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Theory of solutions in the energetic representation. . Formulation

Nobuyuki Matubayasi® and Masaru Nakahara
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

(Received 1 May 2000; accepted 21 July 2000

The energetic representation of the molecular configuration in a dilute solution is introduced to
express the solvent distribution around the solute over a one-dimensional coordinate specifying the
solute—solvent interaction energy. In this representation, the correspondence is shown to be
one-to-one between the set of solute—solvent interaction potentials and the set of solvent distribution
functions around the solute. On the basis of the one-to-one correspondence, the Percus—Yevick and
hypernetted-chain integral equations are formulated over the energetic coordinate through the
method of functional expansion. It is then found that the Percus—Yevick, hypernetted-chain, and
superposition approximations in the energetic representation determine the solvent distribution
functions correctly to first-order with respect to the solute—solvent interaction potential and to the
solvent density. The expressions for the chemical potential of the solute are also presented in closed
form under these approximations and are shown to be exact to second-order in the solute—solvent
interaction potential and in the solvent density. 2000 American Institute of Physics.
[S0021-960600)51439-1

I. INTRODUCTION the intermolecular configuration of a pair of molecules in the
solution. Indeed, the method of reference interaction site
In a modern theory of solutions, the solution structure ismoge| (RISM), which implements the PY or HNC approxi-
described by molecular distribution functions. Especially, themation in the site—site form, is widely used and achieves
two-body distribution functions are the major targets of inte-yaasonable success in high-density molecular fithid A

gral equation theories ang are default quantities to computgeficiency of the RISM integral equation is that it involves
in molecular smulaponé: The distribution functions are jj_pehaved diagrammatical structures. Although this defi-
defined over a certain representation of the configurations Cgiency is removed in the “diagrammatically proper” formal-

the molecules of interest. The full coordinate of a moleculeIsm provided by Chandleet al, the formalism needs to in-
which specifies its configuration completely consists of the[roduce additional correlation functions and loses the
position and orientation of the molecule. When the full CO-simplicity of the diagrammatically ill-behaved RISM

ordinate is employed to represent the molecular Conﬁguraépproacr?.‘"25 In addition, the RISM integral equation with
tion, the distribution functions involve well-behaved math- the PY or HNC closure does not give the correct zero-density
ematical structures and the commonly used Percus—Yevicyyit and is not useful to describe a low- to medium-density
(PY), hypernetted-chaifHNC), and superposition approxi- f,iq. This point is improved in the RISM-2 integral equa-

matiqnsl_%re exact to first-order in the density of theons formulated by Chandler and Kojima and Arakawa,
solution:~" A systematic description of the distribution func- \\nich are exact in the limit of zero densft§728 In the

tions over the full coordinate is possible in principle for a gigpm-2 approximation with the PY or HNC closure, how-
molecule of any symmetry by means of spherical harmoniG gy, the first-order term with respect to the density of the

. _11 . .
expansior?~**In the full coordinate representation, however, <oy ion is incorrect, whereas the corresponding approxima-
the multidimensional description cannot be avoided for th&;q, iy the full coordinate representation is exact to first-

distribution functions when molecules of chemical interestorder in the density. It actually seems difficult, due to the

are to be treated. Therefore, the full coordinate representatio(gbnnectivity of the interaction sites contained within a mol-
is not desirable in practice to describe the distribution funcyq e to systematically devise a simple and improved form

tions of the solution. o of integral equation in the site—site representation.
The site—site representation is a reduced form of repre- | this paper, we explore an alternative representation

senting the molecular configuration. In this representation, ¢ the molecular configuration in a solution. The system
site—site distribution function is defined over the radial dis-;.aated is a dilute solution and contains a single solute mol-

tance between the corresponding interaction sites and the, e The alternative representation, which we call the en-
structure of a solution is usually described by a set of site—

) oo : ; . X ~"ergetic representation, is introduced by adopting the solute—
site radial distribution functions. Since each site—site radial}ent interaction energy as the coordinate of a solvent

distribution function is represented over a one-dimensiongl,qjecyle around the solute molecule. In the energetic repre-

abscissa, the site—site representation is conceptually andntation, the solvent distribution around the solute is ex-
computationally convenient in the statistical description Ofpressed over a one-dimensional abscissa for any type of

solute—solvent interaction potential. The density functional
dAuthor to whom correspondence should be addressed. theory can then be developed by establishing the one-to-one
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correspondence between the choice of the solute—solvent ipaper are employed to study the solvation thermodynamics
teraction potential and the resulting distribution of the sol-and solvent-mediated interactions of various types of solutes
vent in the energetic representation. The integral equationis water over a wide range of thermodynamic conditions.
with the PY, HNC, and superposition approximations are
further fqrmulatgd over the coo_rdlnate speglfylng the solufte—”_ DISTRIBUTION EUNCTIONS IN THE ENERGETIC
solvent interaction energy. Since these integral equations-preESENTATION

treat each of the solute and solvent molecules as one unit and

do not separately describe the distinct sites of the moleculd- Definitions

they are exact to first-order in the solvent density of the  The system of our interest is a dilute solution containing
solution. a single solute molecule. For the sake of simplicity, it is

The solvent distribution function around the solute mOI'Supposed that the So|ute and 30|Vent mo'ecu'es do not in-
ecule provides the chemical potential of the solute when thgolve the intramolecular degrees of freedom. The solute mol-
charging formula is employed and an integration is per-ecule is fixed at théarbitrarily chosehorigin with an (arbi-
formed over the intermediate states of the coupling paramgarily chosen fixed orientation. In this case, the solute—
eter of the solute—solvent interaction potentialin fact, the  solvent interaction can be viewed as an external field for the
intermediate states are not experimentally realizable angolvent molecules, and the configuration of a solvent mol-
their choice is not unique. Thus, the integration over theecule relative to the solute molecule is specified completely
coupling parameter not only demands much computationaby the position and orientation of the solvent molecule. In
effort, but also inhibits an unambiguous interpretation and ahe present paper, the complete set of the position and orien-
clear understanding of the quantities of interest. In othekation is called the full coordinate and is denoted collectively
words, it is desirable, both conceptually and computationby x. When the intramolecular degrees of freedom are
ally, that the chemical potential of the solute be expresseg@resent in the solute and/or solvent molecule, the extension
only in terms of properties at the initial and final states of theof our treatments is actually straightforward and is described
coupling parameter. Using such an expression for the chemin Appendix A.
cal potential, which is called a closed form expression, the  The full coordinate representation is implemented by ex-
chemical potential can be evaluated only with the knowledgeressing the distribution functions over the full coordinate
of the systems of interesf%°~% In this paper, we also In the full coordinate representation, the instantaneous distri-
present the closed form expressions for the chemical potemution p' of the solvent is defined as
tial of a solute under the PY, HNC, and superposition ap-
proximations in the energetic representation. ,“Jf(x):E S(X—X;), (1)

