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Super- and subcritical hydration of nonpolar solutes. I.
Thermodynamics of hydration
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Hydration thermodynamics of nonpolar solutes in high-temperature water is investigated by
computer simulations. The excess chemical potentials of the methane and hard sphere solutes are
evaluated over a wide range of density and temperature, and the thermodynamic origin of the
enhanced affinity of the nonpolar solute for super- and subcritical water is identified. It is shown that
when the density is medium to high in the high-temperature conditions, the enhanced affinity results
from the elevated temperature and represents the nonspecific aspect of super- and subcritical water.
The excess chemical potentials are further decomposed into the enthalpic and entropic components.
It is found that when the system is moved from the ambient state to a high-temperature state, the
accompanying change is unfavorable for the enthalpic component and is favorable for the entropic
component. The thermodynamics of cavity formation is also pursued in connection to the size
distribution of cavities in pure solvent water. The utility of the scaled-particle theory is then
demonstrated over a wide range of thermodynamic conditions, and the effective diameter of the
water molecule is assigned within the framework of the scaled-particle theory. ©2000 American
Institute of Physics.@S0021-9606~00!50418-8#

I. INTRODUCTION

Oil does not mix with water. This is a common sense at
ambient conditions. In supercritical conditions, however, a
reverse property is observed. Oil dissolves well into super-
critical water.1–8 In other words, while a nonpolar solute is
sparsely soluble in water at ambient conditions, it is no more
‘‘hydrophobic’’ at supercritical conditions. Due to this re-
markable property, supercritical water serves as a novel me-
dium for organic chemical reactions which are often of en-
vironmental and industrial importance.8–12 In determining
the equilibrium constants and reaction rates of the chemical
reactions, the role of hydration cannot be overemphasized.
Furthermore, the availability of a wide range of density and
temperature is the most useful characteristic of supercritical
water, and a large variation in the density and temperature
may lead to a drastic change in the hydration effect on
chemical reactions. Thus, in order to understand and control
the organic chemical reactions in supercritical water, it is
essential to establish a molecular picture of hydration of non-
polar solutes over a wide range of thermodynamic condi-
tions.

The study of supercritical water as a pure solvent system
forms a basis for addressing aqueous solutions at supercriti-
cal states. In previous papers,13–15we analyzed the hydrogen
bonding in supercritical water through combined use of
NMR spectroscopy and computer simulation. The number of
hydrogen bonds per water molecule at supercritical states
was estimated quantitatively and the dipole moment of a
water molecule was determined at the supercritical states.
Once the dipole moment is given at a supercritical state of
interest, it is straightforward to construct an effective poten-
tial model suitable for simulating water and aqueous solu-
tions at the supercritical state. In a previous paper, the radial

and orientational structures of supercritical water at the pure
solvent state were examined by employing effective potential
models.15

In this series of works, we focus on hydration of nonpo-
lar solutes over a wide range of thermodynamic conditions.
At an ambient state, a nonpolar solute usually acts as a
‘‘structure maker’’ and its thermodynamics of hydration is
dominated by an unfavorable entropy.2,16–46 Since the out-
standing properties of hydrophobic hydration are closely re-
lated to the unique structural characteristics of ambient liquid
water,2,16–46 the study of hydration of a nonpolar solute in
high-temperature water will be useful to assess the extent of
uniqueness of super- and subcritical water. We investigate
the thermodynamic and structural aspects of hydration of a
nonpolar solute in high-temperature water by performing
computer simulations over a wide range of density and tem-
perature. In this paper, we elucidate the thermodynamic as-
pect by examining the chemical potentials and their enthalpic
and entropic components of the methane and hard sphere
solutes. In an accompanying paper, we focus on the struc-
tural aspect to characterize the microscopic solvation struc-
ture around a nonpolar solute.47

Methane is an organic solute which involves a weakly
attractive part in its interaction with water, and the hard
sphere particle is a prototypical nonpolar solute which is
purely repulsive to the solvent. These nonpolar solutes mix
with water when the high-temperature condition is realized
and the pressure is not too high. We analyze the hydration
thermodynamics of the nonpolar solutes and discuss the ther-
modynamic origin of their miscibility with high-temperature
water. Especially, since the elevated temperature is a nonspe-
cific driving force for mixing any two materials, a careful
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treatment of the temperature effect is made to assess the
specificity of high-temperature water.

When the attractive part is present in the solute–solvent
interaction, it may make a non-negligible contribution to the
hydration thermodynamics. In the scaled-particle theory, the
process of inserting a solute into the solvent is decomposed
into the formation process of a cavity and the introduction
process of the solute to the cavity according to the~soft!
solute–solvent interaction.20,21,23–25As emphasized by Po-
horille and Pratt, the thermodynamics of cavity formation is
closely related to the microscopic inhomogeneity of pure sol-
vent water.39,41,43,46Since the microscopic structure of water
changes drastically with a large variation in the thermody-
namic condition, it is also of interest to study the thermody-
namics of cavity formation over a wide range of density and
temperature. The thermodynamics of cavity formation is
then related to the size distribution of cavities in the pure
solvent, and the connection to the scaled-particle theory is
discussed.

In their comprehensive treatment of aqueous solutions of
nonpolar solutes, Guillot and Guissani examined the thermo-
dynamics of hydration on the water saturation curve.48 When
the density and temperature are varied along the saturation
curve, a correspondence to experimental studies can be eas-
ily made since the solubility data in high-temperature water
has often been accumulated on the saturation curve.49–51For
the sake of comprehending the general trend of the hydration
thermodynamics of a nonpolar solute in high-temperature
water, however, it will be insightful to separately treat the
density and temperature effects. Furthermore, since the avail-
ability of a wide range of density is a most useful character-
istic of supercritical water, the effect of density variation is
desirable to be studied in supercritical conditions. In this
work, we examine the hydration thermodynamics of nonpo-
lar solutes as a function of the density at a fixed supercritical
temperature and as a function of the temperature at a fixed
liquidlike density.

The thermodynamics of hydration is closely connected
to the underlying solvation structure around the solute of
interest. In super- and subcritical conditions, it was found, in
contrast to the case of ionic hydration,52–63that the hydration
is weak around a nonpolar solute.48,52,64,65When the system
is close to the critical point, however, the weak perturbation
in the solution structure caused by the solute leads to large
partial molar thermodynamic quantities of the solute due to
extended correlations among solvent molecules.66–72 In this
case, a simple hydration shell model which accounts for only
the contribution from the first hydration shell of the solute
will be inadequate to describe the thermodynamics of hydra-
tion, and the microscopic structure and energetics of the so-
lution is not straightforwardly inferred from the macroscopic
thermodynamic quantities of hydration. In the present paper,
we focus only on the thermodynamics of hydration. The re-
lationship between the hydration thermodynamics and the
solution structure is pursued in the accompanying paper
within the framework of the hydration shell analysis.47,73–75

The organization of the present paper is as follows. The
simulation methodology is described in Sec. II, and the den-
sity fluctuations in pure water at high-temperature states are

briefly characterized in Sec. III. The thermodynamics of
methane hydration is examined in Sec. IV. The excess
chemical potential and the affinity~solubility! of methane for
water are described in Sec. IV A, and the decomposition into
the enthalpic and entropic components is performed in Sec.
IV B. The effect of the~soft! solute–solvent interaction is
also pursued in Sec. IV C. In Sec. V, the thermodynamics of
cavity formation in high-temperature water is studied and its
connection to the scaled-particle theory is discussed.

II. METHODS

The thermodynamic quantities of hydration are evalu-
ated from computer simulations of pure solvent water by
employing the particle insertion method.76–80 The particle
insertion method gives the chemical potential of a solute in
ambient and high-temperature water and the enthalpy and
entropy of hydration are obtained from the temperature de-
pendence of the chemical potential. As far as the system is
large enough, the chemical potential is independent of the
ensemble and the choice of the ensemble is not important in
the particle insertion method. In order to decompose the
chemical potential into the enthalpic and entropic compo-
nents, however, it is necessary to specify the condition of
solute insertion, for example, whether the solute is inserted
in the constant volume condition or in the constant pressure
condition. In previous papers, we showed that the enthalpy
and entropy of hydration in the constant pressure condition
are connected to the local structure and energetics around the
solute with physically transparent variables.73–75 Thus, we
perform the decomposition of the chemical potential into the
enthalpic and entropic components in the constant pressure
condition. In order to evaluate the enthalpy and entropy of
hydration at constant pressure from the temperature depen-
dence of the chemical potential, it is convenient to vary the
temperature under the constant pressure condition. In this
work, the computer simulations of pure solvent water to
carry out the particle insertion method are implemented in
the isothermal–isobaric ensemble.

The ambient to subcritical states of interest are specified
by the temperatures of 25, 100, 200, and 300 °C and the
pressures corresponding to the water density of 1.0 g/cm3,
which are denoted by the statesA, B, C, andD, respectively.
The supercritical states of interest are specified by the tem-
perature of 400 °C and the pressures corresponding to the
water densities of 1.0, 0.8, 0.6, 0.4, and 0.2 g/cm3, which
are denoted by the statesE, F, G, H, andI, respectively. See
Table I for specification. In the thermodynamic pathA→B
→C→D→E, the temperature is increased at a fixed density,
and in the thermodynamic pathE→F→G→H→I , the den-
sity is varied at constant temperature. Our set of the thermo-
dynamic states studied is thus useful to treat the density and
temperature effects separately. It is actually parallel to the
one employed by Yoshiiet al. in their study of supercritical
pure water using a polarizable model.81

The SPC/E model is adopted as the intermolecular po-
tential function between water molecules.82 The critical point
of this water model was determined by Guissani and Guillot
and was found to be close to the experimental value.83 In real
water, the dipole moment of a water molecule is a function
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of the density and temperature of the system. When the den-
sity is lower and/or the temperature is higher, the dipole
moment of a water molecule is smaller and the attractive
interaction between water molecules is weaker. In the SPC/E
model, however, the state-dependent nature of the dipole
moment is not incorporated. The state dependence of the
dipole moment can be implemented by employing a polariz-
able model or an effective potential model with a modified
dipole moment.15,81,84–95In the present work, we adopt the
SPC/E model over all the states of interest. This is justified
because the objective of the present work is to elucidate the
general trend of the hydration thermodynamics of a nonpolar
solute in high-temperature water. Actually, it was estimated
in Ref. 15 that even at the low- to medium-density states of
the supercritical region~the statesG, H, andI in Table I!, the
value of the dipole moment is closer to that in the SPC/E
model than to that in the dilute gas phase. The effect of the
reduced dipole moment at supercritical states on the hydra-
tion thermodynamics is treated in Appendix A.

