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Convergence Analyses of Stereo Acoustic Echo
Cancelers With Preprocessing

Kazushi lkeda and Ryohei Sakamoto

Abstract—The convergence properties of stereo acoustic echo
cancelers with preprocessing are examined. We first elucidated
the conditions of the paths from the talker to the microphones
under which the nonuniqueness problem occurs. The degree of
nonuniqueness was found to depend on the primeness of the paths.
Next, the convergence rates of the acoustic echo cancelers with
preprocessing were analyzed based on the independence theory
for general cases and on the cyclostationariness of the input signal
for the input-sliding method. The derived rates that depended on
both of the period of the input signal and the order of the adaptive
filter agreed well with the results of computer simulations.

Index Terms—Acoustic echo canceler, adaptive filter, conver-
gence condition, convergence rate.

Fig. 1. Schematic diagram of a stereo acoustic echo canceler.
the iteration steps in a constant perio@.2n the latter half,
the signal is identical to the original. They showed that this
A COUSTIC echo cancelers are one of the most attractigﬁtnme method vastly improves the convergence property, and
applications in adaptive filter technology. Multichannefpe signal distortion is almost inaudible.
acoustic echo cancelers are required to remove undesireghe guestion of why such a simple method works so well
echoes and to improve reality in teleconferencing; howevepotivated us to analyze the convergence properties of stereo
they include a fundamental problem that never appears jBoustic echo cancelers. If we elucidated the mechanism,
monaural systems. We consider the two channels’ case, ii€might be possible to propose a better method with faster
stereo acoustic echo cancelers, in this paper, since we €8RAvergence and smaller distortion.
easily extend it to general cases. The rest of the paper is organized as follows: Section Il con-
The problem is clearly stated in [1]. In summary, a sterggins the mathematical formulation of the stereo acoustic echo
acoustic echo canceler estimates four unknown paihsi2,  canceler problem. The degree of nonuniqueness for a general
hs, andhy from two sequences of input signals.(t)} and case is evaluated in Section Ill. Section IV is devoted to con-
{a4(t)} made from one source signk(t)} and two paths, yergence rate analyses based on the independence theory, and

whose inpulse responses are denoted bydb, as depicted in the analyses for the input-sliding method are done in Section V.
Fig. 1. This makes the problem of estimation ill-posed and ti¢ynclusions are given in Section VI.

nonuniqueness problem occurs since the source signal has two
paths from the talker's mouth to a speaker, ehg*z andhs*b
for the upper speaker in Fig. 1, wherdenotes the convolution.

When the paths are time-variant enough, the nonuniquenesshe fundamental problem for stereo acoustic echo cancelers
problem disappears because the estimaiesis, i3, andhs  has been clearly presented by Sonehal. in [1], where the
have more than two equations to satisfy. Based on this id@gsut signals are unified, as are the tap-weight vectors. In brief,
some methods have been proposed (see [2, Introduction]). The problem results from the fact that the input vectors do not
input-sliding method originally proposed in [3] is also based ogpan the whole space wherein they belong since both input sig-
the same idea and is very simple: One of the input signalspgls are made from a common source signal as detailed below.
identical to the original, and the other is delayed by one sampig ignore the so-called the double-talk problem, which is an-
step. The preprocessing is performed only in the former half gfher important problem for acoustic echo cancelers, and as-

sume that there are no speech signals except the source signal

I. INTRODUCTION

Il. PROBLEM STATEMENT
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Let the source signal be denoted #ft). Then, two micro- following thatu(t) is fully ranked, that is, rk[u(t)u” (t)] =
phones pick it up through two acoustic pathandb and make N + M. In this case, the dimension spanned by tNe+{ M)

the input signals:, (t) andz,(t) as column vectors is determined by the echo patlasdb.
zq(t) =a”u(t) C. Adaptive Algorithm
ap(t) =bu(t) Standard methods of adaptive filters are applicable to finding
A AT .
respectively. The task of the stereo acoustic echo canceler igfoh such thath z(t) = d(t). One of the simplest and most
find two FIR fi|tersi,l1 a_ndi,'2 of order N that Satisfy effective methods is the normalized LMS (N-LMS) algorithm

7 7 [4], [5], which is described as
hy z,(t) + hy z,(t) = d(2)

At + 1) =h(t) + =)
where the input vectors, (t) andz; () and the desired output ' T |l (1)]|2
signald(t) are, respectively, defined as ~T
gnald(t) p y ) + st d(t) — b (t)z(t)
To(t) = (24(t),24(t = 1),...,2,(t — N +1)) € RN =)
pu— —_ 00 ad P N
@ (t) = (x;(t)’xb(t ;)’ om(t=N+1)eR wherey, is the learning coeffficient. Sincé(t) = h”z(t), the
d(t) =hy" (1) + ho” (1) weight-error vectoy(t) = h(t) — h at timet is updated as
For simplicity, we denote Nz (
i+ 1) =g(t) ~ =02 D)
2l0) = (0" ") =@
= a s bbb I(f)ZT(f)
. er o\ T = I—MW g(t). (6)
h = (h1 by )