It is a tradition since Kirkwood’s days that a theory of [
solutions is formulated over a coordinate specifying a set ofyherex; is the full coordinate of théth solvent molecule and
positional variables. Indeed, the specification of the full co-the sum is taken over all the solvent molecules. The average
ordinate of a molecule is equivalent to the specification ofgjstribution p' of the solvent is determined when the inter-
the positions of all the points in the molecule, and the site-molecular interaction potentials are given and the thermody-
site representation is implemented by labeling a certain set gfamic state is specified. In the present work, the solvent—
points in the molecule and specifying the positions of thoseglvent interaction and the thermodynamic state are fixed,
points. The energetic representation does not follow the traand »| is treated as a function of the solute—solvent interac-
dition in the sense that the coordinate does not specify thfon potential. When the solute—solvent interaction potential

position of any point in the molecule. When the representajs v, the average distributiop’ of the solvent around the
tion is fixed for the molecular configuration, a refined closureso|ute is uniquely determined from

relationship leads to an improved description of the solution. froi s g

We show in this and subsequent papers, on the other hand, W =(p' (X)), @

that the scheme for representing the molecular configuratiowhere(---),, denotes the ensemble average taken in the so-
may be changed to provide an accurate description of thiition with the solute—solvent interactian We leaveu as an
solution without revising the form of the approximate rela- argument in Eq(2) to specify the solute—solvent interaction
tionship among correlation functions. potential.

The organization of the present paper is as follows: In  The energetic representation is introduced by adopting
Sec. Il, the distribution functions are defined over the coorthe solute—solvent interaction energy as the coordinate of the
dinate specifying the solute—solvent interaction energy andolvent molecule. To formulate the energetic representation,
the density functional theory is developed in the energetigt is necessary to specify the solute—solvent interaction po-
representation. In Sec. Ill, the integral equations are formutential v with respect to which the solvent coordinate is de-
lated over the energetic coordinate with the PY, HNC, andined. The natural choice af is the interaction potential
superposition approximations and the closed form expreshetween the solute and solvent in the solution of interest. In
sions are correspondingly presented for the chemical potemmur developmentsy is called the defining potential and is
tial of a solute. In Sec. 1V, the paper is concluded with re-fixed at the outset. The coordinad®f a solvent molecule in
marks concerning the practical implementations and th¢he energetic representation is simply taken to be the value of
comparison to commonly used theories. In a subsequent pa- This coordinate is specified with respect only to the de-
per, the approximate procedures developed in the presefihing potentialv and its information content is reduced
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compared to that of the full coordinae It should be noted partw' of the potential of mean force between the solute and
that the coordinate is not necessarily continuous. When  solvent is defined in the presence of a solute—solvent inter-
involves a hard core or square well region, for examplis,  actionu as
discrete in that region. To develop the density functional

frye
theory in the energetic representation in Sec. I1B, we treata  w'(x:u)=—kgT log _f_p (Xju)) —uf(x), (6)
set of solute—solvent interaction potentialsvhich are con- p'(x;0)

stant over equienergy surfaces of the defining potented  wherekg is the Boltzmann constant, is the temperature,
may be considered to be defined over the energetic coordind p'(x;0) is the solvent distribution in the pure solvent
nate e. For a given solute—solvent interaction potential system (1=0). Similarly, the indirect panv® of the solute—

contained in this set, the notations(x) and u(e) are  solvent potential of mean force is defined in the energetic
adopted, respectively, when it is to be emphasizeduhat  representation as

represented over the full coordinateand over the energetic o .
coordinatee. When no emphasis is placed on the represen- e _. p-(eu) e

) ) o . we(e;u)=—kgTlog| == (€) 7
tation, the solute—solvent interaction is simply writtenuas p(e O)

e i e a7 )
;)i;gﬂurse, the defining potentialsatisfies,*(¢) = e by defi- for a solute—solvent interaction potentialvhich is constant
o T . over an equienergy surface of the defining potentiaBoth
The instantaneous distributigsf of the solvent is de- wi(x;u) a?1d We(egz) reflect the many-bogypeffects in the
fined in the energetic representation as solute—solvent correlation and vanish in the limit of zero
A . solvent density.
pe(€)=f dxs(v ()= e)p' ()=, swi(x)—€). (3 It is often the case that the solute—solvent interaction
' potential of interest is essentially of finite range and that its
Equation(3) shows thatp®(e)de is equal to the(instanta- long-range part may be safely neglected to account for the
neou$ number of solvent molecules whose valuesyffx) ~ Physics of the solution. When the defining potentia zero
are betweer ande+de. It should be noted that the defini- out&dg a finite regiorfY, it is useful to employ a reduced
tion of ﬁe is dependent on the Speciﬁca‘[ion of the definingform Po of instantaneous distribution of the solvent defined
potentialv. The average distributiop® of the value of the as
defining potentiab is correspondingly expressed in the pres-
ence of a solute—solvent interactioras f)fl(e)=f dxd(vf(x)— e)f;f(x)zAEQ S(vf(x)—e),
Q ie