The input pressure needs to be specified to perform a
simulation in the isothermal–isobaric ensemble. At the state
A in Table I, the input pressure is clearly 1 bar. To determine
the input pressures at the states other thanA, we carried out
Monte Carlo statistical-mechanical simulations of pure sol-
vent water in the canonical ensemble with the input densities
and temperatures shown in Table I. In each Monte Carlo
simulation, 648 water molecules were located in a cubic unit
cell and the standard Metropolis sampling scheme was
implemented.76,96 The Monte Carlo simulation was per-
formed for one million passes, where one pass corresponds
to the generation of 648 configurations. The intermolecular
interactions between water molecules were spherically trun-
cated at 9.0 Å, and the periodic boundary condition in the
minimum image convention was employed. The average
pressures at the states other thanA are shown in Table I.
These average pressures are used as the input pressures of
the simulations performed in the isothermal–isobaric en-
semble. In Table I, the pressure and temperature are specified
for each thermodynamic state of interest. For each state of
interest, two additional states were simulated to evaluate the
temperature derivative of the chemical potential under the
constant pressure condition. The state of interest and the cor-

responding additional states involve the same pressure but
different temperatures. At the stateA in Table I, the tempera-
tures of the additional states were taken to be 5 and 45 °C.
Similarly, for each of the statesB, C, D, E, F, and G, the
differences between its own temperature and the tempera-
tures of the additional states were620 °C. At the statesH
and I, the temperature differences were set to610 °C since
these states are not far from the critical point and involve
large thermal expansion coefficients. At each of the states in
Table I and the additional states, a Monte Carlo simulation of
the pure water system was carried out in the isothermal–
isobaric ensemble for one million passes by locating 648
water molecules in a cubic unit cell.76,96 The truncation
scheme for the intermolecular interactions and the boundary
condition were identical to those described above for the
simulations of pure water in the canonical ensemble. Table I
shows that the average densities in the isothermal–isobaric
ensemble are coincident with the input densities of the cor-
responding simulations in the canonical ensemble, as ex-
pected. In the following, we specify the state of a system
simulated in the isothermal–isobaric ensemble by the tem-
perature and the average water density, rather than by the
temperature and the input pressure.

In this work, the hydration thermodynamics of a nonpo-
lar solute is analyzed in terms of the excess chemical poten-
tial and its derivatives at infinite dilution. The excess chemi-
cal potentialDm of a solute is the change in the free energy
of the system when the solute is inserted at a fixed position
in the fluid. In other words,Dm is equal to the deviation of
the ~total! chemical potential of the solute in the fluid of
interest from that in the ideal gas involving the same density
and temperature as the fluid.17,18 A derivative of the excess
chemical potential is called an excess partial molar thermo-
dynamic quantity. For example, the excess partial molar en-
thalpy and entropy in the constant pressure condition, which
are denoted byDHP andDSP , respectively, are connected to
Dm through

DHP52T2S ]~Dm/T!

]T D
P

, DSP52S ]Dm

]T D
P

, ~1!

whereT is the temperature andP is the pressure. It should be

TABLE I. Thermodynamic states of interest.

State
Temperature

~°C!

Canonical ensemble Isothermal–isobaric ensemble

Densitya

(g/cm3)
Average pressureb

~bar!
Pressure

~bar!
Average densityc

(g/cm3)

A 25 1 1.00
B 100 1.00 993615 993 1.00
C 200 1.00 2949620 2949 1.00
D 300 1.00 5109612 5109 1.00
E 400 1.00 7332611 7332 1.00
F 400 0.80 230367 2303 0.80
G 400 0.60 66362 663 0.60
H 400 0.40 30762 307 0.39
I 400 0.20 22561 225 0.20

aPure solvent water.
bThe values are evaluated in pure solvent water.
cThe values are evaluated in pure solvent water. The errors are less than 0.01 g/cm3.
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noted that whileDm does not depend on the condition of
solute insertion, its derivatives do in general. An excess par-
tial molar thermodynamic quantity is particularly useful for
analyzing the solution structure around the solute since it
does not involve the ideal~translational! contribution and is
equal to the change in the corresponding thermodynamic
quantity of the total system upon insertion of the solute at a
fixed position in the fluid.17,18,73–75

When the solute is distributed in equilibrium between
the solution phase of interest and the gas phase, its solubility
is commonly represented by the Ostwald coefficientg, the
ratio of the solute density in the solution phase to that in the
gas phase. It is well known thatg is determined by the ratio
of the difference between the excess chemical potentials of
the solute in the solution phase and in the gas phase to the
thermal energy~the product of the Boltzmann constantkB

and the temperatureT).17,18 In particular, when the solute
concentration is low and the gas phase may be treated as an
ideal gas,g is related to the excess chemical potentialDm in
the solution at infinite dilution through

g5exp~2bDm!, ~2!

whereb is the inverse of the thermal energy. Equation~2!
shows that a smallerbDm is equivalent to an enhanced solu-
bility ~a larger Ostwald coefficient!.97 When the concentra-
tion of the solute is not low enough or the gas phase is
imperfect, Eq.~2! does not hold andDm is not directly re-
lated to the solubility of the solute. Even in this case,Dm is
the free energy penalty of inserting the solute molecule into
the solvent at infinite dilution andbDm serves as a measure
of the affinity of the nonpolar solute for water. Indeed,
exp(2bDm) is equal to the Ostwald coefficient between the
dilute solution phase of interest and the hypothetical ideal
gas phase and is called the solubility parameter by Guillot
and Guissani.48 In order to see the importance of the form
bDm, it is insightful to consider the hypothetical equilibrium
of the solute distribution between two aqueous phases in-
volving different sets of water density and temperature. In
this hypothetical system, the two phases are thermally and
mechanically insulated from each other and only the transfer
of the solute molecules is allowed between the phases. When
the concentration of the solute is low, the equilibrium ratio
of the solute densities in the two phases is given by
exp(2d(bDm)), where d(bDm) is equal to the difference
betweenbDm in the two phases. The solute density is then
higher in the phase with the smallerbDm. In other words,
the affinity of the solute for the solvent is higher whenbDm
is smaller. In this paper, we represent the affinity of a non-
polar solute for water bybDm ~or its monotonic function!.
The affinity is enhanced whenbDm is decreased, and it is
reduced whenbDm is increased. Of course, the affinity has
the same meaning as the solubility~the Ostwald coefficient!
when Eq.~2! holds.

The nonpolar solutes treated in this work are the meth-
ane and hard sphere molecules. These nonpolar solutes
were treated as test particles and the particle insertion
method was employed to calculate their excess chemical po-
tentials at infinite dilution.76–80 The methane-water interac-
tion was taken to be the Lennard-Jones interaction with

eMe–O50.21 kcal/mol andsMe–O53.45 Å,98 and was also
spherically truncated at 9.0 Å. The methane–water interac-
tion employed in the present work is different from the one
employed by Guillot and Guissani in that the effect of the
solute polarizability is not included in our methane-water
interaction.48 Our simplified choice of the solute–solvent in-
teraction will be justified because the aim of this work is to
comprehend the general trend of the thermodynamic behav-
ior of hydration of a nonpolar solute over a wide range of
density and temperature, rather than to accurately reproduce
experimentally observable thermodynamic quantities. When
the particle insertion method is employed to calculate the
excess chemical potential of a hard sphere solute of exclu-
sion radiusl, the successful insertion of the solute means
that the distance between the center of the inserted hard
sphere and the oxygen site of any water molecule is at least
l.23–25,39,41,43When the probability of successful insertion of
the hard sphere of exclusion radiusl is p(l), the excess
chemical potentialDm of the hard sphere solute is given by99

Dm52kBT ln p~l!. ~3!

For both the methane and hard sphere solutes, the excess
partial molar enthalpy and entropy at constant pressure were
evaluated through finite difference by employing Eq.~1!.

The particle insertion method is a highly efficient
method to evaluate the excess chemical potential of a solute
when the rate of successful insertion of the solute is not too
low.76–80 Beutleret al. examined the validity of the particle
insertion method for purely repulsive solutes in ambient SPC
water100 and reported that the method is not very accurate
when the thermal radius of the solute–solvent repulsive core
exceeds 3 Å.79 On the other hand, Smith showed that up to
the core radius of 4 Å, the particle insertion method is a valid
procedure to calculate the excess chemical potential in am-
bient SPC and SPC/E water when a large number of inser-
tions are attempted.80 In Appendix B, we compare the par-
ticle insertion method and the thermodynamic integration
method for our systems of interest and demonstrate the va-
lidity of the particle insertion method.

In order to evaluate the interaction of a nonpolar solute
with the solvent water, Monte Carlo simulations of aqueous
solution of methane were also performed in the isothermal-
isobaric ensemble at the states listed in Table I. In these
simulations, 648 water molecules and 1 methane molecule
were located in a cubic unit cell, and the position of the
solute was fixed at the center of the unit cell. The interaction
potentials and the boundary condition were the same as those
for the above simulations of pure water implementing the
particle insertion method. At each state in Table I, the simu-
lation was performed for one million passes.

III. STRUCTURE OF PURE SOLVENT WATER

The purpose of this paper is to elucidate the thermody-
namics of hydration of a nonpolar solute in high-temperature
water. Since the hydration thermodynamics is closely related
to the structure and fluctuation of pure solvent water, it is
useful to examine the local and global inhomogeneities in
high-temperature water at the outset. In this section, we show
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the radial distribution functions, the isothermal compressibil-
ity, and the thermal expansion coefficient of ambient and
high-temperature water and describe their characteristics
briefly.

The microscopic structure of water is typically described
in terms of the correlation functions between the intermo-
lecular pairs of atoms O–O, O–H, and H–H. In particular,
the hydrogen bond network involving three or more water
molecules is characterized by the O–O radial distribution
function (gOO). In Fig. 1~a!, we show the effect of tempera-
ture variation ongOO at a fixed density of 1.0 g/cm3. The
response of the first and second peaks ofgOO to the tempera-
ture variation is in agreement with that reported for a polar-
izable model.81 The first peak is broader and is positioned at
a larger distance as the temperature is raised. In the region
where the second peak is present at the ambient stateA ~3.9
Å &r &5.2 Å!, gOO decreases monotonically with the tem-
perature and involves a minimum at temperatures higher
than;200 °C. In the region 5.2 Å&r &6.4 Å, on the other
hand, gOO increases monotonically with the temperature.
When the temperature is higher than;200 °C, the second
peak ofgOO is present at;6 Å, and water behaves like a
simple liquid in the sense that the position of the second peak
corresponds to twice the distance of the first peak. Further-

more, it was also observed by Guissani and Guillot that the
transition to the simple liquid-like behavior occurs between
;150 and;200 °C when the temperature is raised along the
liquid branch of the saturation curve.83 Note that the change
in the second peak ofgOO shown in Fig. 1~a! can be seen as
disappearance of one peak at the lower temperatures and
emergence of another at the higher temperatures, rather than
as a gradual shift in the peak position. The hydrogen bonding
between a pair of water molecules is commonly analyzed in
terms of the O–H radial distribution function (gOH). In Fig.
1~b!, we show the temperature dependence ofgOH at a fixed
density of 1.0 g/cm3. In this case, the positional changes in
the first and second peaks are relatively small. Instead, the
principal change ingOH is observed for the widths of the
peaks. When the temperature is higher, the first and second
peaks are less distinct and the hydrogen bonding is less
sharply characterized.

