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Convergence Analyses of Stereo Acoustic Echo
Cancelers With Preprocessing

Kazushi Ikeda and Ryohei Sakamoto

Abstract—The convergence properties of stereo acoustic echo
cancelers with preprocessing are examined. We first elucidated
the conditions of the paths from the talker to the microphones
under which the nonuniqueness problem occurs. The degree of
nonuniqueness was found to depend on the primeness of the paths.
Next, the convergence rates of the acoustic echo cancelers with
preprocessing were analyzed based on the independence theory
for general cases and on the cyclostationariness of the input signal
for the input-sliding method. The derived rates that depended on
both of the period of the input signal and the order of the adaptive
filter agreed well with the results of computer simulations.

Index Terms—Acoustic echo canceler, adaptive filter, conver-
gence condition, convergence rate.

I. INTRODUCTION

A COUSTIC echo cancelers are one of the most attractive
applications in adaptive filter technology. Multichannel

acoustic echo cancelers are required to remove undesired
echoes and to improve reality in teleconferencing; however,
they include a fundamental problem that never appears in
monaural systems. We consider the two channels’ case, i.e.,
stereo acoustic echo cancelers, in this paper, since we can
easily extend it to general cases.

The problem is clearly stated in [1]. In summary, a stereo
acoustic echo canceler estimates four unknown paths, ,

, and from two sequences of input signals and
made from one source signal and two paths,

whose inpulse responses are denoted byand , as depicted in
Fig. 1. This makes the problem of estimation ill-posed and the
nonuniqueness problem occurs since the source signal has two
paths from the talker’s mouth to a speaker, e.g., and
for the upper speaker in Fig. 1, wheredenotes the convolution.

When the paths are time-variant enough, the nonuniqueness
problem disappears because the estimates, , , and
have more than two equations to satisfy. Based on this idea,
some methods have been proposed (see [2, Introduction]). The
input-sliding method originally proposed in [3] is also based on
the same idea and is very simple: One of the input signals is
identical to the original, and the other is delayed by one sample
step. The preprocessing is performed only in the former half of
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Fig. 1. Schematic diagram of a stereo acoustic echo canceler.

the iteration steps in a constant period 2. In the latter half,
the signal is identical to the original. They showed that this
simple method vastly improves the convergence property, and
the signal distortion is almost inaudible.

The question of why such a simple method works so well
motivated us to analyze the convergence properties of stereo
acoustic echo cancelers. If we elucidated the mechanism,
it might be possible to propose a better method with faster
convergence and smaller distortion.

The rest of the paper is organized as follows: Section II con-
tains the mathematical formulation of the stereo acoustic echo
canceler problem. The degree of nonuniqueness for a general
case is evaluated in Section III. Section IV is devoted to con-
vergence rate analyses based on the independence theory, and
the analyses for the input-sliding method are done in Section V.
Conclusions are given in Section VI.

II. PROBLEM STATEMENT

The fundamental problem for stereo acoustic echo cancelers
has been clearly presented by Sondhiet al. in [1], where the
input signals are unified, as are the tap-weight vectors. In brief,
the problem results from the fact that the input vectors do not
span the whole space wherein they belong since both input sig-
nals are made from a common source signal as detailed below.
We ignore the so-called the double-talk problem, which is an-
other important problem for acoustic echo cancelers, and as-
sume that there are no speech signals except the source signal

.

A. Formulation

Since a stereo acoustic echo canceler has a symmetric struc-
ture, we can simply consider the estimation of and in
Fig. 1 without loss of generality.

1053-587X/03$17.00 © 2003 IEEE
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Let the source signal be denoted by . Then, two micro-
phones pick it up through two acoustic pathsand and make
the input signals and as

respectively. The task of the stereo acoustic echo canceler is to
find two FIR filters and of order that satisfy

where the input vectors and and the desired output
signal are, respectively, defined as

For simplicity, we denote

and then, the equation that should be satisfied is rewritten as

. Note that for simplicity, we assume that no noise
exists in our analyses.

B. Statistics of Input Signals

We consider the statistical properties of , assuming that
the paths from the source to the microphones are FIR filters of
order such that

and we can write the input vector as

(1)

where

...
...

...
. . .

. . .
. . .

(2)

...
...

.. .
. . .

. . .
. . .

