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Theory of solutions in the energetic representation. I. Formulation
Nobuyuki Matubayasia) and Masaru Nakahara
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

~Received 1 May 2000; accepted 21 July 2000!

The energetic representation of the molecular configuration in a dilute solution is introduced to
express the solvent distribution around the solute over a one-dimensional coordinate specifying the
solute–solvent interaction energy. In this representation, the correspondence is shown to be
one-to-one between the set of solute–solvent interaction potentials and the set of solvent distribution
functions around the solute. On the basis of the one-to-one correspondence, the Percus–Yevick and
hypernetted-chain integral equations are formulated over the energetic coordinate through the
method of functional expansion. It is then found that the Percus–Yevick, hypernetted-chain, and
superposition approximations in the energetic representation determine the solvent distribution
functions correctly to first-order with respect to the solute–solvent interaction potential and to the
solvent density. The expressions for the chemical potential of the solute are also presented in closed
form under these approximations and are shown to be exact to second-order in the solute–solvent
interaction potential and in the solvent density. ©2000 American Institute of Physics.
@S0021-9606~00!51439-1#

I. INTRODUCTION

In a modern theory of solutions, the solution structure is
described by molecular distribution functions. Especially, the
two-body distribution functions are the major targets of inte-
gral equation theories and are default quantities to compute
in molecular simulations.1,2 The distribution functions are
defined over a certain representation of the configurations of
the molecules of interest. The full coordinate of a molecule
which specifies its configuration completely consists of the
position and orientation of the molecule. When the full co-
ordinate is employed to represent the molecular configura-
tion, the distribution functions involve well-behaved math-
ematical structures and the commonly used Percus–Yevick
~PY!, hypernetted-chain~HNC!, and superposition approxi-
mations are exact to first-order in the density of the
solution.1–8 A systematic description of the distribution func-
tions over the full coordinate is possible in principle for a
molecule of any symmetry by means of spherical harmonic
expansion.9–11In the full coordinate representation, however,
the multidimensional description cannot be avoided for the
distribution functions when molecules of chemical interest
are to be treated. Therefore, the full coordinate representation
is not desirable in practice to describe the distribution func-
tions of the solution.

The site–site representation is a reduced form of repre-
senting the molecular configuration. In this representation, a
site–site distribution function is defined over the radial dis-
tance between the corresponding interaction sites and the
structure of a solution is usually described by a set of site–
site radial distribution functions. Since each site–site radial
distribution function is represented over a one-dimensional
abscissa, the site–site representation is conceptually and
computationally convenient in the statistical description of

the intermolecular configuration of a pair of molecules in the
solution. Indeed, the method of reference interaction site
model ~RISM!, which implements the PY or HNC approxi-
mation in the site–site form, is widely used and achieves
reasonable success in high-density molecular fluids.12–23 A
deficiency of the RISM integral equation is that it involves
ill-behaved diagrammatical structures. Although this defi-
ciency is removed in the ‘‘diagrammatically proper’’ formal-
ism provided by Chandleret al., the formalism needs to in-
troduce additional correlation functions and loses the
simplicity of the diagrammatically ill-behaved RISM
approach.24,25 In addition, the RISM integral equation with
the PY or HNC closure does not give the correct zero-density
limit and is not useful to describe a low- to medium-density
fluid. This point is improved in the RISM-2 integral equa-
tions formulated by Chandler and Kojima and Arakawa,
which are exact in the limit of zero density.26–28 In the
RISM-2 approximation with the PY or HNC closure, how-
ever, the first-order term with respect to the density of the
solution is incorrect, whereas the corresponding approxima-
tion in the full coordinate representation is exact to first-
order in the density. It actually seems difficult, due to the
connectivity of the interaction sites contained within a mol-
ecule, to systematically devise a simple and improved form
of integral equation in the site–site representation.

In this paper, we explore an alternative representation
of the molecular configuration in a solution. The system
treated is a dilute solution and contains a single solute mol-
ecule. The alternative representation, which we call the en-
ergetic representation, is introduced by adopting the solute–
solvent interaction energy as the coordinate of a solvent
molecule around the solute molecule. In the energetic repre-
sentation, the solvent distribution around the solute is ex-
pressed over a one-dimensional abscissa for any type of
solute–solvent interaction potential. The density functional
theory can then be developed by establishing the one-to-onea!Author to whom correspondence should be addressed.
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correspondence between the choice of the solute–solvent in-
teraction potential and the resulting distribution of the sol-
vent in the energetic representation. The integral equations
with the PY, HNC, and superposition approximations are
further formulated over the coordinate specifying the solute–
solvent interaction energy. Since these integral equations
treat each of the solute and solvent molecules as one unit and
do not separately describe the distinct sites of the molecule,
they are exact to first-order in the solvent density of the
solution.

The solvent distribution function around the solute mol-
ecule provides the chemical potential of the solute when the
charging formula is employed and an integration is per-
formed over the intermediate states of the coupling param-
eter of the solute–solvent interaction potential.1–3 In fact, the
intermediate states are not experimentally realizable and
their choice is not unique. Thus, the integration over the
coupling parameter not only demands much computational
effort, but also inhibits an unambiguous interpretation and a
clear understanding of the quantities of interest. In other
words, it is desirable, both conceptually and computation-
ally, that the chemical potential of the solute be expressed
only in terms of properties at the initial and final states of the
coupling parameter. Using such an expression for the chemi-
cal potential, which is called a closed form expression, the
chemical potential can be evaluated only with the knowledge
of the systems of interest.5,8,29–35 In this paper, we also
present the closed form expressions for the chemical poten-
tial of a solute under the PY, HNC, and superposition ap-
proximations in the energetic representation.

It is a tradition since Kirkwood’s days that a theory of
solutions is formulated over a coordinate specifying a set of
positional variables. Indeed, the specification of the full co-
ordinate of a molecule is equivalent to the specification of
the positions of all the points in the molecule, and the site–
site representation is implemented by labeling a certain set of
points in the molecule and specifying the positions of those
points. The energetic representation does not follow the tra-
dition in the sense that the coordinate does not specify the
position of any point in the molecule. When the representa-
tion is fixed for the molecular configuration, a refined closure
relationship leads to an improved description of the solution.
We show in this and subsequent papers, on the other hand,
that the scheme for representing the molecular configuration
may be changed to provide an accurate description of the
solution without revising the form of the approximate rela-
tionship among correlation functions.

The organization of the present paper is as follows: In
Sec. II, the distribution functions are defined over the coor-
dinate specifying the solute–solvent interaction energy and
the density functional theory is developed in the energetic
representation. In Sec. III, the integral equations are formu-
lated over the energetic coordinate with the PY, HNC, and
superposition approximations and the closed form expres-
sions are correspondingly presented for the chemical poten-
tial of a solute. In Sec. IV, the paper is concluded with re-
marks concerning the practical implementations and the
comparison to commonly used theories. In a subsequent pa-
per, the approximate procedures developed in the present

paper are employed to study the solvation thermodynamics
and solvent-mediated interactions of various types of solutes
in water over a wide range of thermodynamic conditions.