When the temperature is above the critical, the density
can be continuously varied from the gaslike regime to the
liquidlike regime. In Fig. 2~a!, we showgOO at the supercriti-
cal statesE, F, G, H, and I and at the ambient stateA. It is
easy to see, in agreement with previous computer
simulations,15,52,53,58,81,83,92–94,101–107that the first peak of
gOO is broader and is positioned at a larger distance when the
system is supercritical than when the system is ambient. The
second peak ofgOO exhibits a more qualitative change. At

FIG. 1. ~a! The O–O radial distribution functionsgOO at the statesA, B, C,
D, andE, which involve densities of 1.0 g/cm3. In the regionr &3.9 Å, gOO

at a lower temperature is sharper. In the region 3.9 Å&r &5.2 Å, gOO is
larger at a lower temperature, while in the region 5.2 Å&r &6.4 Å, gOO is
larger at a higher temperature. The solid lines represent the statesA, C, and
E, and the dashed lines represent the statesB and D. ~b! The O–H radial
distribution functionsgOH at the statesA, B, C, D, andE. The solid lines
represent the statesA, C, andE, and the dotted lines represent the statesB
andD. gOH is shifted by 0.5, 1.0, 1.5, and 2.0 at the statesB, C, D, andE,
respectively.

FIG. 2. ~a! The O–O radial distribution functionsgOO and ~b! the O–H
radial distribution functionsgOH at the ambient stateA and at the supercriti-
cal statesE, F, G, H, and I. The dotted lines represent the stateA, the
solid lines represent the statesE, G, and I, and the dashed lines represent
the statesF andH. gOO andgOH are shifted by 0.5, 1.0, 1.5, 2.0, and 2.5 at
the statesE, F, G, H, andI, respectively.
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the ambient stateA, the second peak is evident at;4.5 Å
and represents the tetrahedral ordering of the hydrogen bond
network. At the supercritical states, on the other hand, water
behaves like a simple liquid in the sense that the position of
the second peak is;6 Å and corresponds to twice the dis-
tance of the first peak.15,52,53,58,81,83,92–94,101–107The density
dependence ofgOH is shown in Fig. 2~b! at the supercritical
statesE, F, G, H, andI and at the ambient stateA. According
to Fig. 2~b!, although the hydrogen bonding does not vanish
in the supercritical conditions, the hydrogen bonding peak of
gOH at ;1.8 Å is less sharply characterized at the supercriti-
cal states than at the ambient state. When the density effect is
concerned at a fixed supercritical temperature of 400 °C,
bothgOO andgOH decrease with the density over the range of
r in Fig. 2 at the low- to medium-density statesG, H, andI.
This shows that the association of a specific pair of water
molecules is more probable at a lower density, in agreement
with the observation from the density dependence of the pro-
ton chemical shift that the hydrogen bonding is spatially
more inhomogeneous at a lower density.13–15When the den-
sity is medium to high (r*0.6 g/cm3), gOO andgOH exhibit
relatively small changes. In this case, the density depen-
dences of such quantities as the coordination number and the
number of hydrogen bonds are governed by the bulk density.

While the local and microscopic fluctuations in the den-
sity are described by the radial distribution functions, the
global and macroscopic fluctuations in the density are related
to the isothermal compressibilitykT and the thermal expan-
sion coefficientaP of the system.kT is determined by the
fluctuation in the volume~or density! of the system, andaP

is a measure of the strength of the coupling between the
fluctuations in the density and enthalpy~or energy! of the
system. In Fig. 3~a!, we showkT as a function of the tem-
peratureT at a fixed density of 1.0 g/cm3. It is seen in
agreement with the experimental observations2,108 that kT

decreases monotonically withT. In other words, the system
is less compressible at a higher temperature, where the inter-
action between water molecules is more repulsive and the
pressure is higher. In order to relatekT to the magnitude of
the fluctuation in the volume~or density!, we employ the
equation in the isothermal–isobaric ensemble that

rkBTkT511rE dr ~gOO~r !21!5r
^~Ṽ2^Ṽ&!2&

^Ṽ&
, ~4!

wherer is the density of the system,Ṽ is the instantaneous
volume of the system, and̂•••& denotes the ensemble
average.76,109 The temperature dependence ofrkBTkT at
constant density is shown in Fig. 3~a!. According to Fig.
3~a!, rkBTkT increases withT up to ;300 °C and the tem-
perature elevation in this region leads to a larger fluctuation
in the volume~or density! of the system. At temperatures
higher than;300 °C, on the other hand, the magnitude of
the volume fluctuation is weakly dependent onT when seen
in terms of the macroscopic quantityrkBTkT . In Fig. 3~b!,
we showaP as a function of the temperatureT at a fixed
density of 1.0 g/cm3. Unlike kT , aP is a nonmonotonic
function of T. Actually, aP involves a maximum at

;200 °C, in agreement with the experimental findings.2,108

It is of interest to note, as seen in Fig. 1~a!, that the transition
to the simple liquid-like behavior is also found for the radial
distribution function at;200 °C. The strength of the cou-
pling between the fluctuations in the volume~or density! and
the enthalpy~or energy! of the system is related toaP

through the identity in the isothermal–isobaric ensemble that

TaP5
^~Ṽ2^Ṽ&!~Ẽ1PṼ2^Ẽ1PṼ&!&

kBT^Ṽ&
, ~5!

where Ẽ is the instantaneous energy and the coupling
strength is normalized by the thermal energykBT.76,109 The
temperature dependence ofTaP at constant density is shown
in Fig. 3~b!. According to Fig. 3~b!, TaP is an increasing
function of T up to ;300 °C. In this region, the coupling
between the volume and enthalpy of the system is strength-
ened with the temperature elevation. When the temperature
exceeds;300 °C, on the other hand,TaP is a weak function
of T. In the framework of the scaled-particle
theory,23–25,38,44,46the thermodynamics of cavity formation is
more enthalpic whenTaP is larger. It is then expected from
Fig. 3~b! that the thermodynamics of hydration of a nonpolar
solute is enthalpic in the high-temperature regions. In Secs.
IV and V, we address this point in detail.

When the density is varied in supercritical conditions,kT

andaP change by orders of magnitude. In Fig. 4, we show
kT as a function of the densityr at a fixed temperature of
400 °C. It is indeed seen, in agreement with the experimental
observations and the simulation results using the TIP4P
model,2,106,108that kT rises rapidly as the density decreases.
Actually, ther dependence ofkT is so strong thatrkBTkT

FIG. 3. ~a! The isothermal compressibilitykT and its normalized form
rkBTkT as functions of the temperatureT at the statesA, B, C, D, andE,
which involve densities of 1.0 g/cm3. ~b! The thermal expansion coefficient
aP and its normalized formTaP as functions of the temperatureT at the
statesA, B, C, D, andE. When not shown, the error bar is smaller than the
size of the corresponding symbol.
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defined by Eq.~4! also increases by orders of magnitude
when the density is reduced. Thus, Fig. 4 implies that the
volume ~or density! fluctuation of the system given by Eq.
~4! is smaller at a higher density. The density dependence of
aP at constant temperature is also shown in Fig. 4. Accord-
ing to Fig. 4, the density reduction leads to an increase inaP

by orders of magnitude and ther dependence ofaP corre-
sponds qualitatively to that ofkT . Thus, in the isothermal
variation of the density examined in this work, the thermo-
dynamic response functions concerning the density~or vol-
ume! fluctuation of the system are larger at a lower density.

IV. THERMODYNAMICS OF METHANE HYDRATION

In this section, we focus on the thermodynamics of
methane hydration. In Sec. IV A, we treat the excess chemi-
cal potential and discuss the affinity~solubility! of methane
for water over a wide range of density and temperature. In
Sec. IV B we perform the decomposition into the enthalpic
and entropic components. The thermodynamic characteris-
tics presented in Secs. IV A and IV B for the methane solute
are also valid for the hard sphere solutes with the sizes
treated in Sec. V. In Sec. IV C we examine the effect of the
~soft! solute–solvent interaction on the thermodynamics of
methane hydration. We address this issue to clarify the role
of the weak solute-solvent attraction at high temperatures.

A. Excess chemical potential

In Fig. 5~a! we show the excess chemical potentialDm
of methane as a function of the temperatureT at a fixed water
density of 1.0 g/cm3. It is evident thatDm increases withT
in the constant volume condition. In other words, the free
energy penaltyDm of inserting the nonpolar solute is larger
at a higher temperature, whereas high-temperature water be-
haves like a simple liquid as seen in Fig. 1~a!.110 Since the
excess partial molar entropy at constant volumeDSV is given
by

DSV52S ]Dm

]T D
V

, ~6!

whereV is the volume of the system, Fig. 5~a! shows that
DSV is negative over a wide range of temperature shown. In
order to understand the affinity of the nonpolar solute for
water, it is actually necessary to examinebDm, rather than

Dm itself, as described in Sec. II. In Fig. 5~b!, we showbDm
as a function ofT at constant density. AlthoughbDm exhib-
its a weaker temperature dependence thanDm due to the
factorb, it is still an increasing function of the temperature.
Thus, over a wide temperature range shown in Fig. 5, the
affinity ~solubility! of the nonpolar solute decreases withT.
In this sense, methane is more ‘‘hydrophobic’’ at higher tem-
peratures when the density of water is fixed, whereas the
uniqueness of the water structure is diminished by elevating
the temperature as shown in Fig. 1. It may then be mislead-
ing to ascribe the origin of hydrophobicity only to the unique
structural characteristic of water, such as the tetrahedral or-
dering. Since the excess partial molar energy at constant vol-
umeDEV is expressed as

DEV52T2S ]~Dm/T!

]T D
V

, ~7!

Fig. 5~b! also implies thatDEV is negative at ambient to
supercritical temperatures. Detailed analyses of the energetic
~enthalpic! and entropic components are presented in Sec.
IV B.

When the temperature is raised above the critical, there
is no prohibited region between the gas-like and liquid-like
densities. In Fig. 6~a!, we show the excess chemical potential
Dm of methane as a function of the water densityr at a fixed
temperature of 400 °C, along with the reference value at the

FIG. 4. The isothermal compressibilitykT and the thermal expansion coef-
ficient aP as functions of the densityr at the supercritical statesE, F, G, H,
and I. When not shown, the error bar is smaller than the size of the corre-
sponding symbol.

FIG. 5. ~a! The excess chemical potentialDm and its enthalpic and entropic
componentsDHP andTDSP of methane as functions of the temperatureT at
the statesA, B, C, D, andE, which involve water densities of 1.0 g/cm3. ~b!
bDm and its enthalpic and entropic componentsbDHP and DSP /kB of
methane as functions of the temperatureT at the statesA, B, C, D, andE.
When not shown, the error bar is smaller than the size of the corresponding
symbol.

8095J. Chem. Phys., Vol. 112, No. 18, 8 May 2000 Hydration of nonpolar solutes

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ambient state~the stateA in Table I!. It is evident thatDm
increases withr in the constant temperature condition and
that the excess partial molar volume is positive in the density
range shown in Fig. 6~a!. In the low-density region (r
&0.4 g/cm3) of the supercritical states,Dm is smaller than
that at the ambient stateA. This simply reflects the fact that
Dm approaches zero for any fluid in the limit of zero density.
In the medium- to high-density region (r*0.6 g/cm3) of
the supercritical states, on the other hand,Dm is larger than
that at the ambient stateA. In other words, when seen in
terms of the free energy penaltyDm, the insertion of meth-
ane is less favorable in supercritical water withr
*0.6 g/cm3 than in ambient water withr51.0 g/cm3.110

In order to examine the affinity of the nonpolar solute for
supercritical water, in Fig. 6~b! we showbDm as a func-
tion of r at constant temperature, along with the reference
value at the ambient state. Since the~absolute! temperatures
at the supercritical states of interest are more than twice the
temperature at the ambient state,bDm becomes smaller
at the supercritical statesF (r50.8 g/cm3) and G ~r50.6
g/cm3) than at the ambient stateA when the factorb is taken
into account. This shows that in the medium-density region
(0.6 g/cm3 &r&0.8 g/cm3), the enhanced affinity of the
nonpolar solute for supercritical water results from the el-
evated temperature, not from the free energy penalty.

