reference solute
lated from the original form of approximation given by Egs. molecule adopts some structural characteristics of the solute
(13)-(18). The solvation free energies of these solutes arén the solution of interest, while it is to be placed, like the
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TABLE I. Solvation free energy in units of kcal/mdl.

Solute Thermodynamic state Exact Approximate

Original form Modified form
[Egs.(13—(18)] [Egs. (29 and (35)—(41)]

HM-2-0 1.0 glent and 25 °C 3.20.2 3.5+0.1 3.4:0.1
1.0 g/cn? and 400 °C 15.£0.3 12.4+0.1 125
0.6 g/cnt and 400 °C 3.50.1 3.9+0.1 3.9
0.2 g/cnt and 400 °C 0.720.1 0.7 0.7
HM-5-0 1.0 g/ent and 25°C 3.30.2 3.6+0.1 3.4:0.2
1.0 g/lent and 400 °C 15.30.3 12.6+0.1 12.6:0.1
0.6 g/cnt and 400 °C 3.50.1 3.9 3.9
0.2 g/cnt and 400 °C 0.70.1 0.7 0.7
HM-2-1 1.0 glent and 25 °C —104.8-0.9 -P —108.51.8
1.0 g/cnt and 400 °C —86.2¢0.5 - P —87.2:0.5
0.6 g/cnt and 400 °C —86.4+0.3 -b —82.9+0.4
0.2 g/cnt and 400 °C —-78.6+1.3 -b —70.9+0.4
HM-5-1 1.0 glent and 25°C —92.5+0.7 - b —97.5¢1.7
1.0 g/en? and 400 °C —74.1+0.7 -b —74.3+t0.2
0.6 g/cn? and 400 °C —74.7+05 - b —70.5+0.3
0.2 g/cnt and 400 °C —67.4+1.0 -b —60.8+0.7
FL-3-0° 1.0 g/cn? and 25°C 2.90.2 3.3+0.1
1.0 g/cn? and 400 °C 14.60.3 12.1
0.6 g/cnt and 400 °C 3.40.2 3.8
0.2 g/cnt and 400 °C 0.60.2 0.6
FL-5-0° 1.0 g/cni and 25°C 2.90.3 3.1+0.1
1.0 g/lent and 400 °C 14.£0.5 11.6+0.1
0.6 g/cnt and 400°C 3.40.4 3.7
0.2 g/cnt and 400 °C 0.60.2 0.6
FL-3-1° 1.0 glent and 25°C —100.2+0.7 —104.0:0.8
1.0 g/cn? and 400 °C —79.7+0.7 —80.4+0.2
0.6 g/cnt and 400 °C —80.8+0.6 —77.4+0.3
0.2 g/cnt and 400 °C —73.4+1.3 —68.0+0.5
FL-5-1° 1.0 glent and 25 °C —113.3+0.9 —119.7+1.8
1.0 g/en? and 400 °C —92.5+0.3 —94.2+0.5
0.6 g/cnt and 400°C —93.4+0.3 —90.1+0.4
0.2 g/cnt and 400 °C —86.2+1.3 —80.6+0.9

8Each value is rounded to a multiple of 0.1 kcal/mol. The error is smaller than 0.1 kcal/mol when it is not
shown.

The value calculated from the original form of approximation is numerically unstable or involves a large
discretization error typically of a few kcal/mol.

“The approximate value of the solvation free energy is identical between the original and modified forms of
approximation.

original solute molecule, in the neat solvent system as a tesif the figure. This behavior is simply related to the observa-
particle. It is then insightful to illustrate th@ne-body en-  tion in Sec. IVA for the structural distribution function.
ergy distribution functiorpg(e€) for the reference solute mol- When the solute is nonpolar, the solvent effect on the in-
ecule given by Eq(32 and to note the connection with tramolecular structure is relatively weak. From the indistin-
pS(e€) for the solute molecule in solution ang(e) for the  guishability of pg(€) andpg(€), it is also natural for the
original solute molecule expressed as E@.and (10), re-  nonpolar solute that the solvation free energy evaluated from
spectively. In this section, we describe the behaviors othe modified form of approximation is essentially coincident
pS(€), pg(€), andpg(e€) for typical cases. with that calculated from the original form of approximation.
In Fig. 5, we showp®(e), pg(e€), andpg(e) of the HM-  Of coursep®(e€) is more populated in the favorable region of
2-0 solute as functions of the solute—solvent interaction enthe solute—solvent interaction thas§(e) and pg(e), and
ergy € at the ambient state of 1.0 g/émand 25°C and the vanishes when the solute—solvent interaction is strongly
high-density supercritical state of 1.0 gféand 400°C. Itis unfavorable®
evident for the nonpolar solute thaf(e) andpg(e) are In Fig. 6, p(e€), pg(€), andpg(e) are shown for the
barely distinguishable from each other within the precisionHM-2-1 solute at the ambient state of 1.0 gfcemd 25°C
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FIG. 5. The energy distribution functions(e), pg(e), andpg(e) of the
HM-2-0 solute as functions of the energy coordinatg an ambient state of
1.0 g/ent and 25 °C and a high-density supercritical state of 1.0 §/and