(3)

(4)

(5)

From (1), exists in the space spanned by the (
) column vectors of . We assume in the

following that is fully ranked, that is, rk
. In this case, the dimension spanned by the ( )

column vectors is determined by the echo pathsand .

C. Adaptive Algorithm

Standard methods of adaptive filters are applicable to finding

an such that . One of the simplest and most
effective methods is the normalized LMS (N-LMS) algorithm
[4], [5], which is described as

where is the learning coeffficient. Since , the
weight-error vector at time is updated as

(6)

Hence, is less than for , and
becomes the minimum for .

In the following, we consider the case of , where the
transition matrix becomes a projection
matrix to a hyperplane orthogonal to . This means that only
the component in parallel with can change. Therefore,
the components orthogonal to the ( ) column vectors of

never change in adaptation, and does not converge to the
null vector.

The affine projection (AP) algorithm and an LS-type method
have been proposed to accelerate the convergence in [6]–[8],
respectively, but they do not solve the nonuniqueness problem
since the restriction of the input vectors does not change. More-
over, as they are sometimes computationally consuming, we
consider only the N-LMS algorithm in this paper.

III. N ONUNIQUENESSPROBLEM

Since does not span the whole 2-dimensional

space, the weight vector that satisfies is not
determined uniquely. In other words, the weight-error vector

can include some components perpendicular to
the column vectors of . This is the origin of the nonuniqueness
problem.

Since the residual of the weight-error vector is composed
of vectors orthogonal to the column vectors of, the nonunique-
ness problem vanishes when the vectors increase, and the space
they span is spread by means of some tricks.

A. Heuristic Methods

Two kinds of methods have been proposed to overcome the
problem. One is to add noise to the input signal (or to assume
the existence) [7], [8], whereas the other is to give time-variation
to the relation of the input signals. Both increase the rank of
to 2 in time-average, and the tap-weight vectoris uniquely
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determined. However, as the former greatly degrades the quality
of input signals, we consider the latter in this paper.

Shimauchi and Makino [6] clearly showed that projec-
tion-type algorithms, e.g., the N-LMS and the AP algorithms,
can make the weight-error vector converge to null when the
learning coefficient is set to one that minimizes ,
as mentioned before.

The method proposed in [2] and [3] is also based on the same
idea, that is, giving a time-varying nonlinear transformation to
the input signals. One of the input signals, e.g., , is pre-
processed with a two-tap time-varying filter with a period 2.
The filter is 1 for the first steps and for the following
steps. They also proposed making transition areas in switching
to avoid “clicks” that result from sudden delays. However, for
simplicity, we do not pay attention to this. Their method gives a
good performance in computer simulations and listening tests,
but the reason why such a simple method works so well is un-
known. The purpose of our research is to elucidate these reasons
by theoretically analyzing the convergence properties.

Hiranoet al.[9]–[11] generalized the preprocessing in [2] and
[3] and gave some theoretical analyses. They considered the re-
lation of and when is preprocessed with
each of and for steps and with and in the
same way. The results showed, however, that time-variation is
necessary for convergence and that the convergence is experi-
mentally faster when the change is larger. Since a large amount
of preprocessing the input signal greatly distorts or degradates
the quality, it is necessary to find a preprocessor with fast con-
vergence and small distortion. The solution is uniquely deter-
mined if the preprocessing is time-variant under some condi-
tions[9], [10].

B. Nonuniqueness Theorem

The nonuniqueness problem results from the properties of,
as mentioned above. Therefore, we first calculate the strict rank
of .

Since is a matrix and the left upper
elements become a triangular matrix, rk
holds true anytime. Considering the structure of, if is

a combination of and its shifted ones, rk may be less than
. An extreme example is the case of , where

is a constant, which is treated in [6]. Then, rk is easily
shown. However, unlessis represented as a combination of
and its shifted ones, is expected to become fully ranked, that
is, rk . Indeed, the following can be proven.

Theorem 1 (Rank of ): Let and be the -trans-
forms of the paths and , respectively. If and are
mutually prime, in other words, there exist FIR systems
and s.t. , then rk

.
The proof is in Appendix A. When the order of and

the order of are different, rk
is shown in the same way.

In the above statement, is implicitly assumed.
When , rk is easily shown using the first
columns of and the last columns of . Note that the
nonuniqueness problem does not exist in this case, which is
also mentioned in [9] and [10].