When the density decreases and/or the temperature in-
creases, water is considered to become less unique as the
hydrogen bonding is disrupted.13–15A clear indication of this
point is the reduction in the dielectric constant, which is
observed in both experimental studies2,108 and model calcu-
lations using the SPC/E model.111,112Since the strong hydro-
gen bonding and the large dielectric constant are major
unique characteristics of ambient water, water is viewed as
more ‘‘nonpolar’’ at lower densities and/or higher tempera-
tures. In solution chemistry, it is a rule of thumb that a non-
polar solute dissolves well into a nonpolar solvent since the
dissolution involves a small or no free energy penalty. Fig-
ures 5 and 6 show, however, that the free energy penaltyDm
of inserting methane in water is larger at the high-
temperature states with the medium to high density (r
*0.6 g/cm3) than at the ambient state. In other words, while
high-temperature water is more ‘‘oil-like’’ than ambient wa-
ter from the viewpoint of the reduced hydrogen bonding and
dielectric constant, the increased ‘‘oil-likeness’’ of high-
temperature water does not lead to a small free energy pen-
alty Dm. In this case, the enhanced affinity of the nonpolar
solute for high-temperature water with the medium density
(0.6 g/cm3 &r&0.8 g/cm3) is simply the effect of the el-
evated temperature to reducebDm. The effect of tempera-
ture elevation to mix two compounds with an unfavorable
Dm is generally observed and is not specific to water. There-
fore, the enhanced affinity~solubility! of the nonpolar solute
for super- and subcritical water represents the nonspecificity
of super- and subcritical water, rather than the uniqueness,
when seen in terms of the free energy penalty of the hydra-
tion process.

In their comprehensive treatment of the affinities of non-
polar solutes for SPC/E water along the liquid branch of the
water saturation curve, Guillot and Guissani observed, in
agreement with the experimental findings,49–51 that the af-
finities involve minima in the temperature variation.48 In the
present work, it is seen in Figs. 5 and 6 that the affinity of
methane decreases when the temperature is raised at constant
density and that it increases when the density is reduced at
constant temperature. When the temperature is raised along
the liquid branch of the saturation curve, the density of water
decreases. Thus, the presence of the affinity minima between
;25 and;100 °C on the saturation curve indicates that in
the low-temperature regime of the saturation curve, the effect
of elevating the temperature to reduce the affinity over-
whelms the effect of decreasing the density to enhance the
affinity.

B. Excess partial molar enthalpy and entropy

When the hydration of a nonpolar solute is concerned in
ambient conditions, the thermodynamic characterization of
the enthalpic and entropic components reveals the unique
features of the hydration clearly. It is indeed well known in
hydrophobic hydration that while the excess partial molar
enthalpy is negative and favorable, the entropic component
overwhelms the enthalpic component and gives rise to the
low solubility of a nonpolar solute in ambient water.2,16–46

When the hydration of a nonpolar solute is concerned in
high-temperature conditions, it will also be insightful to ex-

FIG. 6. ~a! The excess chemical potentialDm and its enthalpic and entropic
componentsDHP andTDSP of methane as functions of the densityr at the
ambient stateA and at the supercritical statesE, F, G, H, andI. ~b! bDm and
its enthalpic and entropic componentsbDHP and DSP /kB of methane as
functions of the densityr at the ambient stateA and at the supercritical
statesE, F, G, H, and I. The filled symbols represent the stateA and the
open symbols connected by solid lines represent the statesE, F, G, H, andI.
When not shown, the error bar is smaller than the size of the corresponding
symbol.
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amine the enthalpic and entropic components of the hydra-
tion thermodynamics. In this regard, it should be noted that
the excess partial molar enthalpy and entropy are dependent
upon whether the solute is inserted in the constant volume
condition or in the constant pressure condition. Actually, the
excess partial molar energy and entropy in the constant vol-
ume condition can be estimated from the temperature depen-
dence of the excess chemical potential shown in Fig. 5.
Within the framework of the hydration shell analysis, how-
ever, the partial molar quantities in the constant pressure
condition have transparent connections with the local struc-
ture and energetics around the solute.73–75 As noted in Sec.
II, in this work the excess partial molar enthalpyDHP and
the excess partial molar entropyDSP are evaluated under the
constant pressure condition. The hydration shell analysis re-
lating the excess partial molar quantities to the microscopic
solvation structure is presented in the accompanying paper.47

In Fig. 5~a!, we showDHP andTDSP as functions of the
temperatureT at a fixed water density of 1.0 g/cm3. In the
ambient condition~the stateA in Table I!, TDSP is unfavor-
able ~negative! and larger in magnitude thanDHP . This in-
deed represents the thermodynamic characterization of hy-
drophobic hydration. As the temperature increases,TDSP

becomes smaller in magnitude andDHP is closer to the ex-
cess chemical potentialDm. In other words, at higher tem-
peratures, the entropic contribution toDm is smaller and the
thermodynamics of methane hydration is more enthalpic.
Actually, Dm is essentially enthalpic at temperatures higher
than;200 °C, where Fig. 1~a! shows that pure water exhib-
its the simple liquid-like behavior. When a spherical cavity is
introduced into an organic solvent, it is commonly seen that
the free energy of cavity formation is enthalpic.23,25,38,44,46In
this sense, the hydration of the nonpolar solute in the high-
temperature region is more of ‘‘organic’’ character than of
‘‘aqueous’’ character since the solute–solvent attractive in-
teraction is shown in Sec. IV C to make a minor contribution
to the hydration thermodynamics in the high-temperature re-
gion. It should be noted, however, that the increased ‘‘or-
ganic’’ character of high-temperature hydration does not as-
sure the enhanced affinity of the nonpolar solute for water, as
evidenced from the excess chemical potential in Fig. 5.

When the affinity~solubility! of the solute is to be com-
pared at different temperatures,bDm, rather thanDm itself,
needs to be treated explicitly. Correspondingly, it is neces-
sary to treatbDHP andDSP /kB explicitly in order to com-
pare the enthalpic and entropic components of the hydration
thermodynamics at different temperatures. In Fig. 5~b!, we
showbDHP andDSP /kB as functions of the temperatureT
at constant density. It is easy to see that the factorb does not
alter the general trend of the temperature dependence of the
enthalpic and entropic components. To examine the effects
of DHP andDSP on the affinity difference between the am-
bient and high-temperature states, it is insightful to simply
decompose the difference ofbDm into the enthalpic and
entropic components. LetbA, DmA, DHP

A , andDSP
A be the

b, Dm, DHP , andDSP at the ambient stateA, respectively,
and letbHT, DmHT, DHP

HT , andDSP
HT be theb, Dm, DHP ,

andDSP at a high-temperature state~the stateB, C, D, or E!

shown in Fig. 5, respectively. It is then a thermodynamic
identity that

bHTDmHT2bADmA5~bHTDHP
HT2bADHP

A!

2~DSP
HT2DSP

A!/kB . ~8!

According to Eq.~8! and Fig. 5~b!, the decrease in the affin-
ity at the high-temperature state expressed asbHTDmHT

.bADmA is due tobHTDHP
HT.bADHP

A . In other words, the
reduced affinity in the high-temperature region results from
the unfavorable change in the enthalpic component upon the
temperature elevation. The change in the entropic component
stabilizes the nonpolar solute in water at the high-
temperature state, but is not large enough to negate the un-
favorable change in the enthalpic component. Thus, in view
of the decomposition into the enthalpic and entropic compo-
nents, the affinity change of the nonpolar solute against the
temperature variation at constant density is governed by the
enthalpic component.

We now perform the enthalpy–entropy decomposition
of the hydration thermodynamics by varying the density in
the supercritical conditions. In Fig. 6~a!, we showDHP and
TDSP as functions of the water densityr at a temperature of
400 °C, along with the reference values at the ambient state
~the stateA in Table I!. It is evident that the excess partial
molar enthalpy is favorable~negative! at the ambient state
and unfavorable~positive! at the supercritical states, while
the excess partial molar entropy is unfavorable~negative! at
the ambient state and favorable~positive! at the supercritical
states. Furthermore, at the supercritical states,DHP domi-
nates overTDSP and gives rise to the positive excess chemi-
cal potentialDm. Unlike the case ofDm, the density depen-
dences ofDHP and DSP are not monotonic. There are
maxima in bothDHP and DSP at r'0.4 g/cm3 ~the state
H!. The presence of the maxima reflects the fact thatDHP

andDSP become large near the critical point due to the di-
vergent behavior of the isothermal compressibility of the
pure solvent.66–72 In the medium- to high-density region (r
*0.6 g/cm3), DSP decreases withr, and the hydration
thermodynamics is more strongly governed by the enthalpic
component at a higher density.

In order to compare the enthalpic and entropic contribu-
tions to the hydration thermodynamics at the ambient and
supercritical temperatures, in Fig. 6~b! we showbDHP and
DSP /kB as functions of the water densityr at a temperature
of 400 °C, along with the reference values at the ambient
stateA. The comparison between the ambient state~the state
A! and a supercritical state~the stateE, F, G, H, or I! is then
made by employing Eq.~8!, where the supercritical state is
taken as the high-temperature state. Equation~8! and Fig.
6~b! show that in the low- to medium-density region (r
&0.8 g/cm3), the increase in the affinity at the supercritical
state expressed asbHTDmHT,bADmA results fromDSP

HT

.DSP
A . In other words, the enhanced affinity at the super-

critical state withr&0.8 g/cm3 is caused by the entropy
gain obtained when the system is moved from the ambient
state to the supercritical state. This entropy gain is large
enough to negate the unfavorableDSP at the ambient stateA,
which is a thermodynamic signature of hydrophobic hydra-
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tion. The role of the enthalpic component is to partially com-
pensate the entropy gain. Therefore, in view of the decom-
position into the enthalpic and entropic components, the
affinity change of the nonpolar solute from the ambient state
to the supercritical state with the low to medium density (r
&0.8 g/cm3) is governed by the entropic component.

When the temperature is raised on the liquid branch of
the water saturation curve, it is expected from Figs. 5 and 6
that DSP increases with the temperature. This expectation is
indeed supported by the observations of Guillot and Guissani
concerning the temperature dependence ofDSP on the satu-
ration curve.48 Furthermore, Guillot and Guissani showed
that DHP also increases with the temperature along the liq-
uid branch of the saturation curve.48 This indicates from
Figs. 5 and 6 that when the temperature is raised on the
saturation curve, the effect of the temperature elevation to
increaseDHP overwhelms the effect of the density reduction
to decreaseDHP in the high-density region (r*0.8 g/cm3!.