II. DISTRIBUTION FUNCTIONS IN THE ENERGETIC
REPRESENTATION

A. Definitions

The system of our interest is a dilute solution containing
a single solute molecule. For the sake of simplicity, it is
supposed that the solute and solvent molecules do not in-
volve the intramolecular degrees of freedom. The solute mol-
ecule is fixed at the~arbitrarily chosen! origin with an~arbi-
trarily chosen! fixed orientation. In this case, the solute–
solvent interaction can be viewed as an external field for the
solvent molecules, and the configuration of a solvent mol-
ecule relative to the solute molecule is specified completely
by the position and orientation of the solvent molecule. In
the present paper, the complete set of the position and orien-
tation is called the full coordinate and is denoted collectively
by x. When the intramolecular degrees of freedom are
present in the solute and/or solvent molecule, the extension
of our treatments is actually straightforward and is described
in Appendix A.

The full coordinate representation is implemented by ex-
pressing the distribution functions over the full coordinatex.
In the full coordinate representation, the instantaneous distri-
bution r̂ f of the solvent is defined as

r̂ f~x!5(
i

d~x2xi !, ~1!

wherexi is the full coordinate of theith solvent molecule and
the sum is taken over all the solvent molecules. The average
distribution r f of the solvent is determined when the inter-
molecular interaction potentials are given and the thermody-
namic state is specified. In the present work, the solvent–
solvent interaction and the thermodynamic state are fixed,
andr f is treated as a function of the solute–solvent interac-
tion potential. When the solute–solvent interaction potential
is u, the average distributionr f of the solvent around the
solute is uniquely determined from

r f~x;u!5^r̂ f~x!&u , ~2!

where^¯&u denotes the ensemble average taken in the so-
lution with the solute–solvent interactionu. We leaveu as an
argument in Eq.~2! to specify the solute–solvent interaction
potential.

The energetic representation is introduced by adopting
the solute–solvent interaction energy as the coordinate of the
solvent molecule. To formulate the energetic representation,
it is necessary to specify the solute–solvent interaction po-
tential v with respect to which the solvent coordinate is de-
fined. The natural choice ofv is the interaction potential
between the solute and solvent in the solution of interest. In
our developments,v is called the defining potential and is
fixed at the outset. The coordinatee of a solvent molecule in
the energetic representation is simply taken to be the value of
v. This coordinate is specified with respect only to the de-
fining potential v and its information content is reduced
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compared to that of the full coordinatex. It should be noted
that the coordinatee is not necessarily continuous. Whenv
involves a hard core or square well region, for example,e is
discrete in that region. To develop the density functional
theory in the energetic representation in Sec. II B, we treat a
set of solute–solvent interaction potentialsu which are con-
stant over equienergy surfaces of the defining potentialv and
may be considered to be defined over the energetic coordi-
nate e. For a given solute–solvent interaction potentialu
contained in this set, the notationsuf(x) and ue(e) are
adopted, respectively, when it is to be emphasized thatu is
represented over the full coordinatex and over the energetic
coordinatee. When no emphasis is placed on the represen-
tation, the solute–solvent interaction is simply written asu.
Of course, the defining potentialv satisfiesve(e)5e by defi-
nition.

The instantaneous distributionr̂e of the solvent is de-
fined in the energetic representation as

r̂e~e!5E dxd~v f~x!2e!r̂ f~x!5(
i

d~v f~xi !2e!. ~3!

Equation~3! shows thatr̂e(e)de is equal to the~instanta-
neous! number of solvent molecules whose values ofv f(x)
are betweene ande1de. It should be noted that the defini-
tion of r̂e is dependent on the specification of the defining
potentialv. The average distributionre of the value of the
defining potentialv is correspondingly expressed in the pres-
ence of a solute–solvent interactionu as

re~e;u!5^r̂e~e!&u5E dxd~v f~x!2e!r f~x;u!, ~4!

where^¯&u denotes the ensemble average taken in the so-
lution with the solute–solvent interactionu. Note that the
defining potentialv serves to construct the solvent coordi-
natee and does not identify the system in which the average
is taken~unlessu5v). The solute–solvent interaction poten-
tial u, on the other hand, specifies the solution and deter-
mines the ensemble in which the averaging is carried out.
We leaveu as an argument in Eq.~4! to identify the solute–
solvent interaction potential. Equation~4! shows that the sol-
vent distributionre in the energetic representation is ob-
tained by integrating the solvent distributionr f in the full
coordinate representation over equienergy surfaces of the de-
fining potentialv. In this process, a multidimensional inte-
gration is performed and the resultingre is represented over
the one-dimensional coordinatee for any type of defining
potentialv.

re(e;0) is the solvent distribution in the pure solvent
system (u50). When the pure solvent is homogeneous and
isotropic,36 re(e;0) is simply the product of the solvent den-
sity and the density of states for the defining potentialv
given by

E dxd~v f~x!2e!. ~5!

This density of states is determined only byv and is inde-
pendent of the solvent–solvent interaction and the thermody-
namic state. In the full coordinate representation, the indirect

partwf of the potential of mean force between the solute and
solvent is defined in the presence of a solute–solvent inter-
actionu as

wf~x;u!52kBT logS r f~x;u!

r f~x;0! D2uf~x!, ~6!

where kB is the Boltzmann constant,T is the temperature,
and r f(x;0) is the solvent distribution in the pure solvent
system (u50). Similarly, the indirect partwe of the solute–
solvent potential of mean force is defined in the energetic
representation as

we~e;u!52kBT logS re~e;u!

re~e;0! D2ue~e! ~7!

for a solute–solvent interaction potentialu which is constant
over an equienergy surface of the defining potentialv. Both
wf(x;u) and we(e;u) reflect the many-body effects in the
solute–solvent correlation and vanish in the limit of zero
solvent density.

It is often the case that the solute–solvent interaction
potential of interest is essentially of finite range and that its
long-range part may be safely neglected to account for the
physics of the solution. When the defining potentialv is zero
outside a finite regionV, it is useful to employ a reduced
form r̂V

e of instantaneous distribution of the solvent defined
as

r̂V
e ~e!5E

V
dxd~v f~x!2e!r̂ f~x!5 (

i PV
d~v f~xi !2e!,

~8!

where the integration is performed only over the interaction
region V and the sum is taken over the solvent molecules
contained withinV. Note that since the regionV is usually
of molecular size, the number of solvent molecules involved
in Eq. ~8! is microscopic. For a defining potentialv of finite
range,r̂e in Eq. ~3! is actually rewritten as

r̂e~e!5 r̂V
e ~e!1d~e!~N2N̂V!, ~9!

where N is the total number of solvent molecules in the
system andN̂V is the~instantaneous! number of solvent mol-
ecules inV expressed as

N̂V5E
V

dxr̂ f~x!5E der̂V
e ~e!. ~10!