®

where the integration is performed only over the interaction
reglonQ and the sum is taken over the solvent molecules
contained within(). Note that since the regiofl is usually

pe(E;u):<ﬁe(€)>u:J’ dx8(v'(x)—€)p'(x;u), (4)

where(---),, denotes the ensemble average taken in the so
lution with the solute—solvent interactiom Note that the
defining potentialy serves to construct the solvent coordi- of molecular size, the number of solvent molecules involved
agp
in Eq. (8) is microscopic. For a defining potentialof finite

natee and does not identify the system in which the average
is taken(unlessu=v). The solute—solvent interaction poten- fange p° in Eq. (3) is actually rewritten as
tial u, on the other hand, specifies the solution and deter- pe(e)=ps(e)+ 5(6)([\1_[(1“), 9)
mines the ensemble in which the averaging is carried out.
We leaveu as an argument in E@4) to identify the solute— where N is the total number of solvent molecules in the
solvent interaction potential. Equatié#) shows that the sol- System and,, is the(instantaneoysumber of solvent mol-
vent distribution p® in the energetic representation is ob- €cules in() expressed as
tained by integrating the solvent distributigri in the full
coordinate representation over equienergy surfaces of the de- NQ_ f dxp'(x)= J depg(€). (10
fining potentialv. In this process, a multidimensional inte- @
gration is performed and the resultip§ is represented over When a solute—solvent interaction potentiais given, the
the one-dimensional coordinatefor any type of defining average fornpg, is simply determined from
potentialv. e . ne

p%(:0) is the solvent distribution in the pure solvent  Pal€; u={pa(€)y- (12)
system (J 0). When the pure solvent is homogeneous andt is then easy to see, in correspondence with(8j.thatp$,
isotropic® p®(€;0) is simply the product of the solvent den- gatisfied’
sity and the density of states for the defining potential

given by pe(€u)=p(€u)+8(e)(N—(No)y). (12
The definition of the indirect paw{, of the solute—solvent
J dxd(vf(x)—€). (5 potential of mean force is similar to Ef) and is expressed
as

This density of states is determined only byand is inde-
pendent of the solvent—solvent interaction and the thermody- we(€e;u)=—kgT| g(
namic state. In the full coordinate representation, the indirect

P?}(fi u)

pg(e;O))_u (€). (13
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B. Density functional theory correlation function of the solvefit. In the full coordinate
representation, the two-body correlation functigh under
the presence of a solute—solvent interaction potenti&
expressed as

In the full coordinate representation, E@) defines a
map from a solute—solvent interaction potenti&(x) to a
distribution functionp’(x;u). As is well known, the map is
one-to-one in the sense that differamit(x) give different spf(x;u)
p'(x;u).2%*1 This is actually the fundamental theorem of  xf(x,y;u)= ——+——=(p'(X)p (y))y
the density functional theory and provides the basis for Per- (= pu(y))
cus’. method of functional e>.<pansion _to d_erive the Percus— —(ﬁf(X)>u<fJf(Y)>u, (14)
Yevick and hypernetted-chain approximatics.

In order to develop the density functional theory in thewhereg is the inverse of the thermal energs{) andu is
energetic representation, it is necessary to restrict the set #ft as an argument to specify the solute—solvent interaction.
solute—solvent interaction potentials. As shown in AppendixThe two-body correlation functiog® in the energetic repre-

B, the suitable set corresponding to the defining potential Sentation is similarly defined as

of interest consists of the solute—solvent interaction poten- o .

tials which are defined over the energetic coordinaté\ XS(€&, 73u) = Sp°(€;u) —(p%(e)p%(m))

potential functionu contained in this set is constant over an o 3(—Bus(n)) !
equienergy surface of the defining potentwabind may be ~e ~e

expressed as®(e). Equation(4) then defines a map from the —(P%(Nu(P®(M)y- (15)

set of potential functions®(e) to a set of distribution func- |t is obvious that both of " and x© are positive definite and
tions p(e;u) expressed in the energetic representation. Byinvertible and are symmetric with respect to the two argu-
definition, Eg.(4) maps an element in the set of(e)  ments of the solvent coordinate. In the full coordinate repre-

uniquely to an element in the set pf. In Appendix B, on  sentation, the direct correlation functich between the sol-
the other hand, we show that the converse is also true. Difgte and solvent in a dilute solution satisfies

ferent elements in the set of(e) are mapped through Eq.

(4) to different elements in the set gf(e;u). In other

words, the correspondence is one-to-one between the set of pf(x;u)—pf(x;O)=J dyc'(y;u)x'(y.x;0), (16

u€(e) and the set 0p® generated by the map E@), and it

is possible to treat a functional ef(e) as a functional of Where u appears as an argument to identify the solute—

p®(e:u). In Sec. IIIA, this property is exploited to derive Solvent interaction ang'(x,y;0) is the two-body correlation

approximate integral equations in the energetic representdunction in the pure solvent systeru<0). The direct cor-

tion. relation functionc® in the energetic representation can then
When the defining potential is of finite range and van- be defined by writing an expression similar in form to Eq.

ishes outside a finite regiofl, the density functional theory (16) as

can be developed on the set of solute—solvent interaction

potentials which are constant over equienergy surface_s of pe(e;u)_pe(e;o):f d7cé(7;u) x%(7,€.0). 17

and are zero outside the interaction rafgeAs shown in

A_pp(_andi_x B, the map i? one-to-one from this set to the set 0gince the two-body correlation functiog®(e, 7;0) in the

distribution functionspq(e;u) generated by Eq(11). The 0 sopvent is invertible, Eq17) definesc® over the coor-

present property is useful for a defining p_otentlal _of f'n'te_dinatee in terms of the average distributiop§ and y©. The

range because the solvent molecules outside the interactiqq ,~tyre of Eq.(17) is similar to that of the Ornstein—

range do not have to be taken into account in a densityze ke equation for a dilute solution in the full coordinate
functional treatment. representation given by E(L6). Thus, we call Eq(17) the
Ornstein—Zernike equation for a dilute solution in the ener-
C. Ornstein—Zernike equation getic representation.
In the full coordinate representation, it is a common
ractice to introduce the total correlation functibhof the

In commonly used approaches to a solution system, trlE
olvent by

Ornstein—Zernike equation or its site—site form is employe
to introduce the direct correlation function and a closure re-
lationship is adopted to give a self-consistent integral equa-  yf(x,y;u)=p'(x;u) 8(x—y)

tion for pair correlation function$?~"1%-%Since the direct . . f

correlation function is useful, at least notationally, to develop +p (X;u)p' (Y;u)h'(x,y;u). (18
an approximate integral equation, it is desirable to define thel.he Ornstein—Zernike relation E6L6) is then rewritten in a
direct correlation function in the energetic representation. Iq’amiliar form as

this section, we introduce the solute—solvent direct correla-

tion function in the energetic representation and formulate
the Ornstein—Zernike equation for a dilute solution over the  p'(X;u)=p"(x;0)| 1+c'(x;u)
energetic coordinate.
To formulate the Ornstein—Zernike equation for a dilute PN PR S
solution of our interest, it is necessary to define the two-body +f dyc'(y;u)p (y:0)h'(y.x;0) | (19
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In the energetic representation, it is also useful to define thpotentials. In this section, we formulate the method of inte-

total correlation functiorh® of the solvent. The definition of gral equation in the energetic representation with the

h¢ is similar in form to Eq.(18) and is expressed as Percus—YevickPY), hypernetted-chaitHNC), and super-

e e position approximations.