C. Effect of the solute–solvent interaction

A realistic solute–solvent interaction usually involves an
attractive part even when the solute is sparsely soluble in the
solvent. In this case, although the attractive part in the
solute–solvent interaction will not play a dominant role in
determining the thermodynamic behavior of hydration, it
may make a non-negligible contribution to the hydration
thermodynamics. A convenient conceptual framework to
treat the~soft! solute–solvent interaction has been provided
by Pierotti in his developments of the scaled-particle
theory.20,21,23–25In Pierotti’s developments, the process of
the solute insertion is decomposed into two processes. One is
the process of forming a cavity to accommodate the solute,
and the other is the process of introducing the~soft! solute–
solvent interaction. The purpose of this section is to elucidate
the role of the~soft! solute–solvent interaction in the hydra-
tion thermodynamics. We decompose the thermodynamics of
methane hydration into two components in a manner analo-
gous to that given by Pierotti and isolate the effect of
the solute–solvent attraction on the affinity of methane for
water.

Let ^uuv& be the average sum of the interaction of meth-
ane with all the water molecules. We treat the excess chemi-
cal potentialDm of methane simply as a sum of^uuv& and
(Dm2^uuv&), which are called the interaction component
and the cavity component, respectively.113–116 In Figs. 7~a!
and 7~b!, we show^uuv& and (Dm2^uuv&), respectively, as
functions of the temperatureT at a fixed water density of
1.0 g/cm3. It is evident that the interaction component is
less attractive~less negative! at a higher temperature. The
cavity component (Dm2^uuv&) is an increasing function of
T and governs the excess chemical potential of methane
more strongly at a higher temperature. In addition, Figs. 5~a!
and 7~a! show that^uuv& plays a minor role in determining
the excess partial molar enthalpyDHP at temperatures
higher than ;200 °C. In other words,DHP in high-
temperature water is dominated by the solvent reorganization
term, which describes the shift in the solvent binding energy
induced by insertion of the solute.73

In order to see the effects of the interaction and cavity
components on the affinity~solubility! of methane, we show
b^uuv& and b(Dm2^uuv&) in Figs. 7~a! and 7~b!, respec-
tively, as functions of the temperatureT at constant density.
According to Fig. 7~a!, the role of the interaction component
in the temperature elevation is to increasebDm and reduce
the affinity of methane. On the other hand, it is seen in Fig.
7~b! that b(Dm2^uuv&) is a weakly decreasing function of
the temperatureT. Thus, Figs. 5 and 7 imply that while the
contribution of^uuv& to theDm value is smaller at a higher
temperature, the temperature dependence ofbDm is domi-
nated by that ofb^uuv&. In other words, the reduced affinity
of methane at higher temperatures results from the weakened
attraction between the solute and solvent.

The density dependence of the excess chemical potential
Dm of methane in the supercritical conditions can also be
analyzed by decomposingDm into the interaction and cavity
components. In Fig. 8, we shoŵuuv& and (Dm2^uuv&) as
functions of the water densityr at a temperature of 400 °C,
along with the reference values at the ambient state~the state
A in Table I!. The density dependence of the interaction
component̂ uuv& is not monotonic at a fixed temperature. In
the density region up to;0.8 g/cm3, ^uuv& becomes more
attractive~more negative! with the density, and simply in-
creases in magnitude with the number of solvent molecules
around the solute. When the density is higher than
;0.8 g/cm3, water penetrates more into the repulsive core
of methane and̂uuv& becomes less attractive with the den-
sity. On the other hand, the cavity component (Dm2^uuv&)
is more repulsive~more positive! at a higher density over the
whole region of density shown in Fig. 8. Therefore, when the

FIG. 7. ~a! The average solute–solvent interaction^uuv& and its normalized
form b^uuv& of the hydration thermodynamics of methane as functions of
the temperatureT at the statesA, B, C, D, and E, which involve water
densities of 1.0 g/cm3. ~b! The cavity component (Dm2^uuv&) and its nor-
malized formb(Dm2^uuv&) of the hydration thermodynamics of methane
as functions of the temperatureT at the statesA, B, C, D, andE. When not
shown, the error bar is smaller than the size of the corresponding symbol.
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density is lower than;0.8 g/cm3, the interaction and cavity
components compete against each other and the density de-
pendence ofDm is determined by that of the cavity compo-
nent.

In Fig. 6~a!, it is seen that the free energy penaltyDm of
methane insertion is not smaller at the medium-density states
F andG in the supercritical region than at the ambient state
A. Figure 8 shows, however, that the cavity component
(Dm2^uuv&) obtained by excluding the interaction compo-
nent is smaller at the stateG than at the stateA. In other
words, when the system is moved from the stateA to G, the
reduction in the cavity component is compensated by the
unfavorable change in the solute–solvent interaction^uuv&
and does not give rise to a favorable change in the free en-
ergy penaltyDm. When the comparison is made between the
statesA andF, on the other hand, (Dm2^uuv&) is still larger
at the stateF. In this case, both the interaction and cavity
components are more repulsive at the supercritical stateF
than at the ambient stateA, and the enhanced affinity at the
stateF is accounted for only by incorporating the factorb.

In Sec. V, we examinebDm of the hard sphere solute as
a function of its exclusion radiusl. In this connection, it is
of interest to estimate the effective hard core radiusleff of
the methane–water interaction. At each thermodynamic state
of interest in Table I, we determineleff from the simulation

results in Sec. V so thatbDm of the hard sphere solute of
exclusion radiusleff is equal tob(Dm2^uuv&) of methane.
In Fig. 9, we show theleff thus determined as a function of
the densityr at the thermodynamic states listed in Table I. It
is seen that at each state,leff corresponds to the sum of the
van der Waals radii of methane and water. When the~water!
density is fixed at 1.0 g/cm3, leff decreases with the tem-
peratureT. In addition, it is found in the accompanying paper
that the first peak of the methane–water radial distribution
function is shifted to a smaller distance by the temperature
elevation in the constant volume condition.47 Thus, when the
temperature is raised at constant density, water penetrates
‘‘deeper’’ into the core of methane andleff becomes smaller.
Actually, we show in Sec. V thatbDm of a hard sphere
solute increases with the temperature when its exclusion ra-
dius l is fixed. This implies that the weak decrease in
b(Dm2^uuv&) of methane against the temperature elevation
seen in Fig. 7~b! is due to the reduction inleff , which is in
turn connected to the softness of the solute–solvent interac-
tion. The density dependence ofleff is relatively small. In
other words, the effective hard core radius for the nonpolar
solute is essentially determined by the temperature.

V. THERMODYNAMICS OF CAVITY FORMATION

In fluid, it is always possible to find cavities of various
sizes. The probability of finding a cavity is related through
Eq. ~3! to the excess chemical potential of the corresponding
hard sphere solute.39,41,43,46Since the hard sphere is a proto-
typical nonpolar solute, it is useful to examine the cavity
distribution in pure solvent water at high-temperature condi-
tions. In this section, we focus on the thermodynamics of
cavity formation over a wide range of density and tempera-
ture.

The excess chemical potentialDm of the hard sphere
solute of exclusion radiusl is determined from Eq.~3! by
the probability p(l) of successful insertion of the hard
sphere. As noted in Sec. II,p(l) denotes the probability that
the spherical solute is separated from any water molecule by
a distance of at leastl when it is inserted at an arbitrary
position in the fluid. In other words,p(l) is the probability
that an arbitrarily chosen position in the fluid is the center of
a cavity whose radius is at leastl. In order to analyze the
microscopic inhomogeneity of the pure solvent, Pohorille
and Pratt introducedpm(l) defined as41,43

p~l!5E
l

`

dl8pm~l8!. ~9!

pm(l) is the probability distribution function that the radius
of a cavity at an arbitrarily chosen position in the fluid is
equal tol. Using pm(l), it is possible to characterize the
range of the size of a cavity which appears spontaneously
and transiently in the fluid.

In Fig. 10~a!, we showbDm of the hard sphere solute as
a function of its exclusion radiusl at the thermodynamic
states involving water densities of 1.0 g/cm3 ~the statesA, B,
C, D, andE in Table I!. According to Fig. 10~a!, bDm in-
creases with the temperature at eachl, though the tempera-
ture dependence is weak.117 In other words, a cavity of mo-

FIG. 8. The interaction component^uuv& and the cavity component (Dm
2^uuv&) of the hydration thermodynamics of methane as functions of the
densityr at the ambient stateA and at the supercritical statesE, F, G, H, and
I. The filled symbols represent the stateA and the open symbols connected
by solid lines represent the statesE, F, G, H, andI. The error bar is smaller
than the size of the corresponding symbol.

FIG. 9. The effective hard core radiusleff of the methane–water interaction
as a function of the densityr at the thermodynamic states listed in Table I.
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lecular size (l*2.0 Å! becomes less likely to be found in
water when the temperature is elevated in the constant vol-
ume condition. In previous computer simulations at constant
density, Pohorille and Pratt and Ikeguchiet al. found that
bDm increases when the temperature is raised from;25 to
;100 °C.41,43,46Figure 10~a! actually shows that the increas-
ing behavior ofbDm is observed even in the supercritical
region.

To see the relationship between the temperature depen-
dence ofbDm and the local inhomogeneities of the pure
solvent system, in Fig. 10~b! we showpm(l) defined by Eq.
~9! at the statesA, C, and E. It is evident in the smalll
region (l&1.5 Å! thatpm(l) is essentially indistinguishable
among the states involving the same density but different
temperatures. This simply reflects the fact that the formation
of a small cavity is determined only by the density of the
pure solvent system.23–25,41,43When the cavity size is larger
(l*1.5 Å!, on the other hand,pm(l) varies with the tem-
perature according to the change in the solvent structure
shown in Fig. 1. In this region ofl, the cavity is more
sharply distributed at a higher temperature andpm(l) de-
creases with the temperature for cavities of molecular size
(l*2.0 Å!. By comparing water and organic solvents in
ambient conditions, Pohorille and Pratt argued that since
pm(l) is sharper in water,bDm is larger in water for a
cavity of molecular size.41,43,46 In Fig. 10~b!, the roles of
water and the organic solvents in Pohorille and Pratt’s argu-

ments are reversed. Although water is more like a simple
liquid at higher temperatures as seen from the radial distri-
bution function presented in Fig. 1~a!, the temperature eleva-
tion sharpens the distribution of the cavity size and leads to
largerbDm for cavities of molecular size.

The change inbDm is, however, less than 10% for each
l shown in Fig. 10~a! even when the temperature is raised
from 25 °C~the stateA! to 400 °C~the stateE!. This change
in bDm is actually smaller by an order of magnitude than the
corresponding changes in the enthalpic and entropic compo-
nentsbDHP and DSP /kB . In Fig. 11~a!, we showbDm,
bDHP , andDSP /kB as functions of the temperatureT at a
fixed water density of 1.0 g/cm3 for a selected cavity radius
of l53.0 Å. The results are shown only atl53.0 Å for
brevity since the thermodynamic characteristics in Fig. 11~a!
are valid over the range ofl in Fig. 10~a!. It is indeed seen
over a wide range of temperature that the large changes in
bDHP and DSP /kB compensate each other and lead to the
small change inbDm.

When the response ofbDm to temperature variation is
weak at constant density, the temperature dependence of
bDHP can be related to that of the thermal expansion coef-
ficient aP of the pure solvent. To see this, we note the ther-
modynamic identity that

bDHP5bS DEV1
TaP

kT
DVD5bDEV1TaPr

]~bDm!