When a solute–solvent interaction potentialu is given, the
average formrV

e is simply determined from

rV
e ~e;u!5^r̂V

e ~e!&u . ~11!

It is then easy to see, in correspondence with Eq.~9!, thatrV
e

satisfies37

re~e;u!5rV
e ~e;u!1d~e!~N2^N̂V&u!. ~12!

The definition of the indirect partwV
e of the solute–solvent

potential of mean force is similar to Eq.~7! and is expressed
as

wV
e ~e;u!52kBT logS rV

e ~e;u!

rV
e ~e;0!

D 2ue~e!. ~13!
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B. Density functional theory

In the full coordinate representation, Eq.~2! defines a
map from a solute–solvent interaction potentialuf(x) to a
distribution functionr f(x;u). As is well known, the map is
one-to-one in the sense that differentuf(x) give different
r f(x;u).2,38–41 This is actually the fundamental theorem of
the density functional theory and provides the basis for Per-
cus’ method of functional expansion to derive the Percus–
Yevick and hypernetted-chain approximations.2,6

In order to develop the density functional theory in the
energetic representation, it is necessary to restrict the set of
solute–solvent interaction potentials. As shown in Appendix
B, the suitable set corresponding to the defining potentialv
of interest consists of the solute–solvent interaction poten-
tials which are defined over the energetic coordinatee. A
potential functionu contained in this set is constant over an
equienergy surface of the defining potentialv and may be
expressed asue(e). Equation~4! then defines a map from the
set of potential functionsue(e) to a set of distribution func-
tions re(e;u) expressed in the energetic representation. By
definition, Eq. ~4! maps an element in the set ofue(e)
uniquely to an element in the set ofre. In Appendix B, on
the other hand, we show that the converse is also true. Dif-
ferent elements in the set ofue(e) are mapped through Eq.
~4! to different elements in the set ofre(e;u). In other
words, the correspondence is one-to-one between the set of
ue(e) and the set ofre generated by the map Eq.~4!, and it
is possible to treat a functional ofue(e) as a functional of
re(e;u). In Sec. III A, this property is exploited to derive
approximate integral equations in the energetic representa-
tion.

When the defining potentialv is of finite range and van-
ishes outside a finite regionV, the density functional theory
can be developed on the set of solute–solvent interaction
potentials which are constant over equienergy surfaces ofv
and are zero outside the interaction rangeV. As shown in
Appendix B, the map is one-to-one from this set to the set of
distribution functionsrV

e (e;u) generated by Eq.~11!. The
present property is useful for a defining potential of finite
range because the solvent molecules outside the interaction
range do not have to be taken into account in a density-
functional treatment.

C. Ornstein–Zernike equation

In commonly used approaches to a solution system, the
Ornstein–Zernike equation or its site–site form is employed
to introduce the direct correlation function and a closure re-
lationship is adopted to give a self-consistent integral equa-
tion for pair correlation functions.2,4–7,10–28Since the direct
correlation function is useful, at least notationally, to develop
an approximate integral equation, it is desirable to define the
direct correlation function in the energetic representation. In
this section, we introduce the solute–solvent direct correla-
tion function in the energetic representation and formulate
the Ornstein–Zernike equation for a dilute solution over the
energetic coordinatee.

To formulate the Ornstein–Zernike equation for a dilute
solution of our interest, it is necessary to define the two-body

correlation function of the solvent.42 In the full coordinate
representation, the two-body correlation functionx f under
the presence of a solute–solvent interaction potentialu is
expressed as

x f~x,y;u!5
dr f~x;u!

d~2buf~y!!
5^r̂ f~x!r̂ f~y!&u

2^r̂ f~x!&u^r̂
f~y!&u , ~14!

whereb is the inverse of the thermal energy (kBT) andu is
left as an argument to specify the solute–solvent interaction.
The two-body correlation functionxe in the energetic repre-
sentation is similarly defined as

xe~e,h;u!5
dre~e;u!

d~2bue~h!!
5^r̂e~e!r̂e~h!&u

2^r̂e~e!&u^r̂
e~h!&u . ~15!

It is obvious that both ofx f andxe are positive definite and
invertible and are symmetric with respect to the two argu-
ments of the solvent coordinate. In the full coordinate repre-
sentation, the direct correlation functioncf between the sol-
ute and solvent in a dilute solution satisfies

r f~x;u!2r f~x;0!5E dycf~y;u!x f~y,x;0!, ~16!

where u appears as an argument to identify the solute–
solvent interaction andx f(x,y;0) is the two-body correlation
function in the pure solvent system (u50). The direct cor-
relation functionce in the energetic representation can then
be defined by writing an expression similar in form to Eq.
~16! as

re~e;u!2re~e;0!5E dhce~h;u!xe~h,e;0!. ~17!

Since the two-body correlation functionxe(e,h;0) in the
pure solvent is invertible, Eq.~17! definesce over the coor-
dinatee in terms of the average distributionsre andxe. The
structure of Eq.~17! is similar to that of the Ornstein–
Zernike equation for a dilute solution in the full coordinate
representation given by Eq.~16!. Thus, we call Eq.~17! the
Ornstein–Zernike equation for a dilute solution in the ener-
getic representation.

In the full coordinate representation, it is a common
practice to introduce the total correlation functionhf of the
solvent by2

x f~x,y;u!5r f~x;u!d~x2y!

1r f~x;u!r f~y;u!hf~x,y;u!. ~18!

The Ornstein–Zernike relation Eq.~16! is then rewritten in a
familiar form as

r f~x;u!5r f~x;0!F11cf~x;u!

1E dycf~y;u!r f~y;0!hf~y,x;0!G . ~19!
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In the energetic representation, it is also useful to define the
total correlation functionhe of the solvent. The definition of
he is similar in form to Eq.~18! and is expressed as

xe~e,h;u!5re~e;u!d~e2h!

1re~e;u!re~h;u!he~e,h;u!. ~20!

In this case, the Ornstein–Zernike relation Eq.~17! is
equivalent to

re~e;u!5re~e;0!F11ce~e;u!

1E dhce~h;u!re~h;0!he~h,e;0!G . ~21!

Thus, the introduction of the direct correlation function and
the formulation of the Ornstein–Zernike equation in the en-
ergetic representation can be made in parallel to those in the
full coordinate representation.

When the defining potentialv is zero outside a finite
regionV, it is useful to employ a reduced formxV

e of two-
body correlation function of the solvent defined as

xV
e ~e,h;u!5^r̂V

e ~e!r̂V
e ~h!&u2^r̂V

e ~e!&u^r̂V
e ~h!&u .