X (e mu)=p(eu)dle=n) Before presenting the approximate integral equations in
+ pS(e;u) p(m;u)he(€, ;). (20)  the energetic representation, we briefly review the PY and

HNC integral equations in the full coordinate representation

using the notations introduced in Sec. Il. In the full coordi-

nate representation, a systematic route to formulating the PY

In this case, the Ornstein—Zernike relation Ed.7) is
equivalent to

. . . and HNC integral equations is Percus’ method of functional
p°(€;u)=p°(€0)| 1+ c(€;u) expansiorf:® This method is based on the property that the
correspondence is one-to-one between the solute—solvent in-
. . ) teraction potentialu’(x) and the distribution function
+ | dnc®(n;u)pS(5;0)h®(7,€;0)|. 21 )
j e We (. 0)h(7.€0) @D pf(x;u) generated by Eq(2). For a given solute—solvent

ginteraction potentiab of interest, the PY and HNC integral

Thus, the introduction of the direct correlation function an : ] ' : /
the formulation of the Ornstein—Zernike equation in the en_equatlonsf are obtalped by expandlp@(x,v)exp(@v ()
d (logp'(x;v)+Bv'(x)) to first-order, respectively, in

ergetic representation can be made in parallel to those in tH&" ) f p _ e
full coordinate representation. terms of p'(X;v)—p'(x;0)), wherep'(x;0) is the distribu-

When the defining potential is zero outside a finite tion function in the pure solvent system. By using the direct
region ), it is useful to employ a reduced forf, of two- correlation functionc’ introduced by the Ornstein—Zernike

body correlation function of the solvent defined as relation Eq.(16) and the indirect parv' of the solute—
solvent potential of mean force defined by E), the PY

xa(€,7:u)=(p5(€)pd(7))u—(Pale)u(pa(m))y - and HNC approximations in the full coordinate representa-
(22)  tion are expressed, respectively, as
Using x5, and the reduced formg, of average distribution pf(x;v)
. A . . fry- _ _ f
given by Eq.(11), the corresponding direct correlation func- € (X;v)=(1—exp(Bv'(X))) 2T(x.0) (26)
tion ¢, is introduced by '
and
e/ . _ e . — e . e . f X;
pa(€;u)—pg(€0) f dnco(muxa(n.€0). (23 ¢'(xv)= Z EX‘S;_1+'BWf(X;v)' (27)

This form is useful for a defining potential of finite range
since it does not involve th&(e) singularity illustrated in Eq.
(12) for p®. Equation(23) is actually the Ornstein—Zernike
equation and is rewritten as

When the solute—solvent interactionis small, Eq.(16) re-
duces in combination with Eq26) or (27) to the standard
result of the first-order perturbation theory written as

p'(x;v)=exp(— Bv'(x)p'(x;0)

po(e;u)=p5(€;0)| 1+cf (€ u)

X

l+f dyf(y)p'(y;0)h(y,x;0)|+0O(f?),

+f dycq(mu)pa(7;,00h(7,€0) |,  (24) (28)

wheref is the Mayer function for the solute—solvent interac-

where the total correlation functidn, is defined as tion defined as

xa(€ mu)=pg(€u)d(e—1) f=exp(—Bv)—1 (29)
+pa(e;W)pd(7;u)hg (€, 7;u). (25  and O(f?) denotes a second- or higher-order term with re-
spect tof. Equation(28) shows that the PY and HNC ap-
11l. APPROXIMATIONS proximations are exact to first-order in the solute—solvent

interactionv. Furthermore, the solute-induced modification
of the solution structure expressed Wy in Eq. (6) is given

In an exact formulation of a solution, a correlation func- correctly to first-order with respect to the solvent density in
tion of interest is related to the higher-order correlation functhe PY and HNC approximations.
tions through a hierarchical set of integral equatibSnce In order to formulate the PY and HNC approximations
this exact set of equations simply connects the correlatiom the energetic representation, we also employ the method
function in question to another unknown correlation func-of functional expansion. For a given solute—solvent interac-
tions, an approximation needs to be introduced to close thgon potentialv of interest, the energetic coordinatean be
set of equations and obtain a self-consistent equation for theonstructed by taking as the defining potential. It is then
correlation function of interest. The method of integral equastated in Sec. |l B that the correspondence is one-to-one be-
tion provides, commonly at the two-body level, an approxi-tween the set of potential functiong(e) defined over the
mate and solvable equation for a correlation function of in-coordinatee and the set of distribution functions®(e;u)
terest under a given set of intermolecular interactiongenerated by the map E). In this case, it is possible to

A. Integral equation
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convert an expansion in terms 0f(€) into an expansion in interaction is the same as that in the pure solvent system
terms of p%(€;u) —p®(€;0)), wherep®(e;0) is the distribu-  (u=0). The derivation of the integral equation in the ener-

tion function in the pure solvent systenu=0). The PY getic representation is parallel to that in the full coordinate

approximation in the energetic representation can be formuepresentation described in Ref. 8. The integral equation is
lated by expanding®(e;u)exp(Bu®(e)) to first-order in terms  then expressed in terms of the indirect paftof the solute—

of (p®(e;u)—pS(e;0)) and setting u=v. Similarly, the solvent potential of mean force as

HNC approximation is provided by expanding (lofe;u)