N. Matubayasi and M. Nakahara

the Na'-like and CI -like sites, respectively. The lowest-
energy peak is present due to the water molecules interacting
strongly with both the sites. When the temperature is el-
evated to the supercritical, the peak structure becomes less
definite. The lowest-energy peak turns into a shoulder and
the higher-energy peaks persist in broader forms.

Unlike the cases for the nonpolar solutgg(e) and
‘po(e) for the HM-2-1 and HM-5-1 solutes are distinct from
each other in the favorable region of the solute—solvent in-
teraction energy. This reflects the observation in Sec. IVA
that the intramolecular structure of the polar solute is
strongly affected by the solvent. Actuallyg(e) in the
lowest-energy side ofe<—25 kcal/mol is only poorly
sampled and deteriorates the performance of the original
form of approximation. In the unfavorable region of the
solute-solvent interactior, the difference betweepg(e)
andpg(e€) is seen to be weak in Fig. 6. Thus, the indistin-
guishability of pg(e) andpg(e) in the positivee region is
common to the nonpolar and polar solutes examitied.
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APPENDIX A: APPROXIMATION TO Aji

In this Appendix, we formulate an approximate expres-
sion for A%z introduced by Eq(30). The formulation is per-
formed in two steps. In the first step, the one-to-one corre-
spondence between the solute—solvent interaction potential
and the solvent distribution around the solute is established
with respect to the average of the free engigyange of the
form Eq.(30). The second step is then to obtain the approxi-
mate expression through the developments similar to those
presented in Ref. 5.

As done in Refs. 4 and 5, the value of the solute—solvent
interactionv of interest is adopted as the coordinate the
energy representation. The attention is then restricted to a set
of potentialsu which are constant over equienergy surfaces
of v. A potential functionu contained in this set may be
considered to be defined over the energy coordirasad
can be expressed as(e). Of course,u depends on the
intramolecular coordinaté of the solute and the full coor-
dinatex of the solvent through the solute-solvent interaction
v of interest, and is denoted y(¢,x) in the full coordinate

400 °C. Whene=<10 kcal/mol, the abscissa is linearly graduated and therepresentation. In Sec. Il, a functiah(¢) defined over the

ordinate refers to the left. Whese10 kcal/mol, onlypg(€) andpg(e€) are

shown with respect to the logarithmic abscissa and the right ordinate. Th

graduation for the ordinate is logarithmic for both the left and right. Within
the precision of the figurepg(e) andpg(e) in the positivee region are
barely distinguishable from each other.

coordinatey is introduced to characterize the solute intramo-
fecular state. When the valué is fixed for ®(y) in the
presence of a solute—solvent interactionthe average dis-
tribution p®(e, ¢;u) is given in the energy representation by
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JdpdX (=D () pe(e)exp— B{W () + Ziu' (1,%) +U(X)})
JdypdX8(p—D())exp —B{W () +Zu'(¢,x) +U(X)})
wherep€ is the instantaneous distribution defined as &g.X represents the solvent configuration collectively, df(@,) and

U(X) are the solute intramolecular energy and the solvent—solvent interaction energy, respectively. Correspondingly, when the
solute molecule with the solute-solvent interactioiis inserted at a fixed, the free energy changer(¢;u) is written as

 JdydXS(p—D(gh))exp— B{W () +Zu'(¢h,%) +U(X)})

SR PR = T Gy aX s - d (e — BT (M UX) (A2

pS(e, dp;u)= (A1)