~22!

Using xV
e and the reduced formrV

e of average distribution
given by Eq.~11!, the corresponding direct correlation func-
tion cV

e is introduced by

rV
e ~e;u!2rV

e ~e;0!5E dhcV
e ~h;u!xV

e ~h,e;0!. ~23!

This form is useful for a defining potentialv of finite range
since it does not involve thed~e! singularity illustrated in Eq.
~12! for re. Equation~23! is actually the Ornstein–Zernike
equation and is rewritten as

rV
e ~e;u!5rV

e ~e;0!F11cV
e ~e;u!

1E dhcV
e ~h;u!rV

e ~h;0!hV
e ~h,e;0!G , ~24!

where the total correlation functionhV
e is defined as

xV
e ~e,h;u!5rV

e ~e;u!d~e2h!

1rV
e ~e;u!rV

e ~h;u!hV
e ~e,h;u!. ~25!

III. APPROXIMATIONS

A. Integral equation

In an exact formulation of a solution, a correlation func-
tion of interest is related to the higher-order correlation func-
tions through a hierarchical set of integral equations.2 Since
this exact set of equations simply connects the correlation
function in question to another unknown correlation func-
tions, an approximation needs to be introduced to close the
set of equations and obtain a self-consistent equation for the
correlation function of interest. The method of integral equa-
tion provides, commonly at the two-body level, an approxi-
mate and solvable equation for a correlation function of in-
terest under a given set of intermolecular interaction

potentials. In this section, we formulate the method of inte-
gral equation in the energetic representation with the
Percus–Yevick~PY!, hypernetted-chain~HNC!, and super-
position approximations.

Before presenting the approximate integral equations in
the energetic representation, we briefly review the PY and
HNC integral equations in the full coordinate representation
using the notations introduced in Sec. II. In the full coordi-
nate representation, a systematic route to formulating the PY
and HNC integral equations is Percus’ method of functional
expansion.2,6 This method is based on the property that the
correspondence is one-to-one between the solute–solvent in-
teraction potential uf(x) and the distribution function
r f(x;u) generated by Eq.~2!. For a given solute–solvent
interaction potentialv of interest, the PY and HNC integral
equations are obtained by expandingr f(x;v)exp(bvf(x))
and (logrf(x;v)1bv f(x)) to first-order, respectively, in
terms of (r f(x;v)2r f(x;0)), wherer f(x;0) is the distribu-
tion function in the pure solvent system. By using the direct
correlation functioncf introduced by the Ornstein–Zernike
relation Eq. ~16! and the indirect partwf of the solute–
solvent potential of mean force defined by Eq.~6!, the PY
and HNC approximations in the full coordinate representa-
tion are expressed, respectively, as

cf~x;v !5~12exp~bv f~x!!!
r f~x;v !

r f~x;0!
~26!

and

cf~x;v !5
r f~x;v !

r f~x;0!
211bwf~x;v !. ~27!

When the solute–solvent interactionv is small, Eq.~16! re-
duces in combination with Eq.~26! or ~27! to the standard
result of the first-order perturbation theory written as

r f~x;v !5exp~2bv f~x!!r f~x;0!

3F11E dyf ~y!r f~y;0!hf~y,x;0!G1O~ f 2!,

~28!

wheref is the Mayer function for the solute–solvent interac-
tion defined as

f 5exp~2bv !21 ~29!

and O( f 2) denotes a second- or higher-order term with re-
spect tof. Equation~28! shows that the PY and HNC ap-
proximations are exact to first-order in the solute–solvent
interactionv. Furthermore, the solute-induced modification
of the solution structure expressed bywf in Eq. ~6! is given
correctly to first-order with respect to the solvent density in
the PY and HNC approximations.

In order to formulate the PY and HNC approximations
in the energetic representation, we also employ the method
of functional expansion. For a given solute–solvent interac-
tion potentialv of interest, the energetic coordinatee can be
constructed by takingv as the defining potential. It is then
stated in Sec. II B that the correspondence is one-to-one be-
tween the set of potential functionsue(e) defined over the
coordinatee and the set of distribution functionsre(e;u)
generated by the map Eq.~4!. In this case, it is possible to
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convert an expansion in terms ofue(e) into an expansion in
terms of (re(e;u)2re(e;0)), wherere(e;0) is the distribu-
tion function in the pure solvent system (u50). The PY
approximation in the energetic representation can be formu-
lated by expandingre(e;u)exp(bue(e)) to first-order in terms
of (re(e;u)2re(e;0)) and setting u5v. Similarly, the
HNC approximation is provided by expanding (logre(e;u)
1bue(e)) and settingu5v. When the direct correlation func-
tion ce introduced by the Ornstein–Zernike relation Eq.~17!
and the indirect partwe of the solute–solvent potential of
mean force defined by Eq.~7! are used, the PY and HNC
approximations in the energetic representation are written,
respectively, as

ce~e;v !5~12exp~be!!
re~e;v !

re~e;0!
~30!

and

ce~e;v !5
re~e;v !

re~e;0!
211bwe~e;v !, ~31!

where the property is used that the solute–solvent interaction
v of interest is the defining potential and satisfiesve(e)5e
over the energetic coordinate. In combination with the
Ornstein–Zernike relation Eq.~17!, Eq. ~30! or ~31! consti-
tutes a self-consistent integral equation for the solvent distri-
bution around the solute in the energetic representation. It
should be noted that although the integral equations in the
energetic representation are similar in form to those in the
full coordinate representation, they are formulated over a
one-dimensional coordinate specifying the solute–solvent in-
teraction energy. When the solute–solvent interactionv is
small, both the PY and HNC integral equations in the ener-
getic representation reduce to

re~e;v !5exp~2be!re~e;0!

3F11E dh~exp~2bh!21!re~h;0!he~h,e;0!G
1O~ f 2!. ~32!

This equation can actually be obtained by integrating Eq.
~28! over the equienergy surface given bye5v f(x). Thus,
the PY and HNC approximations in the energetic represen-
tation are exact to first-order in the solute–solvent interaction
v. In addition, the solute-induced effect expressed bywe in
Eq. ~7! is provided correctly to first-order with respect to the
solvent density in the PY and HNC approximations in the
energetic representation.

In order to formulate the superposition approximation in
the energetic representation, we adopt the approach pre-
sented in Ref. 8. In this approach, no derivative of the
solute–solvent interaction potential is involved and the inte-
gral equation will be easier to handle than the Born–Green
equation. Using the total correlation functionhe of the sol-
vent defined by Eq.~20!, the superposition approximation is
expressed as

he~e,h;u!5he~e,h;0! ~33!

when a solute–solvent interactionu is given. In other words,
the superposition approximation Eq.~33! states that the total
correlation function under the presence of a solute–solvent

interaction is the same as that in the pure solvent system
(u50). The derivation of the integral equation in the ener-
getic representation is parallel to that in the full coordinate
representation described in Ref. 8. The integral equation is
then expressed in terms of the indirect partwe of the solute–
solvent potential of mean force as

we~e;v !52kBTE dh~exp~2bh!21!