]r
,

~10!

where DEV is the excess partial molar energy at constant
volume,DV is the excess partial molar volume, andkT is the

FIG. 10. ~a! bDm of cavity formation as a function of the cavity radiusl at
the statesA, B, C, D, andE, which involve water densities of 1.0 g/cm3.
The solid lines represent the statesA, C, andE, and the dotted lines repre-
sent the statesB andD. At eachl, bDm corresponds to the statesE, D, C,
B, andA from top to bottom.~b! The probability distribution functionpm(l)
of the cavity size as a function of the cavity radiusl at the statesA, C, and
E. The dashed line represents the stateA, the dotted line represents the state
C, and the solid line represents the stateE.

FIG. 11. ~a! bDm and its enthalpic and entropic componentsbDHP and
DSP /kB of the hard sphere solute of exclusion radius 3.0 Å as functions of
the temperatureT at the statesA, B, C, D, and E, which involve water
densities of 1.0 g/cm3. ~b! bDHP , bDEV , andr(](bDm)/]r) of the hard
sphere solute of exclusion radius 3.0 Å as functions of the temperatureT at
the statesA, B, C, D, andE. When not shown, the error bar is smaller than
the size of the corresponding symbol.
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isothermal compressibility of pure water.DEV can be ob-
tained from the dependence ofbDm on the temperatureT at
constant density shown in Figs. 10~a! and 11~a!. In this work,
we estimatebDEV by fitting bDm to a quadratic function of
1/T and using Eq.~7!. In Fig. 11~b!, we show bDHP ,
bDEV , andr(](bDm)/]r) as functions of the temperature
T at a fixed water density of 1.0 g/cm3 for a cavity with the
radius ofl53.0 Å. The trend in Fig. 11~b! is valid over the
range ofl in Fig. 10~a!, and we show only the results atl
53.0 Å for brevity. It is then seen thatbDHP is dominated
by the second term of Eq.~10!. In addition, Fig. 11~b! sug-
gests thatr(](bDm)/]r) is a weak function ofT, which is
consistent with the observation that the temperature depen-
dence ofbDm is weak in the constant volume condition.
Thus, it is concluded on the basis of Eq.~10! that the tem-
perature dependence ofbDHP is parallel to that ofTaP

presented in Fig. 3~b!. In the temperature range from;25 to
;100 °C, Ikeguchiet al. also emphasized the parallelism in
the temperature dependence betweenbDHP andTaP .38,44,46

Our results then show that when the volume of the system is
fixed, the parallelism caused by the weak temperature depen-
dence ofbDm is valid over a wide temperature range includ-
ing the supercritical states. In this case, a largerTaP leads to
a largerbDHP .

According to Fig. 10~a!, bDm exhibits a weak but ap-
preciable dependence on the temperatureT in the constant
volume condition. In order to identify the factor determining
the T dependence ofbDm, we perform the component
analysis for the thermodynamics of cavity formation within
the framework of the scaled-particle theory. The thermody-
namics of cavity formation can be represented in analytically
convenient form by the scaled-particle theory.23–25 In this
theory, the detailed interaction and structure of the solution
are not taken into account explicitly and affect the free en-
ergy of cavity formation only through the solvent densityr,
pressureP, and temperatureT of the system. The solvent
molecule is treated as a hard sphere with a properly chosen
diametersv , and the insertion of a cavity of radiusl is
equivalent to that of a solute molecule of diameter 2l
2sv . Since we are concerned with cavities of molecular
size, we restrict our attention to the solutes which involve
positive diameters and satisfyl>sv/2. The free energy of
cavity formation DmSPT is then expressed in the scaled-
particle theory as23,25

bDmSPT52 ln~12y!1S 3y

12yDR

1F 3y

12y
1

9

2 S 3y

12yD 2GR21
byP

r
R3, ~11!

wherey is the packing fraction of the solvent defined as

y5
p

6
rsv

3 ~12!

andR is the ratio of the solute diameter to the solvent diam-
eter given by

R5
2l2sv

sv
. ~13!

In our treatments,r, P, andT are taken from Table I and the
exact equation of state for the system under study~SPC/E
water! is employed in Eq.~11!. When the solvent is water,
sv is actually an effective diameter of the solvent molecule.
In this case,sv can be considered an adjustable parameter in
Eq. ~11! and may be treated as a function of the state of the
system.

The accuracy of the approximate expression Eq.~11! is
assessed from the average deviationd defined as

d5
1

lmax2lmin
E

lmin

lmax
dlubDmSPT2bDmu, ~14!

whereDm is the exact free energy of cavity formation ob-
tained from the simulations andlmin andlmax are the small-
est and largest radii of the cavities of interest, respectively. In
this work, we determine the effective diametersv of the
water molecule by minimizingd with respect tosv . At each
state connected to the isochoric thermodynamic path from
the stateA to E, we takelmin52.0 Å andlmax53.0 Å and
obtain thesv which minimizesd. Table II shows thesv thus
obtained and the minimized valuedmin of the deviationd at
the thermodynamic states listed in Table I. It is seen that
when the water density is fixed at 1.0 g/cm3, the effective
diametersv of the water molecule corresponds to the van der
Waals diameter of water and is close to the values adopted
by Pierotti at ambient conditions23,25 and by Crovettoet al.
on the liquid branch of the saturation curve up to a tempera-
ture of ;250 °C.49,50 The temperature dependence ofsv is
weak, andsv decreases only by;2% when the temperature
is elevated from 25 to 400 °C. As an approximate expression
for the free energy of cavity formation,DmSPT given by Eq.
~11! involves an error of;0.1kBT at the ambient state~the
stateA! and its accuracy improves with the temperature.

At ambient conditions, the effect of the pressure is neg-
ligible in the free energy of cavity formation. When the tem-
perature is raised at constant density, the pressure increases
by orders of magnitude as shown in Table I, and the pressure
effect may be significant in the thermodynamics of cavity
formation. In the scaled-particle theory, the pressure effect
on the free energy of cavity formationDmSPT is represented
by the last term of Eq.~11!. It is cubic with respect to the

TABLE II. The effective diameter of the water molecule and the accuracy
of the scaled-particle theory for the free energy of cavity formation.

State
lmin

~Å!
lmax

~Å!
sv

~Å!
dmin

A 2.0 3.0 2.81 1.131021

B 2.0 3.0 2.80 7.631022

C 2.0 3.0 2.79 5.231022

D 2.0 3.0 2.77 4.331022

E 2.0 3.0 2.76 3.831022

F 2.0 4.0 2.74 1.231022

G 2.0 5.0 2.57 7.531022

H 2.0 7.0 2.04 1.631021

I 2.0 9.0 1.72 7.831022

G̃ 2.0 5.0 2.64 5.931022

H̃ 2.0 7.0 2.30 9.731022

Ĩ 2.0 9.0 2.19 5.331022
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ratio R of the solute diameter to the solvent diameter and
proportional to the pressureP. The densityr and the packing
fractiony do not have to be referred explicitly in the pressure
effect since they are related to each other through Eq.~12!.
Let DmP

SPT denoteyPR3/r, which represents the pressure
term in Eq.~11!. b(DmSPT2DmP

SPT) is then independent of
the pressureP explicitly and is determined only by the pack-
ing fractiony and the diameter ratioR. In Fig. 12, we show
bDmSPT and its componentsbDmP

SPT and b(DmSPT

2DmP
SPT) as functions of the temperatureT at a fixed water

density of 1.0 g/cm3 for a cavity with the radius ofl53.0
Å. The general trend observed in Fig. 12 holds over the
range ofl in Fig. 10~a!, and the results are shown only at
l53.0 Å for brevity. It is then seen in Fig. 12 that
b(DmSPT2DmP

SPT) decreases withT. This is caused by the
reduction in the effective diametersv of the water molecule.
At a higher temperature,sv is smaller and the solvent is
considered less packed. On the other hand, the pressure term
bDmP

SPT is an increasing function ofT. This increasing be-
havior is dominated entirely by the response ofP/T to the
temperature variation, while the effect of thesv reduction is
negligible in the pressure term. According to Fig.~12!, fur-
thermore, bDmP

SPT is a stronger function ofT than
b(DmSPT2DmP

SPT) and the temperature dependence of
bDmSPT is governed by the pressure term. Thus, when the
temperature is raised at constant density, the accompanying
pressure elevation reduces the probability of finding a cavity
of molecular size in water.

We now turn to the density dependence of the cavity
distribution in the supercritical states. The free energyDm of
formation of a cavity of radiusl is related through Eq.~3! to
the probabilityp(l) of finding the cavity. In Fig. 13~a!, we
showbDm as a function of the cavity radiusl at the ther-
modynamic states involving temperatures of 400 °C~the
statesE, F, G, H, andI in Table I!. The overall behavior of
bDm @or p(l)] is similar to that characterized by Mountain
in the region on which both our and his works focus.118

According to Fig. 13~a!, bDm increases monotonically with
the density at eachl, and a hard sphere solute involves a
higher affinity for lower-density water. In order to character-
ize the microscopic inhomogeneity of the pure solvent in
connection to the thermodynamics of cavity formation, it is

insightful to examine the probability distribution function
pm(l) of the cavity radius introduced by Eq.~9!. In Fig.
13~b!, we showpm(l) as a function ofl at the statesE, F,
G, H, and I. It is evident thatpm(l) is concentrated in the
largerl region when the density is lower. This simply shows
that the cavity is likely to be larger at a lower density. Fur-
thermore, the width of the distribution functionpm(l) re-
duces with the density and the cavity size is more uniform at
a higher density. Using the distribution functionpm(l), the
average size of the cavityl̄ and the standard deviationdl
can be evaluated by

l̄5E dllpm~l!,

~15!

dl5AE dll2pm~l!2l̄2.

FIG. 12. bDmSPT and its componentsbDmP
SPT and b(DmSPT2DmP

SPT)
evaluated from the scaled-particle theory for the hard sphere solute of ex-
clusion radius 3.0 Å as functions of the temperatureT at the statesA, B, C,
D, andE, which involve water densities of 1.0 g/cm3.

FIG. 13. ~a! bDm of cavity formation as a function of the cavity radiusl at
the supercritical statesE, F, G, H, andI. At eachl, bDm corresponds to the
statesE, F, G, H, andI from top to bottom.~b! The probability distribution
function pm(l) of the cavity size as a function of the cavity radiusl at the

supercritical statesE, F, G, H, andI. ~c! The average size of the cavityl̄ and

the relative deviationdl/l̄ as functions of the densityr at the supercritical
statesE, F, G, H, andI. In ~c!, the error bar is smaller than the size of the
corresponding symbol when it is not shown.
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Figure 13~c! showsl̄ anddl/l̄ as functions of the densityr
at a fixed supercritical temperature of 400 °C. It is indeed
seen thatl̄ decreases withr. The decreasing rate is larger in
the lower-density region. This is actually consistent with the
fact that l̄ is divergent in the limit of zero density. The
density reduction also enhances the inhomogeneity of the
cavity size represented bydl/l̄. In Sec. III, it has been
observed that the spatial distribution of the water molecules
is more inhomogeneous at a lower density. In other words,
the contrast between the dense and sparse regions of the
water molecules is stronger when the density is lower. Figure
13~c! implies furthermore that the dense and sparse regions
are more scattered in size in a lower-density fluid.