Obviously, A 7(¢;u) reduces taAu(¢) of Eg. (25 when its  mapped to different distributiorig®(e;u) andp®(e;w) un-
argumentu is set to the interaction potential of interest. lessu differs from w by an additive constant in a system
In our developments, the probability distribution func- with invariableN.3* In Appendix B, we show a procedure to
tion P(¢) of the valueg of the function®(¢) is fixed at the fix the additive constant. When this procedure is adopted, the
one introduced by Eq19). The average distributicp®(;u) map from the solute-solvent interaction to the distribution
and free energy chang¥7(u) are then set, respectively, to function is one-to-one in the energy representatron.
To obtain an approximate expression fdfi given by
~,3e(€;u):f déP(d)p(e, p;u), (A3) Eq. (30)_, we t_reat the gradual insertion process pf the s_olutr_—z.
In the insertion process, the solute—solvent interaction is
turned on according to the coupling parameter0O<A\
A~7'(U)ZJ' d¢P($)A7(piu). (Ad4)  <1). Whenx=0, there is no explicit interaction between
the solute and solvent and the system is the pure solvent with
uis left as an argument in Eq8A3) and(A4) to specify the  the reference solute molecule introduced in Sec. Il. When
solute—solvent interaction potential. Whenis v itself, ~\=1, the solute interacts with the solvent at full coupling
P°(e;u) andA7(u) are equal tp®(e) of Eq.(8) andA of  under the solute—solvent interaction potentiabf interest.
Eq. (30), respectively. When the solute-solvent interaction isin the energy representation, the gradual insertion of the sol-
absent (=0), p°(e;u) is the distribution function in the ute is described by a family of solute—solvent interaction
pure solvent system with the reference solute molecule and botentialsui(e). Of course, it is imposed that
identical to pg(€) given by Eq. (32). The response of

_T)e(e;_u) to the change in the solute—solvent interactiS(e) ug(€)=0,
is written as uS(e)=v’(e)=ce. (A7)
%:J dpP (o) ({pS(€)p( 77)>¢;u A7 can then be expressed as
& e b UV 1 e - [t Jui(€) _
~ e, B B10)), @9 ap= [ o] ae Sprauy

where(p®(€)p®(7)) 4., is the expression obtained by replac-

ing p®(e) in the right-hand side of Eq.(Al) with 1

p%(€)p®(7n). Equation(A5) shows that the second cumulant - jo d"f dd’f de

of p© at fixed ¢ is averaged with the weighR(¢) to provide

the response function. This type of average appears due fohis equation is the charging formula for an average of the

the property thaP(¢) is unvaried within the systems con- free energy(chang¢ of the form Eq.(30) and is exact for

cerned. Of course, Eq(A5) reduces to Eq.33) when any choice ol, . It should be noted tha®(¢) appearing in

u=0. Eq. (A8) does not change during the process of solute inser-
It is now straightforward to prove that the map is one-tion.

to-one from a set of potentials of the fomi(¢) to the cor- As done in Ref. 5y, is chosen so thgi®(e;u,) varies

responding set of distribution functiofi€(e;u). When two  linearly with X. In other words,

?XllL;tf(AZ(;I\l/s:; t|(;1teract|on:;| and w are provided, Egs. Bo(e1uy) =N p(e)+ (1—N)FS(e) (A9)

Jus(
J

)
= P(@)p(eiuy). (AB)

holds at eacke in our choice ofu, , wherep®(€) andpg(e)
A”T(w)—A“T(u)sf de(w(e)—u®(e))p%(€;u), (A6)  are given by Eqs(8) and(32), respectively. The unique ex-

istence of theu, satisfying Eq.(A9) is assured by the one-
where the equality holds only whenwf(e) —u®(e)) is a  to-one correspondence described above. To formulate the ap-
constant independent efand the numbelN of solvent mol-  proximation, it is useful to employ the indirect part of the
ecules interacting with the solute is invariant against thepotential of mean force between the solute and solvent mol-
change in the configuration of the systéfit then follows  ecules. Within the context of this Appendix, the indirect part
from an argument similar to the one described in Appendix Bi® of the solute—solvent potential of mean force is defined in
of Ref. 4 that different potentialsi®(e) and w®(e) are the presence of a solute—solvent interactioas