3
bwe~h;v !

exp~bwe~h;v !!21
re~h;0!he~h,e;0!.

~34!

When the solute–solvent interactionv is small, Eq.~34! re-
duces to Eq.~32!. Therefore, the superposition approxima-
tion in the energetic representation provides the exactwe to
first-order with respect to the solute–solvent interactionv
and to the solvent density.

B. Chemical potential

It is a principle of statistical thermodynamics that the
stability of a solute in solution is determined by its chemical
potential. Indeed, the equilibrium and rate constants of a
chemical reaction in a solution are governed by the chemical
potentials of the solute species involved in the reaction. In
this section, we relate the chemical potential of a solute in
closed form to the distribution functions of the solvent in the
energetic representation by employing the PY, HNC, and
superposition approximations.

In order to treat the thermodynamics of solvation on a
definite basis, it is necessary to specify the solution process
precisely. We consider the insertion process of the solute at
the ~arbitrarily chosen! fixed origin with an~arbitrarily cho-
sen! fixed orientation. The free energy change for this pro-
cess is the excess chemical potentialDm of the solute.2 Dm
involves only the contribution from the potential energy, and
the ideal~translational! contribution is excluded at the outset.
In the insertion process, the solute–solvent interaction is
gradually turned on and its extent is described by the cou-
pling parameterl of the solute–solvent interaction. When
l50, there is no interaction between the solute and solvent
and the system is the pure solvent. Whenl51, the solute
interacts with the solvent at full coupling under the solute–
solvent interaction potentialv of interest. When 0,l,1, the
system is at an intermediate state between the pure solvent
and the solution with the fully coupled solute-solvent inter-
action.

As done in Sec. III A, the energetic representation is
implemented for the solute–solvent interaction potentialv of
interest by adoptingv as the defining potential. It is then
possible to introduce a family of solute–solvent interaction
potentialsul defined over the coupling parameterl and the
energetic coordinatee. Of course, althoughul may be cho-
sen arbitrarily at the intermediate states 0,l,1, it needs to
be imposed that

u0
e~e!50,

~35!
u1

e~e!5ve~e!5e.
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In this case, the average distributionre(e;ul) of the solvent
at the coupling parameterl is given by Eq.~4! and is related
to the excess chemical potentialDm of the solute of interest
through

Dm5E
0

1

dlE de
]ul

e~e!

]l
re~e;ul!. ~36!

Equation~36! is the charging formula in the energetic repre-
sentation, and the value ofDm determined from Eq.~36!
does not depend on the choice of the intermediate states in an
exact treatment.

When the analytical integration over the coupling pa-
rameter is not attainable in Eq.~36!, the determination of the
excess chemical potentialDm requires a procedure to explic-
itly treat the intermediate states of the coupling parameterl.
It should be noted, however, that the intermediate states are
not of physical interest. Thus, an explicit treatment of the
intermediate states is not only computationally expensive,
but is also undesirable for the physical understanding of the
chemical potential. When thel integration in Eq.~36! is
performed,Dm is expressed only in terms of distribution
functions in the pure solvent~l50! and in the solution with
the fully coupled solute–solvent interaction~l51!.

In the PY, HNC, and superposition approximations, the
integration over the coupling parameter may be analytically
performed in the energetic representation andDm can be ex-
pressed in terms ofre, we, andce defined by Eqs.~4!, ~7!,
and~17!, respectively. As shown in Appendix C,Dm is given
in the PY and HNC approximations, respectively, by

Dm52kBTE dere~e;0!~exp~2be!21!

3
bwe~e;v !

exp~bwe~e;v !!21
~37!

and

Dm52kBTE dere~e;0!@ce~e;v !1 1
2bwe~e;v !

3~ce~e;v !2bwe~e;v !!#. ~38!

In the superposition approximation, the derivation ofDm is
parallel to that in the full coordinate representation described
in Ref. 8 and leads explicitly to Eq.~37!.43

When the solute–solvent interaction potentialv of inter-
est is small, both Eqs.~37! and~38! reduce to a result of the
second-order perturbation theory written as

Dm52kBTF E dere~e;0!~exp~2be!21!

1
1

2 E dedhre~e;0!re~h;0!~exp~2be!21!

3~exp~2bh!21!he~e,h;0!G1O~ f 3!, ~39!

wheref is the Mayer function defined by Eq.~29!. Equation
~39! shows for the PY, HNC, and superposition approxima-
tions in the energetic representation that the excess chemical

potentialDm is given exactly to second-order in the Mayer
function for the solute–solvent interactionv of interest. This
is actually due to the property shown in Eq.~32! that we

obtained from the integral equation in the PY, HNC, or su-
perposition approximation involves the correct first-order
term with respect tof. Furthermore, the excess chemical po-
tential Dm is exact to second-order in the solvent density
when the PY, HNC, or superposition approximation is em-
ployed in the energetic representation. Therefore, the solva-
tion thermodynamics of a solute is expected to be reproduced
accurately in a low- to medium-density fluid when the solu-
tion is studied with the integral equation in the energetic
representation.

When the solute–solvent interaction potentialv of inter-
est is zero outside a finite regionV, it is useful to employ the
reduced form of functionsrV

e , wV
e , cV

e , andhV
e defined by

Eqs.~11!, ~13!, ~23!, and~25!, respectively. In this case, the
PY, HNC, and superposition approximations are obtained
simply by replacingre, we, ce, andhe with the correspond-
ing variables involving the subscriptV in Eqs. ~30!, ~31!,
~34!, ~37!, and ~38!. In other words, the Ornstein–Zernike
equation is Eq.~23! and the PY and HNC approximations are
written, respectively, as

cV
e ~e;v !5~12exp~be!!

rV
e ~e;v !

rV
e ~e;0!

~40!

and

cV
e ~e;v !5

rV
e ~e;v !

rV
e ~e;0!

211bwV
e ~e;v !. ~41!

The expressions for the excess chemical potentialDm in the
PY and HNC closures are further given, respectively, by

Dm52kBTE derV
e ~e;0!~exp~2be!21!

3
bwV

e ~e;v !

exp~bwV
e ~e;v !!21

~42!

and

Dm52kBTE derV
e ~e;0!@cV

e ~e;v !

1 1
2bwV

e ~e;v !~cV
e ~e;v !2bwV

e ~e;v !!#. ~43!

On the other hand, the integral equation in the superposition
approximation takes the form that

wV
e ~e;v !52kBTE dh~exp~2bh!21!