The effective diametersv of the water molecule can be
estimated by fittingbDm in Fig. 13~a! to Eq. ~11! on the
basis of the scaled-particle theory. The scheme to determine
sv at the thermodynamic states connected to the isothermal
path from the stateE to I is the same as that used above at
the states connected to the isochoric path from the stateA to
E. At each thermodynamic state, we employlmin and lmax

shown in Table II and minimize the average deviationd
defined by Eq.~14! with respect tosv . In Table II, we show
the sv thus determined and the minimized valuedmin of the
deviationd at the thermodynamic states listed in Table I. It is
seen at a fixed temperature of 400 °C thatsv decreases when
the density is reduced. Especially, when the density is lower
than;0.6 g/cm3, the van der Waals diameter of the water
molecule is not effective to estimatesv . According to Eq.
~11!, even whensv is independent of the density, the free
energyDm of cavity formation will be smaller at a lower
density. The response ofDm to the density is then further
strengthened by the density dependence ofsv shown in
Table II. The magnitude ofsv is related to the extent of
spatial inhomogeneity of pure water described in Sec. III.
When the pure solvent system is spatially more inhomoge-
neous, a larger cavity is likely to be found and the solvent
molecule is effectively smaller. In Appendix A, this point is
further pursued in connection to the state dependence of the
dipole moment of a water molecule. When the accuracy of
the scaled-particle theory is concerned, Table II shows that
DmSPT given by Eq.~11! is an approximate expression for
the free energy of cavity formation at the supercritical states
with errors on the order of 0.1kBT. Therefore, the scaled-
particle theory accurately represents the thermodynamics of
cavity formation in supercritical water when the effective
diameter of the water molecule is properly chosen.

Since a simple and analytic expression for the excess
partial molar enthalpy is obtained from the temperature dif-
ferentiation of Eq.~11!, the scaled-particle theory also pro-
vides a convenient framework for describing the excess par-
tial molar enthalpy. In Appendix C, we analyze the density
and temperature dependence of the excess partial molar en-
thalpy within the framework of the scaled-particle theory.

VI. CONCLUSIONS

The excess chemical potential and its enthalpic and en-
tropic components have been analyzed for the methane and
hard sphere solutes in water over a wide range of thermody-

namic conditions. It has been found that the free energy pen-
alty of inserting the nonpolar solute is larger at the super-
and subcritical conditions with the medium to high density
than at the ambient condition. In this case, the enhanced
affinity of the nonpolar solute for super- and subcritical wa-
ter results from the elevated temperature, which is a nonspe-
cific driving force for mixing any two materials. When the
enthalpic and entropic components are compared between
the ambient and high-temperature conditions, it has been
shown that the nonpolar solute in high-temperature water is
destabilized by the enthalpic component and is stabilized by
the entropic component. In connection to the thermodynam-
ics of cavity formation, the size distribution of spherical
cavities has also been examined in pure solvent water. When
the density is fixed at a liquidlike value, it has been found
that the probability of finding a cavity of molecular size in
water is a weakly decreasing function of the temperature.
This has then been shown, in the framework of the scaled-
particle theory, to result from the elevated pressure involved
at high temperatures. When the density is varied at a fixed
supercritical temperature, it has been observed that the size
distribution is less uniform at a lower density. The effective
diameter of the water molecule has been estimated within the
framework of the scaled-particle theory, and its reduction at
a lower density has been related to the extent of spatial in-
homogeneity in pure solvent water.
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APPENDIX A

In the SPC/E model employed in this work, the dipole
moment of a water molecule is a fixed parameter and does
not depend on the density and temperature of the system.
However, the dipole moment in the SPC/E model is tuned to
reproduce ambient liquid properties of water and is inappro-
priate to simulate the dilute gas of water. Thus, the dipole
moment needs to be treated as a function of the thermody-
namic state in order to perform realistic computer simula-
tions of water over a wide range of thermodynamic condi-
tions. In practical implementations of computer simulations,
there are two methods to incorporate the state-dependent na-
ture of the dipole moment into the potential model of water.
One is to employ a polarizable model and determine the
charge distribution within a water molecule at each step of
the simulation.81,84–94 In this method, although noad hoc
parameters are required in principle, a set of potential param-
eters which covers a wide range of density and temperature
seems yet difficult to find. The other is to construct an effec-
tive potential model by fitting some known experimental
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data.15 In this method, although the potential parameters are
valid only in a limited region of density and temperature, the
simulation results obtained in that region will be reliable.

In Ref. 15, we estimated the dipole moment of a water
molecule within the SPC-like framework at densities of 0.6,
0.4, and 0.2 g/cm3 and a temperature of 400 °C. In our
SPC-like model, the Lennard-Jones parameters and the posi-
tions of the charged sites are identical to those of the original
models,82,100 and the strength of the partial charges, or
equivalently, the dipole moment is adjusted to fit the number
of hydrogen bonds obtained from the proton chemical
shift.13–15The dipole moment given in Ref. 15 is 2.25, 2.25,
and 2.15 D at 0.6, 0.4, and 0.2 g/cm3, respectively, whereas
the dipole moment in the SPC/E model is fixed at 2.35 D.
Thus, the dipole moment is smaller at the supercritical states
than at the ambient state. In this Appendix, we analyze the
effect of the reduced dipole moment in the SPC-like model
on the hydration thermodynamics of nonpolar solutes.

The states to be examined by the SPC-like model are
specified by the temperature of 400 °C and the pressures cor-
responding to the water densities of 0.6, 0.4, and 0.2 g/cm3,
which are denoted by the statesG̃, H̃, and Ĩ , respectively.
The dipole moment of a water molecule at each state is
shown in Table III. The hydration thermodynamics of the
methane and hard sphere solutes at the statesG̃, H̃, and Ĩ
was evaluated from the computer simulations in the
isothermal–isobaric ensemble. In order to determine the in-
put pressures for the simulations in the isothermal–isobaric
ensemble, we carried out Monte Carlo simulations of pure
solvent water in the canonical ensemble with the input den-
sities and temperatures shown in Table III. In each Monte
Carlo simulation, 648 water molecules were located in a cu-
bic unit cell and the standard Metropolis sampling scheme
was employed.76,96 The Monte Carlo simulation was per-
formed for one million passes, and the truncation scheme for
the intermolecular interactions and the boundary condition
were the same as those for SPC/E water described in Sec. II.
The average pressures at the statesG̃, H̃, and Ĩ are then
shown in Table III. These average pressures are used as the
input pressures of the simulations performed in the
isothermal–isobaric ensemble. At each of the states in Table
III, a Monte Carlo simulation of the pure water system was
carried out in the isothermal–isobaric ensemble for one mil-
lion passes by locating 648 water molecules in a cubic unit
cell.76,96 The particle insertion method was implemented to
evaluate the excess chemical potentials of the methane and

hard sphere solutes by employing the parameters presented
in Sec. II. The scheme to truncate the intermolecular inter-
actions and the boundary condition were identical to those
for the SPC/E model described in Sec. II.

The O–O and O–H radial distribution functions at the
statesG̃, H̃, andĨ are shown in Fig. 7 of Ref. 15. The radial
distribution functions for the SPC/E model at the corre-
sponding statesG, H, and I in Table I are seen in Fig. 2.
When the radial distribution functions are compared between
the SPC-like model with a reduced dipole moment and the
SPC/E model, their amplitudes are smaller for the model
with a smaller dipole moment when the density and tempera-
ture are the same. This simply reflects the fact that the at-
traction between water molecules is stronger when a larger
dipole moment is adopted. In Fig. 14, we show the isother-
mal compressibilitykT and the thermal expansion coefficient
aP at the statesG̃, H̃, andĨ as functions of the densityr. It
is seen from Figs. 4 and 14 that the thermodynamic response
functions related to the density fluctuations are larger for a
larger dipole moment. Therefore, the spatial inhomogeneities
are smaller, both locally and globally, when the dipole mo-
ment is reduced in the SPC-like framework.

Let Dm̃ denote the excess chemical potential of methane
calculated using the SPC-like model with a reduced dipole
moment, and letDm be that calculated using the SPC/E
model. The effect of the dipole moment of a water molecule
on the excess chemical potential at fixed density and tem-
perature can be seen by comparingDm̃ at the statesG̃, H̃,

FIG. 14. The isothermal compressibilitykT and the thermal expansion co-
efficient aP as functions of the densityr at the statesG̃, H̃, and Ĩ , which
are simulated using the SPC-like model with a reduced dipole moment.
When not shown, the error bar is smaller than the size of the corresponding
symbol.

TABLE III. Thermodynamic states of interest in the SPC-like model with a reduced dipole moment.

State

Canonical ensemble Isothermal–isobaric ensemble

Dipole moment
~Debye!

Temperature
~ °C!

Densitya

(g/cm3)
Average pressureb

~bar!
Pressure

~bar!
Average densityc

~g/cm3)

G̃ 2.25 400 0.60 110762 1107 0.60

H̃ 2.25 400 0.40 52062 520 0.40

Ĩ 2.15 400 0.20 38161 381 0.20

aPure solvent water.
bThe values are evaluated in pure solvent water.
cThe values are evaluated in pure solvent water. The errors are less than 0.01 g/cm3.
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and Ĩ with Dm at the statesG, H, andI, respectively. In Fig.
15, we make this comparison by plottingDm̃ againstDm.
Figure 15 shows that when the density and temperature are
fixed, the free energy penalty of inserting methane is smaller
at a larger dipole moment. This is actually related to the
dependence of the extent of spatial inhomogeneity of pure
water on the dipole moment. As seen for the radial distribu-
tion functions and the thermodynamic response functions,
the spatial inhomogeneities are more enhanced when the di-
pole moment is larger. When the pure solvent system is more
inhomogeneous, a cavity of molecular size is more likely to
be found and the free energy of its formation will be smaller.
To describe the size of spherical cavities in water, Eq.~9! has
introduced the distribution functionpm(l) as a function of
the cavity radiusl. In Fig. 16, we showpm(l) at the states
G̃, H̃, and Ĩ in the SPC-like model with a reduced dipole
moment and at the statesG, H, andI in the SPC/E model. At
a fixed density, it is seen thatpm(l) is essentially indepen-
dent of the value of the dipole moment in the smalll region.
This is simply a reflection of the fact that the probability of
finding a sufficiently small cavity is determined only by the

density of the pure solvent system.23–25,41,43Whenl*2 Å,
on the other hand,pm(l) is affected by the value of the
dipole moment. When the dipole moment is smaller, the cav-
ity size is more sharply distributed andpm(l) is smaller in
the largel region. Therefore, the free energy penalty of
inserting a cavity of molecular size is smaller when the di-
pole moment is larger and the pure solvent system involves
more enhanced spatial inhomogeneities.

The probability distribution functionpm(l) is related to
the free energyDm of cavity formation through Eqs.~3! and
~9!. In Sec. V, we have analyzedDm in the framework of the
scaled-particle theory and have determined the effective di-
ametersv of the water molecule. It has then been found that
when the spatial inhomogeneity of pure water is enhanced at
a lower density, the effective diametersv is reduced. In or-
der to further pursue the relationship betweensv and the
solvent structure of water, we also determine the effective
diametersv in the SPC-like model with a reduced dipole
moment at the statesG̃, H̃, and Ĩ . The procedure to deter-
mine sv at these states is the same as that described in Sec.
V. We employlmin and lmax shown in Table II and mini-
mize the average deviationd defined by Eq.~14! with re-
spect tosv . In Table II, we show thesv thus determined
and the minimized valuedmin of the deviationd at the ther-
modynamic statesG̃, H̃, andĨ . It is seen at fixed density and
temperature thatsv is smaller when the dipole moment of a
water molecule is larger. The stronger association among
water molecules induces the formation of larger cavities and
enhances the probability of finding a cavity of molecular
size. Thus, in both cases concerning the variation in the den-
sity and in the dipole moment, the effective diametersv is
smaller when the spatial inhomogeneities of water are more
enhanced.