+ BU®(€)) and settingi=v. When the direct correlation func- wWe(e;v)=— kBTJ dy(exp(—B7n)—1)
tion c® introduced by the Ornstein—Zernike relation E&j7)
and the indirect partv® of the solute—solvent potential of BWE(7;v)
mean force defined by Eq7) are used, the PY and HNC Xexp(ﬁwe(n'u))—1pe(77;0)he(77’6;0)'
approximations in the energetic representation are written, '
respectively, as (349
pe(€v) When the solute—solvent interactionis small, Eq.(34) re-
c®(&v)=(1—expBe)) 5.0 (300 duces to Eq(32). Therefore, the superposition approxima-
pe tion in the energetic representation provides the exdcdio
and first-order with respect to the solute—solvent interaction
o pS(e;v) . and to the solvent density.
C(E’v)_pe(e;O) 1+ Bwe(ev), (31
where the property is used that the solute—solvent interactioR- Chemical potential
v of interest is the defining potential and satisfi€ge) = e It is a principle of statistical thermodynamics that the

over the energetic coordinate. In combination with thestapility of a solute in solution is determined by its chemical
Ornstein—Zernike relation Eq17), Eq. (30) or (31) consti-  potential. Indeed, the equilibrium and rate constants of a
tutes a self-consistent integral equation for the solvent districhemical reaction in a solution are governed by the chemical
bution around the solute in the energetic representation. Wotentials of the solute species involved in the reaction. In
should be noted that although the integral equations in thenjs section, we relate the chemical potential of a solute in
energetic representation are similar in form to those in thejpsed form to the distribution functions of the solvent in the

full coordinate representation, they are formulated over %nergetic representation by emp|oying the PY, HNC, and
one-dimensional coordinate specifying the solute—solvent insyperposition approximations.

teraction energy. When the solute—solvent interactiors In order to treat the thermodynamics of solvation on a
small, both the PY and HNC integral equations in the energefinite basis, it is necessary to specify the solution process
getic representation reduce to precisely. We consider the insertion process of the solute at
p%(e;v)=exp — Be)p®(€;0) the (arbitrarily chosejnfixed origin with an(arbitrarily cho-

ser) fixed orientation. The free energy change for this pro-
1+f dr(exp(— B7)—1)p%(7:0)h%(7,€:0) cess is the excess ch_emu_:al potentiagl of the _solutez. Aup
involves only the contribution from the potential energy, and
+0(?) (32 the ideal(translational contribution is excluded at the outset.

) _ ' ) ) ) In the insertion process, the solute—solvent interaction is
This equation can actually be obtained by Integrating Edgradually turned on and its extent is described by the cou-
(28) over the equienergy surface given by=v'(x). Thus,  pjing parameten of the solute—solvent interaction. When
the PY and HNC approximations in the energetic represens—o, there is no interaction between the solute and solvent
tation are exact to first-order in the solute—solvent interactionyq the system is the pure solvent. Whenl, the solute
v. In addition, the solute-induced effect expressedSyin interacts with the solvent at full coupling under the solute—
Eq.(7) is provided correctly to first-order with respect to the so|yent interaction potential of interest. When ex<1, the
solvent density in the PY and HNC approximations in thegystem is at an intermediate state between the pure solvent

energetic representation. » _ .. and the solution with the fully coupled solute-solvent inter-
In order to formulate the superposition approximation ingetion.

the energetic representation, we adopt the approach pre- as done in Sec. IllA, the energetic representation is
sented in Ref. 8. In this approach, no derivative of thejyplemented for the solute—solvent interaction potentiaf
solute—solvent interaction potential is involved and the intejnterest by adopting as the defining potential. It is then
gral equation will be easier to handle than the Born—Greepossiple to introduce a family of solute—solvent interaction
equation. Using the total correlation functibfi of the sol- potentialsu, defined over the coupling parameteand the
vent defined by Eq(20), the superposition approximation is energetic coordinate. Of course, althoughi, may be cho-

X

expressed as sen arbitrarily at the intermediate states)3<1, it needs to
hé(e, n;u)=h%(e, 5;0) (33)  be imposed that

when a solute—solvent interactions given. In other words, ug(e)=0,

the superposition approximation E@3) states that the total (35)

. . e — .,€ —
correlation function under the presence of a solute—solvent Ui(€)=v(e)=e.
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In this case, the average distributipf(€;u,) of the solvent potential Ax is given exactly to second-order in the Mayer
at the coupling parametaris given by Eq.(4) and is related function for the solute—solvent interactionof interest. This
to the excess chemical potential of the solute of interest is actually due to the property shown in EQ2) that w®

through obtained from the integral equation in the PY, HNC, or su-
. (&) perpos?tion approximation involves the correct fir_st-order

A,u:f d)\f de—> pe(e:uy). (36) term with respect td. Furthermore, the excess chemical po-

0 2N tential Ax is exact to second-order in the solvent density

when the PY, HNC, or superposition approximation is em-
ployed in the energetic representation. Therefore, the solva-
tion thermodynamics of a solute is expected to be reproduced
%’&curately in a low- to medium-density fluid when the solu-
tion is studied with the integral equation in the energetic
representation.

When the solute—solvent interaction potentiadf inter-

Equation(36) is the charging formula in the energetic repre-
sentation, and the value dfu determined from Eq(36)
does not depend on the choice of the intermediate states in
exact treatment.

When the analytical integration over the coupling pa-
rameter is not attainable in E(B6), the determination of the

excess chemical pote_ntiAlM requires a procedure o explic- est is zero outside a finite regiddy it is useful to employ the
itly treat the intermediate states of the_coupllng. parameter reduced form of functions, , wg,, c&, andhg, defined by
It should be_ notgd, however, that the |nt9rmed|ate states ar@qs.(ll), (13), (23), and(25), respectively. In this case, the
pot of physmal mtergst. Thus, an epr|C|t_ treatment of t.hePY, HNC, and superposition approximations are obtained
intermediate states is not only computationally expensive

) ) . . simply by replacing®, w€, c€, andh® with the correspond-
but is also undesirable for the physical understanding of th . : : Co
chemical potential. When thg integration in Eq.(36) is g variables involving the subscrig in Egs. (30), (31),