3
bwV

e ~h;v !

exp~bwV
e ~h;v !!21

rV
e ~h;0!hV

e ~h,e;0!,

~44!

and the corresponding expression forDm is Eq. ~42!.

IV. DISCUSSION

This paper has presented a method of distribution func-
tion for describing a dilute solution over a one-dimensional
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coordinate specifying the solute–solvent interaction energy.
The one-to-one correspondence is then established between
the set of solute–solvent interaction potentials defined over
the energetic coordinate and the set of solvent distribution
functions around the solute in the energetic representation.
On the basis of the one-to-one correspondence, the integral
equations with the Percus–Yevick~PY! and hypernetted-
chain~HNC! approximations can be formulated over the en-
ergetic coordinate through the method of functional expan-
sion. The integral equation may also be formulated in the
superposition approximation in a manner similar to that pre-
sented in Ref. 8. The PY, HNC, and superposition approxi-
mations in the energetic representation determine the solvent
distribution functions around the solute exactly to first-order
with respect to the solute–solvent interaction potential and to
the solvent density. Correspondingly, the excess chemical
potential of the solute is given in these approximations cor-
rectly to second-order in the solute–solvent interaction po-
tential and in the solvent density.

In order to solve the integral equation for a dilute solu-
tion with the PY, HNC, or superposition approximation in
the energetic representation, it is necessary to treat the two-
body correlation functionxe(e,h;0) in the pure solvent sys-
tem as a known input. Actually,xe(e,h;0) can be readily
obtained by performing a computer simulation of the pure
solvent system. Indeed, the instantaneous distributionr̂e(e)
defined by Eq.~3! is to be evaluated by placing the solute
molecule as a test particle and is to be averaged through Eq.
~15! over the configurations generated. Therefore, as far as
the pure solvent system is easily simulated, the approximate
procedures developed in the present paper are useful routes
to assessing the behavior of the solute at infinite dilution.

When the solute–solvent interaction potential depends
only on the position of a single site in the solvent molecule
relative to the solute molecule, the radial distribution func-
tion of that site in the pure solvent may be utilized to con-
struct the two-body correlation functionxe(e,h;0). In Ap-
pendix D, we treat this specific case and provide an explicit
expression forxe(e,h;0) in terms of the radial distribution
function. Furthermore, when the solute–solvent interaction
potential is constant over its interaction range, the PY, HNC,
and superposition approximations are particularly simple in
the energetic representation. In Appendix E, we investigate
this simple case and present closed form expressions for the
excess chemical potential.

The integral equations presented in this paper do not
directly provide the potential of mean force between two
solute molecules. The evaluation of the potential of mean
force at a given configuration is readily possible, however,
by noting that it is the difference between the free energy
changes of the system upon insertion of the two solute mol-
ecules at infinite separation and upon insertion at the con-
figuration of interest. The free energy change upon insertion
at infinite separation is simply the sum of the individual ex-
cess chemical potentials of the two solute molecules. The
free energy change upon insertion at the configuration of
interest may be evaluated, on the other hand, by treating the
two solute molecules at that configuration as one unit and
determining the ‘‘excess chemical potential’’ of the unit. In

this procedure, since the excess chemical potentials are given
exactly to second-order in the solute–solvent interaction po-
tential and in the solvent density, the potential of mean force
is also exact to second-order.

The extension of the procedures in the present paper to a
mixed solvent system is straightforward. In this case, the
energetic coordinateea is constructed for the solvent species
a from the interaction potential between the solute and the
solvent speciesa. The integral equations and the expressions
for the excess chemical potential may then be reformulated
simply by adding the subscripts representing the solvent spe-
cies to the energetic coordinates and supplementing the inte-
grals over the energetic coordinates with the sums over the
solvent species.

An accurate and efficient route to the excess chemical
potential of a hard core solute is provided by the
information-theoretic approach of Hummeret al.44,45 In this
approach, the distribution of the number of solvent mol-
ecules in the hard core region is determined from its first and
second cumulants in the pure solvent through the maximiza-
tion of a properly defined information entropy, and the prob-
ability that the number is equal to zero gives the excess
chemical potential of the hard core solute. The information-
theoretic approach may be viewed as a method of evaluating
the excess chemical potential of a hard core solute in the
energetic representation since the hard core region is an
equienergy surface with the infinite solute–solvent interac-
tion energy. When the solute–solvent interaction of interest
is soft and the corresponding coordinate in the energetic rep-
resentation is continuous over its whole range, the method of
entropy maximization leads to an energetic version of the
Gaussian field model elaborated by Chandler.46 As pointed
out by Hummeret al., however, the Gaussian field model
does not satisfy the condition that the~instantaneous! solvent
distribution is non-negative.44 Moreover, when the method
of entropy maximization is modified by imposing the condi-
tion of non-negativity, it is not tractable in practice to evalu-
ate the excess chemical potential of a solute. This is because
the evaluation requires an integration over the~fluctuating!
solvent distribution within the condition of non-negativity
and the solvent distribution involves a continuous coordinate
as an argument. Therefore, the method of entropy maximi-
zation has not been adopted in the present work to derive an
approximate expression for the excess chemical potential of
a solute in the energetic representation.

When the intermolecular interaction is of the site–site
form, the method of reference interaction site model~RISM!
is a convenient route to the solution structure and is particu-
larly useful in a high-density molecular fluid.12–23The RISM
integral equations with the PY and HNC closures, however,
exhibit unphysical dependence on ‘‘auxiliary’’ sites which
simply label points in a molecule and make no contribution
to the intermolecular interaction.15 Since the integral equa-
tions in the energetic representation do not separately treat
the distinct sites of a molecule, in contrast, they are not af-
fected by the presence of ‘‘auxiliary’’ sites.47 In addition,
the RISM integral equations are not exact in the limit of
zero solvent density and are not useful to evaluate the
excess chemical potential of a solute in a low-density
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fluid. The RISM-2 integral equations provide improved de-
scriptions in the low-density regime, but determine the ex-
cess chemical potential correctly only to first-order in the
density.26–28 Therefore, since the PY, HNC, and superposi-
tion approximations in the energetic representation give the
excess chemical potential of a solute exactly to second-order
in the solvent density, they will be suitable for describing a
low- to medium-density fluid. In subsequent work, the ap-
proximate procedures developed in this paper are applied to
the solvation thermodynamics and solvent-mediated interac-
tions of various types of solutes in water over a wide range
of thermodynamic conditions.
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APPENDIX A

In Sec. II A, it has been supposed for the sake of sim-
plicity that the solute and solvent molecules do not involve
the intramolecular degrees of freedom such as the molecular
vibrations and intramolecular polarization. This supposition
can actually be removed in the method of distribution func-
tion in the energetic representation by changing the content
of the full coordinatex. Let c andg be the complete sets of
variables specifying the configurations of the solute and sol-
vent molecules, respectively.c and g contain the intramo-
lecular degrees of freedom of the solute and solvent mol-
ecules, respectively. The developments in the present paper
is then valid simply by redefining the full coordinatex as a
collective set ofc andg and using an appropriate expression
for the average of a given quantityQ.