APPENDIX B

In this work, the particle insertion method has been em-
ployed to evaluate the excess chemical potentials of the
methane and hard sphere solutes. The particle insertion
method is a highly efficient method when the solute of inter-
est is successfully inserted at a reasonable rate.76–80Since the
rate of successful insertion is too low for a large solute, the
validity of the method is limited by the solute size. For
purely repulsive solutes in ambient SPC water, Beutleret al.
reported that the particle insertion method is accurate only
when the thermal radius of the solute-solvent repulsive core
does not exceed 3 Å.79 In a recent work, on the other hand,
Smith examined the particle insertion method in ambient
SPC and SPC/E water and found that the method is valid up
to the core radius of 4 Å.80 In this Appendix, we illustrate the
validity of the particle insertion method to calculate the ex-
cess chemical potential of methane. To do so, we implement
the thermodynamic integration method for methane hydra-
tion at the statesA andE in Table I and compare the results
with those calculated from the particle insertion method.
When the particle insertion method is found to be valid at the
statesA andE, it will also be valid at the states connected to
the isochoric thermodynamic path from the stateA to E.
When the particle insertion method is shown to be valid at

FIG. 15. The excess chemical potentialDm̃ of methane at the statesG̃, H̃,
and Ĩ against the excess chemical potentialDm of methane at the statesG,
H, and I. The statesG̃, H̃, and Ĩ are simulated using the SPC-like model
with a reduced dipole moment, and the statesG, H, and I are simulated
using the SPC/E model. The dashed line representsDm̃5Dm.

FIG. 16. The probability distribution functionpm(l) of the cavity size as a
function of the cavity radiusl at the statesG̃, H̃, andĨ and at the statesG,
H, and I. The solid lines represent the statesG̃, H̃, and Ĩ , and the dashed
lines represent the statesG, H, andI. The statesG̃, H̃, and Ĩ are simulated
using the SPC-like model with a reduced dipole moment, and the statesG,
H, andI are simulated using the SPC/E model.
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the stateE, it should be valid at the states connected to the
isothermal thermodynamic path from the stateE to I since
the particle insertion method is a better method at a lower
density.

In our thermodynamic integration method to calculate
the excess chemical potential of methane, the Lennard-Jones
e is fixed at the value of the full methane-water interaction
given in Sec. II and the LJs is taken as a variable. For a
givens, we denote the excess chemical potential of the sol-
ute and the~instantaneous! sum of the solute-solvent inter-
action byDm(s) andu(s), respectively. Whens is varied
from s0 to the valuesMe–O at the full methane-water inter-
action,

Dm~sMe–O!5Dm~s0!1E
s0

sMe–O
ds K ]u~s!

]s L
s

~B1!

holds, wherê •••&s denotes an ensemble average under the
presence of the solute–solvent interactionu(s). In Eq. ~B1!,
it is obvious thatDm(sMe–O) is the excess chemical poten-
tial of the ~fully coupled! methane solute. We tooks0

52.00 Å and calculatedDm(s0) from the particle insertion
method in the pure solvent system. In this choice ofs0 , we
follow Beutler et al. and consider that the particle insertion
method is a valid procedure to calculateDm(s0).79 The pro-
cedure for implementing the particle insertion method ats0

52.00 Å was identical to that described in Sec. II for calcu-
lating the excess chemical potential of methane. It was then
found thatDm(s0) is equal to 0.10 and 1.12 kcal/mol at the
states A and E, respectively, with errors of less than
0.01 kcal/mol.

The integrand in Eq.~B1! was calculated ats5s0 ,
2.25, 2.50, 2.75, 3.00, 3.25, andsMe–O, where the numerals
are expressed in the unit of Å. At eachs, the simulation
procedure was the same as that described in Sec. II for aque-
ous solution of methane. In Fig. 17, we show^]u(s)/]s&s

as a function ofs at the statesA andE. When the trapezoidal
rule is employed in the integral of Eq.~B1!, Fig. 17 gives
that Dm(sMe–O)52.8860.23 and 10.6760.10 kcal/mol at
the statesA andE, respectively.119 On the other hand, when
the particle insertion method is employed,Dm(sMe–O) is
found to be 2.8060.07 and 10.6660.02 kcal/mol at the
statesA andE, respectively. Therefore, at both the states, the
excess chemical potentials calculated from the thermody-

namic integration method are coincident within the error bars
to those calculated from the particle insertion method.

APPENDIX C

In Sec. V, we have seen that the scaled-particle theory is
an accurate representation of the free energy of cavity for-
mation in water over a wide rage of density and temperature
when the effective diametersv of the water molecule is
properly chosen in Eq.~11!. The scaled-particle theory also
provides a convenient framework for describing the excess
partial molar enthalpy since a simple and analytic expression
for the excess partial molar enthalpy is obtained from the
temperature differentiation of Eq.~11!. In this Appendix, we
analyze the density and temperature dependence of the ex-
cess partial molar enthalpy at constant pressure within the
framework of the scaled-particle theory.

The expression for the excess partial molar enthalpy at
constant pressureDHP

SPT is written in the scaled-particle
theory as23,25

bDHP
SPT5TaPF y

12y
1

3y

~12y!2
R1

3y~112y!

~12y!3
R2G

1
byP

r
R3 ~C1!

for a cavity with the radius ofl>sv/2, where the packing
fraction y of the pure solvent and the ratioR of the solute
diameter to the solvent diameter are given by Eqs.~12! and
~13!, respectively. In our treatments, the solvent densityr,
the pressureP, the temperatureT, and the thermal expansion
coefficientaP of the pure solvent are taken from Table I and
Figs. 3 and 4, and the effective diametersv of the water
molecule listed in Table II is employed. Equation~C1!
shows that whenr andsv are fixed,bDHP

SPT increases with
TaP and P/T. It should be noted that Eq.~C1! does not
account for the temperature derivative ofsv when it is ob-
tained from the temperature differentiation of Eq.~11! at
constant pressure.

According to Eq.~C1!, bDHP
SPT consists of two terms.

The first term is related to the fluctuation in the pure solvent
system and is proportional to the thermal expansion coeffi-
cientaP . The second termbyPR3/r involves the pressureP
of the system and is called the pressure term. Actually, the
form of the pressure term is identical to that for the excess
chemical potential treated in Sec. V. As done in Sec. V, the
pressure term is denoted bybDmP

SPT, and bDmP
SPT and

b(DHP
SPT2DmP

SPT) are treated separately as components of
bDHP

SPT.
First, we examine the temperature dependence of the

excess partial molar enthalpy at a fixed water density. In Fig.
18~a!, we showbDHP

SPT and its components as functions of
the temperatureT at a density of 1.0 g/cm3 for a cavity with
the radius ofl53.0 Å. The results are shown only atl
53.0 Å for brevity since the trend in Fig. 18~a! is valid over
the range ofl in Fig. 10~a!. According to Fig. 18~a!, the
pressure term makes a minor contribution tobDHP

SPT, and
bDHP

SPT is dominated by the term proportional toTaP . In
order to isolate the effect of the variation in the solvent di-

FIG. 17. ^]u(s)/]s&s as a function of the Lennard-Joness at the statesA
andE. The solid lines represent the linear fits~see Ref. 119!.
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ametersv against the temperature, Fig. 18~a! also shows
b(DHP

SPT2DmP
SPT)/TaP , which is equal to the term in the

brackets (@•••#) of Eq. ~C1!. It is seen that the reduction in
sv at higher temperatures lessensbDHP

SPT when the other
parameters are fixed. Therefore, Figs. 3~b! and 18~a! imply in
the framework of the scaled-particle theory that the tempera-
ture dependence ofbDHP

SPT is determined by that ofTaP .
In this case, a largerbDHP

SPT is ascribed to a largerTaP .
Note in addition that theT dependence ofTaP is parallel to
that of the ‘‘exact’’bDHP obtained from the simulations, as
illustrated in Figs. 3~b! and 11~b!. In his original develop-
ments of the scaled-particle theory, Pierotti compared the
thermodynamics of cavity formation in water and in an or-
ganic solvent, and argued that the thermodynamics in the
organic solvent is dominated by the enthalpic component
because of the largeTaP .23,25,38,44,46Our arguments con-
cerning the temperature dependence of the thermodynamics
of cavity formation in water are parallel to those by Pierotti.
The large enthalpic component in the thermodynamics of
cavity formation in high-temperature water is related to the
largeTaP involved.

We then turn to the density dependence of the excess
partial molar enthalpy in the supercritical region. In Fig.
18~b!, we showbDHP

SPT and its componentsbDmP
SPT and

b(DHP
SPT2DmP

SPT) as functions of the densityr at a tem-
perature of 400 °C for a cavity with the radius ofl53.0 Å.
This figure also shows, as a reference, the ‘‘exact’’bDHP

obtained from the simulations. Since the trend seen in Fig.
18~b! holds over the range ofl in Fig. 13~a!, the results are

shown only atl53.0 Å for brevity. It is easy to see that the
r dependence ofbDHP

SPT is parallel to that of the ‘‘exact’’
bDHP and that both the quantities are not monotonic with
respect to the density. The discrepancy betweenbDHP

SPTand
bDHP arises simply because the optimization of the solvent
diametersv which is made with respect to the excess chemi-
cal potential is not perfect. When the components of
bDHP

SPT are concerned up to a density of;0.8 g/cm3, the
pressure termbDmP

SPT makes a minor contribution to the
density dependence ofbDHP

SPT. In this region, the density
dependence is dominated by the termb(DHP

SPT2DmP
SPT).

When the density is higher than;0.8 g/cm3, the density
dependence ofb(DHP

SPT2DmP
SPT) is compensated by that of

bDmP
SPT, andbDHP

SPT depends weakly on the density. The
effects of the variation insv and in the packing fractiony
can be isolated by examiningb(DHP

SPT2DmP
SPT)/TaP ,

which is the term in the brackets (@•••#) of Eq. ~C1!. This
term is shown in Fig. 18~b! as a function ofr. It is evident
that the term increases monotonically with the density. On
the other hand,TaP is a monotonically decreasing function
at the densities examined in the present work, as shown in
Fig. 4. The density dependence ofbDHP

SPT up to
;0.8 g/cm3 is thus determined by the balance between the
competing density dependences ofb(DHP

SPT2DmP
SPT)/TaP

andTaP . When the density is low (r&0.4 g/cm3), the in-
crease in the density and the accompanying increase in the
solvent diametersv lead to a largerbDHP

SPT. When the
density is higher (0.4 g/cm3 &r&0.8 g/cm3), on the other
hand, the density dependence ofbDHP

SPT is dominated by
TaP and the decrease inTaP leads to a smallerbDHP

SPT. In
the high-density region (r*0.8 g/cm3), although
b(DHP

SPT2DmP
SPT) still reduces withTaP , the reduction is

compensated by the increase inbDmP
SPT caused by the pres-

sure elevation.
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