. ; AU (34), (37), and (38). In other words, the Ornstein—Zernike
erformed,Auw is expressed only in terms of distribution L - .
fpunctions in tﬁe purepsolveml\=0)yand in the solution with equation is Eq(23) and the PY and HNC approximations are

the fully coupled solute—solvent interaction=1). written, respectively, as
In the PY, HNC, and superposition approximations, the o pa(€v)
integration over the coupling parameter may be analytically ~ Co(€v)=(1—expBe)) pE(€:0) (40)
performed in the energetic representation apdcan be ex-
pressed in terms g, we, andc® defined by Egs(4), (7), and

and(17), respectively. As shown in Appendix @u is given pS(€v)
in the PY and HNC approximations, respectively, by colev)= pg(e'O)_1+’8W3(E;v)' (41)
Ap= _kBTf dep®(€;0)(exp(— Be)—1) The expressions for the excess chemical poteatiain the
PY and HNC closures are further given, respectively, by
BWE(€;v)
Xexp(ﬁwe(f;v))_l (37) Ap= —kBTf dep(€;0)(exp(— Be)—1)
and wg,(€;v
« B f_f( ) 42
exp(Bwg(ev))—1
Ap=— kBTJ dep®(€;0)[c(&;v) + 38W(€;0)
and
X(c¥(€v)— BWe(€v))]. (38)
iy o N Au=—kgT [ deph(<0)[ch(v)
In the superposition approximation, the derivationAqf is
parallel to that in the full coordinate representation described +1BwWE (€;v)(cq(ev)— BWd(ev))]. (43

in Ref. 8 and leads explicitly to E¢37).%3

When the solute—solvent interaction potentiadf inter- ~ On the other hand, the integral equation in the superposition
est is small, both Eq$37) and (38) reduce to a result of the approximation takes the form that
second-order perturbation theory written as
wo(ev)= _kBTJ dy(exp(—B7)—1)
Apu=—kgT

fdepe(e;O)(eXF(—,Be)—l) BWE(7v)
o\7,

exp WG (7;v)

=1 p5(7;0)h§(7,€,0),

1
+5 J ded7p°(€;0)p°(7;0)(exp(—Be)—1) a4

and the corresponding expression foi is Eq. (42).
X(exp —Bn)—1)h%(e,7;0) |+ O(f3), (39)

wheref is the Mayer function defined by E¢R9). Equation V. DISCUSSION
(39 shows for the PY, HNC, and superposition approxima-  This paper has presented a method of distribution func-

tions in the energetic representation that the excess chemici#bn for describing a dilute solution over a one-dimensional
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coordinate specifying the solute—solvent interaction energythis procedure, since the excess chemical potentials are given
The one-to-one correspondence is then established betweeractly to second-order in the solute—solvent interaction po-
the set of solute—solvent interaction potentials defined ovetential and in the solvent density, the potential of mean force
the energetic coordinate and the set of solvent distributioris also exact to second-order.

functions around the solute in the energetic representation. The extension of the procedures in the present paper to a
On the basis of the one-to-one correspondence, the integralixed solvent system is straightforward. In this case, the
equations with the Percus—YevidlPY) and hypernetted- energetic coordinate, is constructed for the solvent species
chain(HNC) approximations can be formulated over the en-a from the interaction potential between the solute and the
ergetic coordinate through the method of functional expansolvent speciea. The integral equations and the expressions
sion. The integral equation may also be formulated in theor the excess chemical potential may then be reformulated
superposition approximation in a manner similar to that presimply by adding the subscripts representing the solvent spe-
sented in Ref. 8. The PY, HNC, and superposition approxicies to the energetic coordinates and supplementing the inte-
mations in the energetic representation determine the solvegtals over the energetic coordinates with the sums over the
distribution functions around the solute exactly to first-ordersolvent species.

with respect to the solute—solvent interaction potential and to  An accurate and efficient route to the excess chemical
the solvent density. Correspondingly, the excess chemicalotential of a hard core solute is provided by the
potential of the solute is given in these approximations corinformation-theoretic approach of Hummetr al#**° In this
rectly to second-order in the solute—solvent interaction poapproach, the distribution of the number of solvent mol-
tential and in the solvent density. ecules in the hard core region is determined from its first and

In order to solve the integral equation for a dilute solu-second cumulants in the pure solvent through the maximiza-
tion with the PY, HNC, or superposition approximation in tion of a properly defined information entropy, and the prob-
the energetic representation, it is necessary to treat the twability that the number is equal to zero gives the excess
body correlation functiory®(e, 7;0) in the pure solvent sys- chemical potential of the hard core solute. The information-
tem as a known input. Actuallyy®(e,7;0) can be readily theoretic approach may be viewed as a method of evaluating
obtained by performing a computer simulation of the purethe excess chemical potential of a hard core solute in the
solvent system. Indeed, the instantaneous distribijifge) energetic representation since the hard core region is an
defined by Eq.(3) is to be evaluated by placing the solute equienergy surface with the infinite solute—solvent interac-
molecule as a test particle and is to be averaged through Etjon energy. When the solute—solvent interaction of interest
(15 over the configurations generated. Therefore, as far ais soft and the corresponding coordinate in the energetic rep-
the pure solvent system is easily simulated, the approximatesentation is continuous over its whole range, the method of
procedures developed in the present paper are useful routeatropy maximization leads to an energetic version of the
to assessing the behavior of the solute at infinite dilution. Gaussian field model elaborated by ChanfffeAs pointed

When the solute—solvent interaction potential dependsut by Hummeret al,, however, the Gaussian field model
only on the position of a single site in the solvent moleculedoes not satisfy the condition that ttiestantaneoyssolvent
relative to the solute molecule, the radial distribution func-distribution is non-negativ& Moreover, when the method
tion of that site in the pure solvent may be utilized to con-of entropy maximization is modified by imposing the condi-
struct the two-body correlation functiop®(e, 7;0). In Ap-  tion of non-negativity, it is not tractable in practice to evalu-
pendix D, we treat this specific case and provide an expliciaite the excess chemical potential of a solute. This is because
expression fory®(e, 7;0) in terms of the radial distribution the evaluation requires an integration over tHactuating
function. Furthermore, when the solute—solvent interactiorsolvent distribution within the condition of non-negativity
potential is constant over its interaction range, the PY, HNCand the solvent distribution involves a continuous coordinate
and superposition approximations are particularly simple iras an argument. Therefore, the method of entropy maximi-
the energetic representation. In Appendix E, we investigateation has not been adopted in the present work to derive an
this simple case and present closed form expressions for thepproximate expression for the excess chemical potential of
excess chemical potential. a solute in the energetic representation.