The solute–solvent interaction potentialu is a function
of c and g and may be expressed asuf(c,g) in the full
coordinate representation. When the intramolecular energy
of the solute isf~c! and the solvent–solvent interaction en-
ergy isU, the averagêQ&u of a quantityQ is expressed in
the presence of the solute–solvent interactionu as

^Q&u5
* dcdGQ exp~2b$f~c!1( iu

f~c,g i !1U%!

* dcdG exp~2b$f~c!1( iu
f~c,g i !1U%!

,

~A1!

whereg i is the variable to specify the configuration of theith
solvent molecule andG represents the solvent configuration
collectively. The corresponding expression for the excess
chemical potentialDm of the solute is given by

exp~2bDm!5
* dcdG exp~2b$f~c!1( iv

f~c,g i !1U%!

* dcdG exp~2b$f~c!1U%!
~A2!

when the solute–solvent interaction isv f(c,g) in the full
coordinate representation. It is then possible to show, by
adopting Eqs.~A1! and~A2!, that the method of distribution
function in the energetic representation developed in this pa-
per is valid by takingx5~c,g!.

In Secs. II and III, we have fixed the solute molecule at
the ~arbitrarily chosen! origin with an ~arbitrarily chosen!
fixed orientation. This is also unnecessary when the position
and orientation of the solute molecule are incorporated into
the coordinatec and Eqs.~A1! and ~A2! are employed.

APPENDIX B

The method of functional expansion exploited in Sec.
III A to develop the PY and HNC approximations is based on
the property that the correspondence is one-to-one between
the set of solute–solvent interaction potentials and the set of
distribution functions of the solvent. The purpose of this Ap-
pendix is to prove the validity of the one-to-one correspon-
dence in the energetic representation when the set of solute–
solvent interaction potentials is properly chosen. Our
procedure of the proof is parallel to that described by Hansen
and McDonald in their textbook.2 We present the proof only
in the canonical ensemble since the extension to the other
ensembles is straightforward.

When the solute–solvent interactionu is given, we de-
fine a functionalZ@P;u# of the probability distribution func-
tion P of the solvent in the configuration space as

Z@P;u#5E dGF(
i

uf~xi !1U1kBT log P~G!GP~G!, ~B1!

whereG represents the solvent configuration collectively and
U denotes the solvent–solvent interaction energy. It is then
possible to show that

Z@P;u#>Z@Pu
0;u#, ~B2!

wherePu
0 is the equilibrium distribution function given by

Pu
0~G!5

exp~2b$( iu
f~xi !1U%!

* dG exp~2b$( iu
f~xi !1U%!

. ~B3!

The equality holds in Eq.~B2! only whenP5Pu
0.

Suppose that the average distributions given by Eq.~2!
are identical between two distinct solute–solvent interactions
u andw and that

r f~x;u!5r f~x;w! ~B4!

is valid. It then follows from Eqs.~B1! and ~B2! that

Z@Pw
0 ;w#,Z@Pu

0;u#1E dxr f~x;u!~wf~x!2uf~x!!,

~B5!

Z@Pu
0;u#,Z@Pw

0 ;w#1E dxr f~x;u!~uf~x!2wf~x!!,

where the functionalZ@P;w# and the equilibrium distribu-
tion function Pw

0 are given by expressions similar to Eqs.
~B1! and~B3!, respectively. Actually, since the two inequali-
ties in Eq.~B5! are not compatible with each other, the sup-
position Eq.~B4! needs to be negated. Thus, the one-to-one
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correspondence is established between the solute–solvent in-
teraction potential and the average distribution of the solvent
in the full coordinate representation.

We now introduce the energetic representation by adopt-
ing the solute–solvent interaction potentialv of interest as
the defining potential and constructing the energetic coordi-
natee with respect tov. We restrict the set of solute–solvent
interaction potentials and consider only the potential func-
tions defined over the coordinatee. A solute–solvent inter-
action potential under consideration is then constant over an
equienergy surface ofv and may be expressed in the form
involving only one argumente. Suppose again that the aver-
age distributions given by Eq.~4! are identical between two
distinct solute–solvent interactionsu andw and that

re~e;u!5re~e;w! ~B6!

holds. In that case, it is possible to show by virtue of Eqs.~4!
and ~B2! that

Z@Pw
0 ;w#,Z@Pu

0;u#1E dere~e;u!~we~e!2ue~e!!,

~B7!

Z@Pu
0;u#,Z@Pw

0 ;w#1E dere~e;u!~ue~e!2we~e!!.

Since the two inequalities in Eq.~B7! are not consistent with
each other, the supposition Eq.~B6! cannot be true. In other
words, different solute–solvent interactions are mapped
through Eq. ~4! to different distributions of the solvent.
Therefore, for a given defining potentialv, the correspon-
dence is one-to-one between the set ofue(e) defined over the
energetic coordinatee and the set ofre(e;u) expressed in
the energetic representation.

When the defining potentialv vanishes outside a finite
region V, it is possible to repeat the similar arguments for
the reduced formrV

e of average distribution determined from
Eq. ~11!. In this case, the map to the set of distribution func-
tions rV

e (e;u) is one-to-one from a set of solute–solvent
interaction potentialsu which are constant over equienergy
surfaces ofv and are zero outside the interaction rangeV.

APPENDIX C

When the PY approximation is adopted in the full coor-
dinate representation for a solute–solvent interaction poten-
tial v of interest, it was shown by Lee that the excess chemi-
cal potentialDm of the solute is given by29–31

Dm52kBTE dxr f~x;0!log~11z~x!!
cf~x;v !

z~x!
, ~C1!

where an auxiliary functionz is defined as

z~x!5
r f~x;v !

r f~x;0!
2cf~x;v !21. ~C2!

Equation~C1! then reduces, by virtue of the PY closure Eq.
~26!, to

Dm52kBTE dxr f~x;0! f ~x!
bwf~x;v !

exp~bwf~x;v !!21
,

~C3!

wheref is the Mayer function for the solute–solvent interac-
tion v of interest given by Eq.~29!. It should be noted that
Eq. ~C3! is identical to Eq.~2.11! of Ref. 8.43 The derivation
of the Dm expression under the PY approximation in the
energetic representation is parallel to that presented by Lee
and Kjellander and Sarman in the full coordinate
representation,29–31 and Eq.~37! is obtained.

In the HNC approximation, the method elaborated by
Lee and Kjellander and Sarman in the full coordinate
representation29–31may be readily developed in the energetic
representation to give Eq.~38!.