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



9700 J. Chem. Phys., Vol. 119, No. 18, 8 November 2003 N. Matubayasi and M. Nakahara

P°(eu)
Pole)
When the argument is taken to be the interaction of  for any functiong(e) defined over the coordinate Since
interest, W®(e;v) is the same a§i®(€) introduced by Eq. the left-hand side of EqB3) is the variance of the sum of
(35). Under the particular choice di, identified by Eq. theg values over all the solvent molecules, the equality is
(A9), furthermore,Wg(e) of Eq. (36) is exactly related to realized only wherN is invariable andg(e) is a constant
We(e€;u,) through independent ofe. Therefore, an eigenvector foyg(e,7)
does not depend on the coordinatehen the corresponding

We(e;u)=—kgT log

)—Ue(e)- (A10) f dedng(e)xg(€, 7)9(7)=0 (B3)

/€, .
We(e) :M _ (A1) eigenval_ue is zero. Especially, when two functigfe) and
2 N h(e) satisfy
When the Percus—Yevick-type approximation is adopted . .
along the\ variation according to Eq(A9), We(e;u,) is f deo(E,ﬂ)g(n)Zf dnxo(e, n)h(n), (B4)

expressed as
e e g(e) differs fromh(e) by an additive constant.
— BW(€;uy) =log(1+A(exp(— BW(e)) — 1)) When the truncation is applied to the solute—solvent in-
=log(1—\BWE(e)). (A12) f[eraction, the reduced form of instantaneous distribut@on is
introduced by Eq(8) of Ref. 4 and Eq(22) of Ref. 5. In this
The hypernetted-chain-type approximation is written, on the;ase, the number of solvent molecules interacting with the
other hand, as solute varies in response to the change in the configuration of
We(€;uy) = AN WE(€) = \WE( ). (A13) the system and the correlation m_atr_ix c_onstruct_ed from the
reduced form of instantaneous distribution provides a non-
The subsequent development is then a notational variant ofero value in the expression similar to E@®3). All the
that presented in Ref. 5, and leads to a set of approximatgigenvalues are then positive for the correlation matrix, so
equations listed as Eq&35)—(40). that the inverse exists. As noted above, the inversion is not
possible only wherN is fixed. In the rest of this Appendix,
we restrict our attention to the case in which the correlation
APPENDIX B: INVERSION OF THE CORRELATION matrix is not invertible. _ _
MATRIX By employing an auxiliary functiong, Eq. (14) is re-
written as a set of equations through
The inverses of the correlation matricg§(e,») and
Xo(e€, ) are required, respectively, to determing(e) with J e TE( ) = — e e)— ®
Eq. (14) and®S(e) with Eq. (36). The inversion is not pos- dmxo(e mUs(7) =~ keT(p™e) = pole)). (5
sible, however, when the number of solvent molecules inter- e 1 e
acting with the solute is constant against the change in the wWe(e)= —US(G)—kBTM
configuration of the system. The purpose of this Appendix is pol€)
to provide a scheme to determing(e) andWg(e) when the
inverses of the correlation matrices do not exist. The argu
ments are given only foxg(e, 7) andwg(e) because those
for Xg(e,7) andWg(e) are parallel.
The numbeN of solvent molecules interacting with the
solute molecule at an instantaneous configuration of the sy
tem is expressed as

(B6)

Sincexg (€, ) involves a null eigenvalue, the solution to Eq.
(B5) expressed asg is not unique. From the above consid-
erations, however, any two solutions are different only by an
additive constant independent of the coordinatén other
words,ug can be uniquely determined when its value is fixed
%ta particular coordinate

In Ref. 5 and Appendix A of the present paper, the

gradual insertion process of the solute is treated in terms of

N:f dep®(e) (B the coupling parametex and is described by a family of

: . o . solute—solvent interaction potential§(e). Equation(13) of
in terms of the instantaneous distributipf defined as EQ.  Retf 5 then leads to