The integral equations presented in this paper do not When the intermolecular interaction is of the site—site
directly provide the potential of mean force between twoform, the method of reference interaction site ma@RSM)
solute molecules. The evaluation of the potential of mears a convenient route to the solution structure and is particu-
force at a given configuration is readily possible, howeverjarly useful in a high-density molecular flufd-?*The RISM
by noting that it is the difference between the free energyintegral equations with the PY and HNC closures, however,
changes of the system upon insertion of the two solute molexhibit unphysical dependence on *“auxiliary” sites which
ecules at infinite separation and upon insertion at the corsimply label points in a molecule and make no contribution
figuration of interest. The free energy change upon insertiomo the intermolecular interactiori.Since the integral equa-
at infinite separation is simply the sum of the individual ex-tions in the energetic representation do not separately treat
cess chemical potentials of the two solute molecules. Théhe distinct sites of a molecule, in contrast, they are not af-
free energy change upon insertion at the configuration ofected by the presence of “auxiliary” sité$.In addition,
interest may be evaluated, on the other hand, by treating ththe RISM integral equations are not exact in the limit of
two solute molecules at that configuration as one unit andero solvent density and are not useful to evaluate the
determining the “excess chemical potential” of the unit. In excess chemical potential of a solute in a low-density
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fluid. The RISM-2 integral equations provide improved de-when the solute—solvent interaction i$(¢,y) in the full
scriptions in the low-density regime, but determine the ex-coordinate representation. It is then possible to show, by
cess chemical potential correctly only to first-order in theadopting Eqs(Al) and(A2), that the method of distribution
density?®=28 Therefore, since the PY, HNC, and superposi-function in the energetic representation developed in this pa-
tion approximations in the energetic representation give th@er is valid by takingx=(i,v).

excess chemical potential of a solute exactly to second-order In Secs. Il and Ill, we have fixed the solute molecule at
in the solvent density, they will be suitable for describing athe (arbitrarily choseh origin with an (arbitrarily chosepn
low- to medium-density fluid. In subsequent work, the ap-fixed orientation. This is also unnecessary when the position
proximate procedures developed in this paper are applied tand orientation of the solute molecule are incorporated into
the solvation thermodynamics and solvent-mediated interadhe coordinate/ and Eqs.(Al) and (A2) are employed.

tions of various types of solutes in water over a wide range

of thermodynamic conditions.

APPENDIX B
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APPENDIX A When the solute—solvent interactionis given, we de-

, . fine a functionalZ[ P;u] of the probability distribution func-
~ In'Sec. IIA, it has been supposed for the sake of SiMyjon p of the solvent in the configuration space as
plicity that the solute and solvent molecules do not involve

the intramolecular degrees of freedom such as the moleculzf R
L ) o . - Z[Psul=| dI
vibrations and intramolecular polarization. This supposition
can actually be removed in the method of distribution func-
tion in the energetic representation by changing the conte
of the full coordinatex. Let ¢ and y be the complete sets of
variables specifying the configurations of the solute and sol
vent molecules, respectively: and y contain the intramo- Z[P;u]=Z[P%u], (B2)
lecular degrees of freedom of the solute and solvent mol- 0. . L _ _
; ; ghereP is the equilibrium distribution function given by
ecules, respectively. The developments in the present pap u
is then valid simply by redefining the full coordinateas a exp(—,B{E»uf(x4)+U})
. . . . 0 ! |
collective set ofy andy and using an appropriate expression ~ Py(I)= S YESu. i - (B3)
_ _ [ dT expi —B{=iu"(x) +U})

for the average of a given quanti. . _ o

The solute-solvent interaction potentiais a function ~ The equality holds in EqB2) only whenP=P,,.
of ¢ and y and may be expressed a$(y,y) in the full Suppose that the average distributions given by (2j.
coordinate representation. When the intramolecular energg'e identical between two distinct solute—solvent interactions
of the solute isp(y) and the solvent—solvent interaction en- U andw and that

ergy isU, the averagéQ), of a quantityQ is expressed in o) =pfxw) (B4)

the presence of the solute—solvent interacticas
is valid. It then follows from Eqs(B1) and(B2) that

J dydT'Q exp( — B{(¢) +Zu' (¢, ) +U})
I dydr exp(— B{¢(¢) +Ziu' (¢, 7) + U})</;1> Z[PO;w]<Z[PYul+ f dxp"(x;u) (W' ()~ u'(x)),

wherevy; is the variable to specify the configuration of il 0 0. - ‘ ‘ (B5)
solvent molecule andf represents the solvent configuration ~ Z£[Puul<Z[P 'W]+f dxp” (x;u) (U’ (x) =w'(X)),

collectively. The corresponding expression for the excess
e gotemiam bt ispgiven by Where the functionaZ[P;w] and the equilibrium distribu-

tion function P\?V are given by expressions similar to Egs.

[ dydl exp(— B{ep(¢) + Zjv " (¢h,%1) +U}) (B1) and(B3), respectively. Actually, since the two inequali-
exp(—pAp)= J dydl exp( — B{ () +U}) ties in Eq.(B5) are not compatible with each other, the sup-
(A2 position Eq.(B4) needs to be negated. Thus, the one-to-one

> uf(x)+U+kgTlogP(T') |P(T"), (B1)

herel” represents the solvent configuration collectively and
denotes the solvent—solvent interaction energy. It is then
possible to show that

<Q>u:

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 113, No. 15, 15 October 2000

correspondence is established between the solute—solvent
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wheref is the Mayer function for the solute—solvent interac-

teraction potential and the average distribution of the solvention v of interest given by Eq(29). It should be noted that

in the full coordinate representation.

We now introduce the energetic representation by adop
ing the solute—solvent interaction potentialof interest as
the defining potential and constructing the energetic coord
natee with respect taw. We restrict the set of solute—solvent
interaction potentials and consider only the potential func
tions defined over the coordinate A solute—solvent inter-

Eq. (C3) is identical to Eq(2.11) of Ref. 83 The derivation

tof the Au expression under the PY approximation in the
energetic representation is parallel to that presented by Lee
iand Kjellander and Sarman in the full coordinate
representatiof’ ' and Eq.(37) is obtained.