APPENDIX D

A specific form of the solute–solvent interaction poten-
tial is often adopted which depends only on the position of a
single site in the solvent molecule relative to the solute mol-
ecule. For example, the interaction potential between water
and a hydrophobic solute is commonly formulated as a func-
tion only of the position of the oxygen site relative to the
hydrophobic solute.48 In such a specific case, it is possible to
construct the two-body correlation functionxe(e,h;0) in the
pure solvent from the knowledge of the radial distribution
function of the site determining the solute–solvent interac-
tion.

When the solute molecule is fixed at the origin with a
fixed orientation and the solute–solvent interaction potential
v of interest depends only on the positionr of the sitet of
the solvent molecule,v may be expressed asvt(r ). In this
case, the correlation function relevant for constructing
xe(e,h;0) is the radial distribution functiongtt of the sitet
in the pure solvent, provided that the pure solvent system is
homogeneous and isotropic.36 It is then easy to see that Eq.
~15! reduces in the pure solvent to

xe~e,h;0!5rE drd~vt~r !2e!d~e2h!

1r2E drdRd~vt~r !2e!d~vt~R!2h!

3~gtt~r2R!21!. ~D1!

This expression indeed relatesxe(e,h;0) to the radial distri-
bution functiongtt .

APPENDIX E

A simplest model of the solute–solvent interaction is
such that the potential is constant over its interaction range
V. In this case, the solute–solvent interaction potentialv of
interest is written as

v f~x!5H j when xPV

0 otherwise
~E1!

and j is the only parameter for the solute–solvent interac-
tion. Note that a hard core solute is a special case of Eq.~E1!
for which bj@1. When the specific form Eq.~E1! of the
solute–solvent interaction is adopted as the defining poten-
tial, the reduced instantaneous distributionr̂V

e defined by Eq.
~8! is expressed as

r̂V
e ~e!5N̂Vd~e2j!, ~E2!
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where N̂V is the ~instantaneous! number of solvent mol-
ecules in the interaction rangeV. The average distributions
rV

e and xV
e , which are given in the presence of a solute–

solvent interactionu by Eqs.~11! and~22!, respectively, then
reduce to

rV
e ~e;u!5^N̂V&ud~e2j!,

xV
e ~e,h;u!5~^N̂V

2 &u2^N̂V&u
2!d~e2j!d~h2j!, ~E3!

where^¯&u denotes the ensemble average taken in the so-
lution with the solute–solvent interactionu. Equation~E3!
shows thatrV

e and xV
e correspond to the first and second

cumulants ofN̂V , respectively, when the defining potential
involves a specific form Eq.~E1!. The purpose of this Ap-
pendix is to show for the PY, HNC, and superposition ap-
proximations in the energetic representation that the excess
chemical potential of the solute with the solute–solvent in-
teraction of the form Eq.~E1! is determined from the first
and second cumulants ofN̂V in the pure solvent system.

Under the specific form Eq.~E1! of the solute–solvent
interaction, the PY approximation consisting of Eqs.~23!
and~40! is actually identical to the superposition approxima-
tion given by Eq.~44!. In these approximations, the indirect
part wV

e of the solute–solvent potential of mean force de-
fined by Eq.~13! is determined to be

exp~bwV
e ~j;v !!512~exp~2bj!21!

3
^N̂V~N̂V21!&02^N̂V&0

2

^N̂V&0

, ~E4!

where^¯&0 denotes the ensemble average taken in the pure
solvent system@j50 in Eq.~E1!#. The corresponding expres-
sion for the excess chemical potentialDm is obtained from
Eq. ~42! and is given by

Dm52kBT^N̂V&0~exp~2bj!21!

3
bwV

e ~j;v !

exp~bwV
e ~j;v !!21

. ~E5!

In the HNC approximation consisting of Eqs.~23! and ~41!,
on the other hand,wV

e is the solution of

2bwV
e ~j;v !5@exp~2b$j1wV

e ~j;v !%!1bwV
e ~j;v !21#

3
^N̂V~N̂V21!&02^N̂V&0

2

^N̂V&0

~E6!

and the excess chemical potentialDm is expressed, by virtue
of Eq. ~43!, as

Dm52kBT^N̂V&0F S bwV
e ~j;v !

2
11D

3exp~2b$j1wV
e ~j;v !%!1

bwV
e ~j;v !

2
21G .

~E7!

Equations~E4!, ~E5!, ~E6!, and ~E7! show that the excess
chemical potential of the solute can be expressed in terms of

the first and second cumulants ofN̂V in the pure solvent
system when the solute–solvent interaction potential takes
the simple form Eq.~E1!.

When the solute–solvent interaction is given by Eq.
~E1!, the excess chemical potentialDm is closely connected
to the probability distribution of the numberN̂V of solvent
molecules contained in the interaction rangeV. Indeed,Dm
can be expressed as

exp~2bDm!5(
n

exp~2nbj!pn , ~E8!

wherepn is the probability thatN̂V5n in the pure solvent
system. Whenpn is given, Eq.~E8! determinesDm for any
interaction parameterj in Eq. ~E1!. Conversely, whenDm is
provided as a function ofj, the probabilitypn can be ob-
tained, for example, by expanding exp~2bDm! with respect
to exp~2bj!. In the information-theoretic approach by Hum-
mer et al., pn is evaluated from the first and second cumu-
lants ofN̂V in the pure solvent through the maximization of
a properly defined information entropy.44,45It is of interest to
note, on the other hand, that Eqs.~E5! and ~E7! provide
routes, by virtue of Eq.~E8!, to determiningpn from the first
and second cumulants ofN̂V under the PY, HNC, and super-
position approximations in the energetic representation.

When the solute molecule interacts with the solvent mol-
ecule through Eq.~E1! at an interaction parameterj, the
average numberNV(j) of solvent molecules in the interac-
tion rangeV is uniquely determined from

NV~j!5^N̂V&j , ~E9!

where^¯&j denotes the ensemble average taken in the so-
lution with the solute–solvent interaction given by Eq.~E1!.
Equation~E9! defines a map fromj to NV(j), and the map
is one-to-one as seen from the arguments in Appendix B. In
Ben-Naim’s treatments of water and hydrophobic effects, the
degree of water structure was discussed by assuming the hy-
drogen bond interaction of the form Eq.~E1!.49–51 The one-
to-one correspondence betweenj and NV(j) was then uti-
lized to adoptNV(j) as a measure of the degree of water
structure. In Ben-Naim’s treatments, however, the quantita-
tive argument was restricted to the linear regime of thej
variation and the nonlinear regime was explored only quali-
tatively. The approximate method described in this Appendix
can examine the nonlinear regime quantitatively. Further-
more, the method of integral equation developed in the
present paper is useful to treat an interaction which is more
general in form than Eq.~E1! and is not characterized by a
single parameter.
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