(7). When the solute—solvent interaction is not truncated in a

finite region,N is simply the total number of solvent mol- . aus (e)

ecules in the systenN is then independent of the system  UYo(€)=——= (B7)

configuration when the ensemble employed does not allow r=0

the fluctuation ofN.* In this case, when the energy distribution function varies linearly wkh
through Eq.(11) of Ref. 5. Actually, the energy distribution

f dnxg(e, 7)=0 (B2)  function at eachh is not affected by a constant shift of

us(e). The origin of the potential has no effect on the dis-

holds at eache. Equation(B2) shows that the correlation tribution function when the number of solvent molecules in-

matrix involves a null eigenvalue and is not invertible. Theteracting with the solute is invariable. This point is reflected

eigenvector corresponding to the null eigenvalue can b the fact that the solution is not unique in E&5) and is

identified by noting that indeterminate up to an additive constant.
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We fix the additive constant on the basis of the physicahumerically invertible, the term corresponding to the small-
argument concerning the intensive nature of the solvatiomst eigenvalue needs to be omitted in the sum of(Bd1).
free energy. The number of solvent molecules which are
separateq from thg solute molecule by large distances N B PENDIX C: SUPPLEMENTARY NUMERICAL
creases in proportion to the total number of solvent mOI'PROCEDURES
ecules in the system. The solvation free energy then con-
verges in the thermodynamic limit when the solute—solvent  The numerical procedures to treat the energy distribution
interaction potential vanishes at large distances. Of courséynctions are essentially described in the Appendix of Ref. 5.
potential functions are always formulated to be zero at infi-In this Appendix, we present the numerical schemes which
nite separation. Thus, the solvation free energy is assured gupplement those in Ref. 5. The presentation is made only
be intensive for a common choice of interaction potential.for p€ in the solution system angg and g in the pure
Within the context ofi§ (€), the solute—solvent interaction at solvent system. This is because the schemes are parallel for
large distances corresponds to the coordirat®. Although ~ pg andxg calculated using the reference solute molecule.
us(e) atA#0 or 1 are not of physical interest, it is natural to In the present work, the numbgr of solvent molecules
require that the free energy change be intensive upon inseiteracting with the solute molecule is independent of the
tion of the solute molecule with the interactiof(e). This  system configuration and does not fluctuate. It then follows
requirement then leads to by virtue of Eq.(B1) that the energy distribution functions

used to evaluate the solvation free energy satisfy

u;=0 at €=0. (B8)
From Eqgs.(B7) and(B8), we fix the additive constant by J dep®(e)=N,
UW=0 at e=0. (B9)

f depg(€)=N, (Cyp
When the solute—solvent interaction of interest is con-

tinuous, the energy coordinateneeds to be discretized in
the numerical implementation. The discretized version of Eq. f d7{p(€)p®(7))o=Npg(e),
(B5) reads
where(--+)q is the average in the pure solvent system given
e/ ey ein e by Eqg. (12) and (p®(€)p®(7))o provides xg(e,n) through
; Sixoll)Uo(1)=~keT(p™(1) = poli)), (10 Eq. (12).3" In an <actual com|>3uter calculat?on, however, Eq.
) o (C1) does not necessarily hold since the energy distribution
whered; is thee'lgngtbeo'f thgth interval Oef the energy coor-  fnctions are stored in finite digit€.In our numerical imple-
dinate andXo(',J)e: Uo('%_é’e(')v and po(j) are the dis-  mentation, the energy distribution functions constructed in
cretized forms ofyg(€, 7), Ug(e), p(e), andpg(e), respec-  the simulation are normalized when the solvation free energy
tlvely._ Let z; be an eigenvalue for the symmetric matrix js 15 pe obtained. The normalization is simply to replace
5iXO(|,J)5j_ andg;(j) be t_he correspo_ndmg e|genyector. The pe(e), pS(e), and (p%(€)p%(n))o With r1p%(e), ropS(e),
smallest eigenvalue, which we cal, is zero and is nonde- 5,4 R(€)R(7)(p%(€)p%( 7))o, respectively, where the fac-
generate. When t_he set of eigenvectors is taken to be Orth%rsrl, ro, andR(e) are determined to enforce the condition
normal, Eq.(B10) is solved as Eq. (CD).
1 Even when the exact value of or pg is not zero at a
ug(i)=C— kBTz gj(i)—E a9;( )(p&(1)—pg(1)), particular energy coordinatg, it is sometimes calculated to
170 4 B11 be zero numerically in an actual simulatithlt should be
B hoted that whempg(€) is zero, xg(e ,7) and xg(7,€) are
where the term corresponding to the null eigenvalue is omitalso zero at each. Whenp® andpg are both calculated to be
ted in the sum andC is a constant independent of the dis- zero ate,, the solvation free energyiu can be obtained
cretized coordinate. Of coursg,is fixed, in accordance with without any difficulty through Eqs(13)—(18). In addition,
Eg. (B9), by settingug(l) to be zero at the intervalwhich  the evaluation ofAx can be performed without trouble, as
containse=0. noted in the footnotés5) of Ref. 5, even whep® is zero and
In the practical implementation, the eigenval'sand  pg is not. A numerical problem arises whphis nonzero and
the eigenvectors;(j) are always calculated with numerical pg is zero at a particulag, . In this casew® andwg at the
errors. When the error & andg;(j) is of orderk, each term  other energy coordinates can be treated with the procedure
in the sum of Eq(B11) involves an error of ordek. Due to  given by Eq.(A7) of Ref. 5. Due to Eq(18), furthermore,
the numerical error, in particular, the smallest eigenvaie wg at ¢ is not needed in the calculation afu. The problem
may not be apparently zero. In this case, it is possible at this that w® at ¢, is required whenAu is to be evaluated
level of numerical manipulation to include the=0 term in  through Egs(13)—(18). In the present workw® at ¢, is set
the sum of Eq(B11). Thej=0 term is of order 1 since the equal to thew® at the closest energy coordinate where both
inner producsum overl in Eq. (B11)] between the eigen- of p® andp§ are nonzerd®+!
vectorgy(l) and (1) —pg(l)) is zero in an exact calcula- In the model calculations of Ref. 5, the solute—solvent
tion. Thus, the correct limit is not achieved at-0 if the interaction is restricted to a finite region and the solvent mol-
j=0 term is included in the sum. Even whéyxg(i,j)d; is  ecules outside the interaction region are excluded in the con-
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struction of the energy distribution functions. In this work, 2°J. Chandrasekhar, D. C. Spellmeyer, and W. L. Jorgensen, J. Am. Chem.
all the solvent molecules are counted in the distribution func- Soc.106 903(1984.
tions. The solvent molecule interacting weakly with the sol- SWhen a molecule carries partial charges and the Ewald method is adopted,