In the HNC approximation, the method elaborated by
Lee and Kjellander and Sarman in the full coordinate

action potential under consideration is then constant over arepresentatic?i—>'may be readily developed in the energetic

equienergy surface af and may be expressed in the form
involving only one argumeng. Suppose again that the aver-
age distributions given by Ed4) are identical between two
distinct solute—solvent interactionsandw and that

pS(e;u)=p°(e;W) (B6)

holds. In that case, it is possible to show by virtue of Eg5s.
and(B2) that

Z[PY;w]<Z[PJ;ul+ f dep®(e;u)(We(e) —u(e)),

(B7)
Z[POul<Z[P%:w]+ | dep®(e;u)(us(e)—we(e)).

Since the two inequalities in E¢B7) are not consistent with
each other, the supposition E&®6) cannot be true. In other
words, different solute—solvent interactions are mappe
through Eq.(4) to different distributions of the solvent.
Therefore, for a given defining potential the correspon-
dence is one-to-one between the settfe) defined over the
energetic coordinate and the set op®(e;u) expressed in
the energetic representation.

When the defining potential vanishes outside a finite

region (), it is possible to repeat the similar arguments for

the reduced formg, of average distribution determined from

Eqg. (11). In this case, the map to the set of distribution func-

tions pg,(e;u) is one-to-one from a set of solute—solvent
interaction potentialsi which are constant over equienergy
surfaces oy and are zero outside the interaction rartye

APPENDIX C

When the PY approximation is adopted in the full coor-

representation to give E@38).

APPENDIX D

A specific form of the solute—solvent interaction poten-
tial is often adopted which depends only on the position of a
single site in the solvent molecule relative to the solute mol-
ecule. For example, the interaction potential between water
and a hydrophobic solute is commonly formulated as a func-
tion only of the position of the oxygen site relative to the
hydrophobic soluté® In such a specific case, it is possible to
construct the two-body correlation functigii(e, ;0) in the
pure solvent from the knowledge of the radial distribution
function of the site determining the solute—solvent interac-
tion.

When the solute molecule is fixed at the origin with a
éixed orientation and the solute—solvent interaction potential
v of interest depends only on the positiorof the siter of
the solvent moleculey may be expressed as(r). In this
case, the correlation function relevant for constructing
x°(€,7;0) is the radial distribution functiog,, of the siter
in the pure solvent, provided that the pure solvent system is
homogeneous and isotropitlt is then easy to see that Eq.
(15) reduces in the pure solvent to

Xe(E.n:0)=pJ dré(v(r)—e)d(e— 1)

+pzf drdRo(v (1) —€) 8(v(R)— 7)

(g, (r—R)—1). (DD

This expression indeed relatg§(e, ;0) to the radial distri-
bution functiong .

APPENDIX E

dinate representation for a solute—solvent interaction poten-

tial v of interest, it was shown by Lee that the excess chem
cal potentialAu of the solute is given 3!

. cf(x;v)
Ap=—ksT [ dxp' o001+ 2000 S (e
where an auxiliary functiord is defined as
fry-
pUSY) iyt (c2)

070

Equation(C1) then reduces, by virtue of the PY closure Eq.
(26), to

BW'(x;v)
exp(Bwi(x;v))—1’

Ap=— kBTf dxpf(x;0)f(x)
(C3)

i- A simplest model of the solute—solvent interaction is
such that the potential is constant over its interaction range
Q. In this case, the solute—solvent interaction potentiaf
interest is written as

¢ when xe
0

and ¢ is the only parameter for the solute—solvent interac-
tion. Note that a hard core solute is a special case of EL).

for which g&>1. When the specific form EqEL) of the
solute—solvent interaction is adopted as the defining poten-
tial, the reduced instantaneous distributgndefined by Eq.

(8) is expressed as

po(e)=Ngd(e—£),

v(x)= (ED

otherwise

(E2
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where NQ is the (instantaneoysnumber of solvent mol- the first and second cumulants &fﬂ in the pure solvent
ecules in the interaction rande. The average distributions system when the solute—solvent interaction potential takes
pg and x5, , which are given in the presence of a solute—the simple form Eq(E1).

solvent interactiou by Eqgs.(11) and(22), respectively, then When the solute—solvent interaction is given by Eq.
reduce to (ED), the excess chemical potentiak is closely connected
~ to the probability distribution of the numb&t, of solvent
pH(&u)=(Ng)yd(e—§) Sueatanael .
A Q/u , molecules contained in the interaction rarfgelndeed,Au
~ - can be expressed as
Xl ) =(NB),—(Ng)2) de= ) a(n—£),  (EI P

where(---), denotes the ensemble average taken in the so- exp(—BAu)=2, exg—nB&)py, (E9)
lution with the solute—solvent interactian Equation(E3) " .
shows thatpq and xg, correspond to the first and second wherep, is the probability thaN,=n in the pure solvent
cumulants ofN(, respectively, when the defining potential system. Wherp, is given, Eq.(E8) determinesAu for any
involves a specific form Eq(E1). The purpose of this Ap- interaction parametef in Eq. (E1). Conversely, wheru is
pendix is to show for the PY, HNC, and superposition ap-provided as a function of, the probabilityp,, can be ob-
proximations in the energetic representation that the excegained, for example, by expanding éxp3Au) with respect
chemical potential of the solute with the solute—solvent in-to exg—B¢). In the information-theoretic approach by Hum-
teraction of the form Eq(El) is determined from the first meretal, p, is evaluated from the first and second cumu-
and second cumulants &, in the pure solvent system. lants ofN, in the pure solvent through the maximization of
Under the specific form EqE1) of the solute—solvent a properly defined information entrofi§/*°It is of interest to
interaction, the PY approximation consisting of EG83)  note, on the other hand, that Eq&5) and (E7) provide
and(40) is actually identical to the superposition approxima-routes, by virtue of E(ES), to determiningp,, from the first
tion given by Eq.(44). In these approximations, the indirect and second cumulants b, under the PY, HNC, and super-
part wg, of the solute—solvent potential of mean force de-position approximations in the energetic representation.
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