C. Examples

We here show two examples to evaluate the degree of non-
uniqueness using the above theorem.

One is the case treated in [6]. Since
and then , and are not mutually prime.

If we regard as a source signal, and
hold true, where is an identity matrix, and they are
mutually prime with . This means that rk and that
the solution of the stereo acoustic echo canceler hasdegrees
of freedom if has a fully ranked covariance matrix.

The other is the case of treated in [12]. In
the same way as above, we redefine as . Then,

and ,
where is a null matrix of an appropriate size. This means that
rk and that the solution of the stereo acoustic echo
canceler has degrees of freedom. Note that the solution
is uniquely determined if is satisfied.

D. Input-Sliding Method

As the main purpose of the paper is to analyze the proper-
ties of the input-sliding method proposed in [2] and [3], we
explicitly show that the input-sliding method can remove the
nonuniequeness.

We redefine and define as

respectively, where is an -dimensional null vector. The
fact of rk is shown as follows:

rk rk

rk

rk

where is an null matrix since rk
. Note that this result is a special case of the theorem in [9]

and [10].

IV. CONVERGENCERATE BASED ONINDEPENDENCETHEORY

In this paper, we evaluate the convergence rate, which is de-
fined as the amount of how much the weight-error vector
decreases in magnitude, i.e., the average of .
The “independence theory” employed in this section is a clas-
sical assumption that the input signal vector is independent
of the weight-error vector . Nevertheless, even though the
assumption is far from true, the results predicted by the inde-
pendence theory are usually found to be in agreement with ex-
periments and computer simulations [5].

Based on the independence theory, we derive the convergence
rate from the maximum eigenvalue of the expected transition
matrix on the input vector as in [5], [13], and [14]. We
evaluate the convergence rate for time-variant input signals in
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this section and devote the next section to analyses of the input-
sliding method.

A. Convergence Rate of N-LMS Algorithm

First, we show the convergence rate of the adaptive FIR filter
of length with the N-LMS algorithm of .

According to the method based on the independence theory
in [5], the convergence rate is represented by the maximum
eigenvalue of the transition matrix of the weight error vector

averaged over the input signal , which obeys a
normal distribution . In the case of the N-LMS
algorithm, the transition matrix is shown as in (6). Hence, the
convergence rate is described as the maximum eigenvalue of

. Although this is difficult to
calculate directly, we can approximate it by the large number
law to using

Therefore, the approximate value of the convergence rate is
for the adaptive filter of order .

B. Convergence Rate for Input Signals in Subspace

When the input signal vectors only span an -dimen-
sional subspace in , the convergence properties are a little
different. Let and denote the -dimensional subspace
spanned by the input vectors and its orthogonal comple-
ment, respectively. Then, the components of in are
never changed by , whereas the theory in the previous sub-
section holds true in . This means that wheninput vectors are
drawn from the same distribution and given to an adaptive filter
of order 2 , then the convergence rates of the components in
and are, respectively, and 1. Hence, can be
described as

(7)

if the components of in and are and
in magnitude, respectively.

C. Convergence Rate for Time-Variant Signals

In the problem of stereo acoustic echo cancelers with algo-
rithms based on the time-variation of signal statistics such as the
input-sliding method, the input signal vectors have some
kinds of statistical properties, one of which is employed at each
time . Let us consider the case that the input vectors are
drawn from one probability distribution for steps and from
the other for the next steps. Therefore, the input signal has a
period of 2 as in [2], [3], [9], and [10].

Based on the independence theory, Hiranoet al.[9], [10] con-
sidered the transition matrix and gave some intuitive comments
that a large amount of change in time may result in a faster con-
vergence. We here derive the convergence rate of an FIR filter

Fig. 2. Convergence properties for two kinds of input signal vectors when
Q � N .

given input signals with two kinds of statistics, each of which
spans only an -dimensional subspace, i.e.,

i.i.d.

The angle of and is defined as

Let us consider first the case of . From (7), the con-
vergence rate depends on the anglebetween the current error
vector and the input signal . We show that the angle
approximately fluctuates around .