. . . . its “intramolecular” potential function depends slightly on the overall
ute molecule é~0) is then large in number, and the discreti- .oniation. P P oy

zation of the energy coordinatds correspondingly fine near 27the scheme based on E@) is effective only when the solute intramo-
e=0. lecular coordinatey is low-dimensional. Whewp is of high dimension, the
calculation ofp(¢) [and possiblypy(¢)] is difficult.

28
1J. P. Hansen and I. R. McDonal@heory of Simple LiquidéAcademic, P. B. Balbuena, K. P. Johnston, and P. J. Rossky, J. Phys. Gi%et554

London, 1986. 29(1993'
2A. Ben-Naim, Solvation Thermodynami¢®lenum, New York, 1987 P. B. Balbuena, K. P. Johnston, and P. J. Rossky, J. Phys. Qleen2706
3D. Chandler and L. R. Pratt, J. Chem. Ph§s, 2925(1976. 30(1996-
4N. Matubayasi and M. Nakahara, J. Chem. Pyl 6070(2000. R. E. Westacott, K. P. Johnston, and P. J. Rossky, J. Phys. Chaob B
5N. Matubayasi and M. Nakahara, J. Chem. PHyl, 3605(2002; 118, 6611(2002.

2446(2003. 3ln the present calculations of the solvation free energies of the HM-2-1
8In Refs. 4 and 5, we employed the terms “chemical potential” and “ex- and HM-5-1 solutes in the original form of approximation, the source of
cess chemical potential” instead of “solvation free energy.” the numerical trouble is the poor statistics of the energy distribution func-
M. P. Allen and D. J. TildesleyComputer Simulation of Liquid€xford tions pg(€) and xg(e€,7) in the low-energy region o< — 25 kcal/mol,
University Press, Oxford, 1987 where the energy coordinatavas discretized with an interval of Ok T,

8t is actually sufficient to suppose that only the solute—solvent interaction as described in the Appendix of Ref. 5. In principle, when the discretiza-

gis pairwise additive. ) tion interval is sufficiently fine and the sampling statistics is good enough,
When the intramolecular degrees of freedom are present in the solventy,e caicylation of the solvation free energy does not involve a numerical

molecule, the corresponding intramolecular coordinates are contaimed in trouble even in the original form of approximation. The difficulty in prac-

_The overztall dppstltlotr;] and or(ljt_ant?tlo; (;f tfllle St?]“"tz mollecule TaY altio be tice is that the important region is sampled too rarely when the structure
incorporated into the coordinatg. Actually, the developments in the of the solute is largely affected by the solute—solvent interaction.

present paper are valid simply by definiRgand ¢ as collections of the 2\Whene=0, p%(e) is observed to be smaller tha§(e) andpS(e). This is

variables that are enough to specify the solute-solvent interaction poten- A ) L
actually a finite-size effect of the present calculations. In the limit of large

tial.

According to Eqs(3) and(6), the solvation free energu provides the system sizep®(e)/p5(€) andp(e)/pg(e) need to be unity neas=0.
normalization factor for the probability distribution function generated **The number of solvent molecules interacting with the solute varies in
from po(¥)exp(—BAa(y)). Similarly, Egs.(27) and (28) show thatAu response to the change in the system configuration when the solute—
serves to normalize the probability distribution function proportional to Solvent interaction is truncated in a finite region. It is not variable, in
Po(p)exp(— BAn(¢)). contrast, when the truncation is not applied and the number of solvent

11C. H. Bennett, J. Comput. Phy82, 245 (1976 molecules is constant in the ensemble.

12K, S. Shing and K. E. Gubbins, Mol. Phys, 1109(1982). 34The presentation in Appendix B of Ref. 4 is not sufficiently careful at this

13The second term of Eq29) is zero only wherP($)=P(¢) at eache. point. The procedure to fix the additive constant needs to be supplemented

When Av(¢) and Po(¢) are fixed, the extremization of E29) with 35t° complete the arguments. o
respect toP(¢) leads to Eq(28) under the normalization condition for = A similar argument to prove the one-to-one correspondence applies in the
P(¢). full coordmat_e representation. _

15K Binder and A. P. Young, Rev. Mod. Phy38, 801 (1986. 36N fluctuates in the grand canonical ensemble.

16\\, G. Madden, J. Chem. Phy6, 5422(1992. $7When the reference solute molecule is employfi(p(€)),=N holds

173, A. Given, Phys. Rev. A5, 816(1992. at each¢ in addition to the counterpart of E(C1), where(-- ), is given

8. A. Given and G. Stell, J. Chem. Phg, 4573(1992. by Eq. (24).

193, A. Given and G. Stell, Physica 209, 495 (1994). 38In the present work, the energy distribution functions obtained from the

20, Kovalenko and F. Hirata, J. Chem. Phyd.5 8620(2007). simulations of the solution and pure solvent systems are stored in seven

ZActually, A7 evaluated through Eq€35)—(39) is exact to second orderin  digits.
the solvent density and in the solute—solvent interaction for any choice of®p® is usually calculated to be zero numerically in the strongly unfavorable

the weight factoi(e). region of the solute—solvent interaction even when the corresponding
22 different choice of® corresponds to a different form of approximation  value of the energy coordinate is finite.

when Eqgs.(29) and(35)—(40) are employed. “OThe energy coordinate is one-dimensional and is discretized in the nu-
#H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. @hem.  merical implementation. In this case, the condition thqt- e for any e

6269 (1987). satisfyingp®(€) >0 andp§(e)>0 is fulfilled by only oneey in the region

240f course, a negative value of the distamds not allowed in Eq(44). In
other words, the intramolecular potential function of the solute molecule is
prohibitively large whemr <0. Actually, the region of <0 is not available
in the practically used form of potential function between two sites. When ; o o
the two sites are chemically bondddn Eq. (44) is much larger the ones 'S cloier. Whe: ¢ —en) is equal 1o €p—e€)), W(e)) is simply taken to
employed in the preset work. A nonbonded pair of sites is subject to stronglbe (w (‘N)"’W'(GP))/Z' ' )
repulsion, typically in the Lennard-Jones form, at short distances. Our When there exist more than one energy coordinates at veffighnonzero
values ofK are adopted simply to realize substantial fluctuation in the and pg is zero, the numerical procedures described can be straightfor-
solute structure within the form of E¢44). wardly extended.

of e<e . In the region ofe>¢, similarly, a uniqueep exists which is
smaller than any satisfyingp®(€)>0 andpg(e)>0. w(e)) is then set
equal tow®(ey) wheney is closer toe, thanep, and it isw®(ep) whenep
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