Fig. 2 shows a schematic view of what happens in the space of
weight-error vectors when two statistical kinds of input signals
are given. shows the spaces spanned by the weight-error
vectors orthogonal to the input vector and the vectors in

that are perpendicular to the input vector. Assume that
the weight-error vector is changed by adaptation fromto

and that is almost half of , meaning
in (7). Then, , given by the next step, is lo-

cated around the point where is half of since
the rate of to is the same as that of to due to
(7). By repetition, the points given by the adaptation are located
around with width since
in this case if is small, and . In general, when the
components in are shrunk at the rate of ( ), the points are
located around with width , where satisfies

The proof is in Appendix B.
Due to the assumption of , is satisfied, and

then, , and . Hence, from (7), the weight-error
vector is shrunk at the rate of



1328 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003

Fig. 3. Convergence properties for two kinds of input signal vectors when
Q � N .

by iteration steps, where , etc.,
are applied since . Therefore, the convergence rate is
written as

(8)

which does not depend on the period 2.
Next, we consider the case of . Since enough up-

dates are done for one statistical kind of input signal vectors,
the components in become null, and the weight-error vector

is projected onto in iteration steps. Fig. 3 shows a
schematic view of weight-error vectors in such a situation.
moves to in steps, where are orthogonal to and
to in the next steps, where are orthogonal to . The
convergence rate is, therefore, described as

(9)

which only depends on the period 2.
Finally, we give the result for general cases: Whenis small

(10)

which depends on both and . We cannot determine the angle
. However, is a lower bound of since and

, as mentioned in the case of . Hence, (10) with
gives a lower bound of the convergence rate.

D. Computer Simulations

To confirm the validity of the theoretical analyses above,
some computer simulations were done. In each of the ex-
periments below, the initial value of the weight-error
vector was randomly chosen from , and the exper-
imental convergence rate was calculated as the average of

from to over eight
trials. Since the rate was near unity, the difference from unity
was plotted instead in the figures. The two kinds of input signal
vectors and were made according to

i.i.d.

respectively, s.t. their angle becomes.

Fig. 4. Convergence rate versus the angle of two statistics of input signals in
the case ofQ � N , whereQ = 2 andN = 100 or 200.

Fig. 5. Convergence rate versus the period 2Q of input signals in the case of
Q � N , whereN = 200 and� = �=10.

Fig. 4 shows the convergence rate versus the angleof input
signals in the case of . The crosses show the experi-
mental convergence rates and the solid lines represent the theo-
retical convergence rates given by (8). The upper part is the case
of and and the lower and . The
theoretical values agree well with the experimental data. Fig. 5
shows the convergence rate versus the period 2of input sig-
nals in the case of . The experimental convergence rate
does not depend on, as the theory predicts.

Fig. 6 shows the convergence rate versus the angleof input
signals in the case of . The crosses show the experi-
mental convergence rate and the solid line represents the the-
oretical convergence rate given by (9). The theoretical values
agree well with the experimental data. Fig. 7 shows the conver-
gence rate versus the order 2of the adaptive filter in the case
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Fig. 6. Convergence rate versus the angle of two statistics of input signals in
the case ofQ � N , whereQ = 1000, andN = 20.

Fig. 7. Convergence rate versus the order 2N of the adaptive filter in the case
of Q � N , whereQ = 1000, and� = �=10.

of . The experimental convergence rate does not depend
on , as the theory predicts.

Figs. 8 and 9 show the convergence rate versus the period
2 and the order 2 , respectively, in the case of . The
crosses show the experimental convergence rate, and the solid
line represents the theoretical lower bound of the convergence
rate given by (10). The crosses are located above the theoretical
line.

V. CONVERGENCERATE OF THEINPUT-SLIDING METHOD

A. Input-Sliding Method

The input-sliding method proposed in [2] and [3] is one of
the methods based on preprocessing that gives the statistics of
the input signals a time-variation. It employs a two-tap filter

as a preprocessor for one of the channels

Fig. 8. Convergence rate versus the period 2Q of input signals in the case of
Q � N , whereN = 50 and� = �=10.

Fig. 9. Convergence rate versus the order 2N of the adaptive filter in the case
of Q � N , whereQ = 50 and� = �=10.

where for the first iteration steps and for the
following iteration steps in the period 2. The other channel
has no preprocessor. This method showed a good performance
in their computational experiments and listening tests; however,
the reason was not clear. We derive the convergence rate of the
method analytically in this section. Note that is modified to
vary smoothly in the original method, i.e., transition areas are
given, in order to avoid the degradation of signals by clicks due
to sudden delays and restoration. However, we neglect this for
simplicity. In this section, we assume since it holds true
in most applications.

B. Convergence Rate Analysis

Fig. 10 shows a schematic view of how the input-sliding
method works in a parameter space. Different from the sit-
uations in the previous section, the statistical characteristics
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Fig. 10. Effects of a gradual change of input signal.

Fig. 11. Structure of input signal vector withN = 12 andQ = 3.

gradually change, as does the hyperplane onto which the
weight-error vector should be projected. Let us consider, con-
cretely, the case where the input signal vectors are orthogonal
to and where the error vector is located atat time (see
Fig. 10). If the input signal vector suddenly changes in statistics
and becomes orthogonal to , the error vector moves in the
direction of . However, the preprocessor can affect only the
current input signals and , which are the first and
the ( )th elements of the input vector .

Fig. 11 shows the structures of the input signals and
before and after the statistics change, respectively, in the case of

. Each square shows an input signal, and the elements
in the shadowed squares are delayed. From the relation between

and seen in Fig. 11, the angleof and in
Fig. 10 satisfies

(11)

Note that is a vector made by shifting the shadowed com-
ponents in . Hence, as
seen in the previous section, the convergence rate for
is approximately written as (8)

(12)

C. Modification of Input-Sliding Method

The convergence rate of the input-sliding
method is much larger than or ,
which are given when the input vectors are mutually indepen-
dent. To cope with this, we have the concept of the use of the
input signal vector where all components are delayed, instead

of the vector delayed componentwise, in the adaptation of. If
the independence theory holds true, since

the angle between and satisfies

and due to the whiteness of . This implies that the
modified version may converge much faster than the original
input-sliding method. In fact, the modified version has much
slower convergence than the original one. An explanation
follows.

The input vectors and are rewritten more pre-
cisely as

where
and assume the whiteness of , that is,

i.i.d.
Since the input signal is cyclostationary, we consider the ex-

pectation of the transition matrix over the period 2. This means
that we assume the independence of every 2steps instead of
each iteration step, as in the independence theory.

The expectation of the transition matrix over 2steps be-
comes

since is as small as of the order of .
Hence, its average in one step is written as

using the same method in Section IV, where
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Suppose that

is substituted for , and consider instead of ,
where

Then, has a null eigenvalue with an eigenvector
. Since is similar to , also has a small

magnitude eigenvalue, and the convergence is much slower.
The slowness can be quantitatively evaluated using the

Rayleigh quotient theorem [15]:
Theorem 2 (Rayleigh Quotient):Let be a

normal matrix ( ), and denote its eigenvalues by
. If the Raileigh quotient with

satisfies

then

In order to apply Theorem 2 to the matrix, we set the th
element of the vector to

(13)

(14)

where is satisfied since

Denote the th element of by . Then

for

and for from the
symmetry of and . Hence, the Rayleigh quotientbecomes

and then, the difference between and is

Since can be approximated to

the minimum eigenvalue of in total is
when the minimum of the others is since has a
precision with from Theorem 2. There-
fore, even in the fastest case, the convergence rate becomes

, which is much slower than that of the orig-
inal method .

Although the above explanation only shows that the
minimum eigenvalue of is smaller than or equal to

, the actual minimum eigenvalue is well
approximated by the Rayleigh quotient ,
as shown in Fig. 12, where the crosses represent the min-
imum eigenvalues, and the solid and the dashed lines show

and , respectively.

D. Computer Simulations With White Signal

The figures in this section show the results of computer
simulations on the convergence properties of the input-sliding
method and its modified version.

In each of the experiments by the original input-sliding
method, the initial value of the weight-error vector is
randomly chosen from , and the experimental con-
vergence rate is calculated as the average of
from to over eight trials. The input signal

at time is drawn from a normal distribution .
Fig. 13 shows the convergence rate versus the order 2of the

adaptive filter. The crosses show the experimental convergence
rates, and the solid lines represent the theoretical convergence
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Fig. 12. Minimum eigenvalue ofT versus the size of the matrix.

Fig. 13. Convergence rate versus the order 2N of the adaptive filter.

rates given by (12). The upper part is the case of and
the lower . The theoretical values agree well with the
experimental data.

In each of the experiments by the modified input-sliding
method, the initial value of the weight-error vector is set
to in (13) and (14), instead of being randomly chosen, in
order to reduce the computational complexity by removing the
faster modes in advance. The experimental convergence rate is
calculated as the average of from
to over eight trials. The input signal at time is
drawn from a normal distribution .

Fig. 14 shows the convergence rate versus the order 2of
the adaptive filter in the case of . The crosses show
the experimental convergence rate, and the solid line represents
the theoretical convergence rates given by the Rayleigh quotient

. The theoretical values agree well with the ex-
perimental data. Fig. 15 shows the convergence rate versus the
period 2 of input signals with . The experimental
convergence rate does not depend onas the theory predicts.

Fig. 14. Convergence rate versus the order 2N of the adaptive filter where
Q = 4.

Fig. 15. Convergence rate versus the period 2Q of input signals where
N = 128.

E. Computer Simulations With Speech Signal

The theoretical analyses are based on the assumption that the
input signal is white and stationary. In order to elucidate the
limits of the analyses for real sound signals, we show the results
of computer simulations with a speech signal.

In each of the experiments, the initial value of the
weight-error vector is randomly chosen from , and
the experimental convergence rate is calculated as the average
of from to over eight
trials. The input signal is a real sound shown in Fig. 16,
which is correlated, i.e.,
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Fig. 16. Waveform of the input speech signal.

Fig. 17. Convergence rate versus the order 2N of the adaptive filter.

Hence, in (11) should be substituted with

and then, the convergence rate is written as
instead of (12).

Fig. 17 shows the convergence rate versus the order 2of
the adaptive filter. The crosses show the experimental conver-
gence rates, and the solid line represents the theoretical con-
vergence rates given above in the case of . The differ-
ence between the theoretical values and the experimental data
is larger than that in Fig. 13. This may result from the time-vari-
ation of the input signal since it accelerates the convergence as
the preprocessor does.

VI. CONCLUSIONS

The convergence properties of stereo acoustic echo cancelers
with preprocessing have been examined. First, the condition of
the paths from the talker to the microphones was elucidated
under which the nonuniqueness problem exists. The degree of
nonuniqueness evaluated depends on the primeness of the paths.
Second, the convergence rates of the acoustic echo cancelers
with the N-LMS algorithm were shown based on the indepen-
dence theory. When the input signal vectors are not fully ranked

and time-variant, the convergence rate depends on both the pe-
riod 2 of the input signal and the order 2of the adaptive
filter, but if one of them is sufficiently larger than the other, the
rate depends on either of them. Last, the input-sliding method
was precisely analyzed. The method has a slow convergence
rate since the preprocessor affects only the current input signal.
A simple modification, which was expected to accelerate the
convergence under the independence theory, actually makes the
convergence much slower. The validity of these analyses was
confirmed by computer simulations.

APPENDIX A
PROOF OFTHEOREM 1

Consider the independency of the column vectors of
. Let . Then, column

vectors of

...
...

are linearly independent since the upper-right components of the
diagonal are null.

Next, we consider whether or not each of the column vectors
of can be represented as a linear combination of the vec-
tors located on its left side in ( ). If we assume that

is a linear combination of the column vectors of
, that is, there exists a s.t.

then

holds true. This means that

Therefore, is a multiple of , and
it never becomes 1. Therefore, if ,

is independent of the column vectors of
. With regard to , if we assume

and that there exist and
s.t.

it leads to
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Fig. 18. Angle of the weight-error vector and the input signal vectors.

Since the right-hand side is a multiple of with the
order of , it never equals if , and hence,

is independent of its leftward vectors in
( ). In the same way, each of for

is shown to be independent. This means that
rk . On the other hand, rk necessarily
holds true since , and then, rk
has been proven if .

APPENDIX B
PROOF OFCONVERGENCE TO

Fig. 18 represents the space of weight-error vectors. We claim
that the weight-error vector oscillates on and . Suppose
that the current point is not on and that the difference is

in angle, that is, . Since is moved to a point
on , the angle converges to if the point has
a smaller difference with in angle. In other words

should be satisfied for .
Consider a function

of with parameters and .
Since , if is monotonically increasing
around , the oscillation around with width
is stable. Because

indeed holds true for

(15)

When is located outside (higher than ), the point
after the adaptation is located on , the point monotonically
approaches the intersection with , and satisfies the condi-
tion; otherwise, satisfies the condition of (15).
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