he (BT BT Hence,||g(t + 1)|| is less than|g(¢)|| for 0 < u < 2, and
- ( rom ) llg(t + 1)|| becomes the minimum fqr = 1.
and then, the equation that should be satisfied is rewritten ad" Fh,e followlng, we corT1$|der the (;ase pf=1, Wher_e the
d() — hE (1), Note that for simplicity. we assume that no no.stransmon matri{I —z(t)z' (t)/||=z(t)||*] becomes a projection
E(i)t_in z(r).n | implicity, w u Sthatrix to a hyperplane orthogonal#¢t). This means that only
EXISIS In our analyses. the component ig(t) parallel withz(¢) can change. Therefore,
B. Statistics of Input Signals the components.orthogongl to th&¥ ¢+ M) column vectors of
) L ) ) S never change in adaptation, agid) does not converge to the
We consider the statistical propertiesadf ), assuming that null vector
the paths from the source to the microphones are FIR filters ofp4 4ffine projection (AP) algorithm and an LS-type method
orderM + 1 such that have been proposed to accelerate the convergence in [6]-[8],
T =(ag, a1, ..., an) € RM+1 respectively, but they do not solve the nonuniqueness problem
’ since the restriction of the input vectors does not change. More-
over, as they are sometimes computationally consuming, we

and we can write the input vector as consider only the N-LMS algorithm in this paper.

z(t) = Su(?) 1) 1. N ONUNIQUENESSPROBLEM
where Sincez(t) € R?YN does not span the wholg\2dimensional
. . Y s .
ao ap - ay 0 0 space, the weight vectdr that satisfiesh z(t) = d(¢) is not
. determined uniquely. In other words, the weight-error vector
D, = 0 a0 - am-1 am ' 0 (2) 9(t) = h(t) — h can include some components perpendicular to
S0 . 0 the column vectors af. This is the origin of the nonuniqueness
0o 0 --- Ar—1  an problem.
bo by - by O .. 0 Since the residual of the weight-error vecgét) is composed
. of vectors orthogonal to the column vectorssethe nonunique-
Dy = 0 bo -+ bu-1 bu ' 0 (3) ness problem vanishes when the vectors increase, and the space
o0 . 0 they span is spread by means of some tricks.
0 0 - br—1 bar

A. Heuristic Methods

D,
S = (Db> € M(2N, N + M) (4) Two kinds of methods have been proposed to overcome the
u(t) = (u(t),u(t — 1), ..., u(t — N — M +1)). (5) proble_m. One is to add noise to the inpgt signal (_or to assume
’ ’ the existence) [7], [8], whereas the other is to give time-variation
From (1),z(t) € R?" exists in the space spanned by thé{ to the relation of the input signals. Both increase the rank of
M) column vectors o € M (2N, N + M). We assume in the to 2N in time-average, and the tap-weight vedhois uniquely



1326 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003

determined. However, as the former greatly degrades the quality Examples

of input signals, we consider the latter in this paper. We here show two examples to evaluate the degree of non-
Shimauchi and Makino [6] clearly showed that projeCUniqueness using the above theorem.

tion-type algorithms, e.g., the N-LMS and the AP algorithms, §q is the cases(t) = cz () treated in [6]. Sinces(t) =

can make the weight-error vector converge to null when tr}gl(t) and therb = ca, A(z) andB(z) are not mutually prime.
learning coefficientu is set to one that minimizefg(z + 1), |f\e regarca”u(1) as a source signal), = Iy andDj = ¢l

as mentioned before. _ hold true, wherd y is anN x N identity matrix, and they are

_ The method proposed in [2] and [3] is also based on the sapGyally prime withd/ = 0. This means that rk = N and that
idea, that is, giving a time-varying nonlinear transformation i,q so|ytion of the stereo acoustic echo cancelerViaegrees
the input signals. One of the input signals, ex(t), is pre- - ot freedom ifau(t) has a fully ranked covariance matrix.
processed with a two-tap time-varying filter with a peric@.2  The otheris the case @h(t) = cz1 (¢ — k) treated in [12]. In
The filter is 1 for the first) steps anc:—! for the following Q the same way as above, we redefirte) asa”u(t). Then,D, =
steps. They also proposed making transition areas in switchmr O] € M(N, N +k) ’andDb =[0,cIy] € M(N N'+ak)

to avoid *clicks” that result from sudden delays. However, fQfhere() is a null matrix of an appropriate size. This means that
simplicity, we do not pay attention to this. Their method gVeS@ ¢ — N + k and that the solution of the stereo acoustic echo

good performance in computer simulations and listening tes{gnceler hagv — k degrees of freedom. Note that the solution
but the reason why such a simple method works so well is U8uniquely determined i > N is satisfied.

known. The purpose of our research is to elucidate these reasons

by theoretically analyzing the convergence properties. D. Input-Sliding Method

1] and gave some thearetical analyses, They considered LS (€ Tain PUPOse of the paper is © analyze the proper-
. N ... ties of the input-sliding method proposed in [2] and [3], we

lation of g(#) andg(t + 2Q) whenu, (t) is preprocessed with explicitly show that the input-sliding method can remove the

each ofF,, andF, for @) steps and;(t) with F, andF} in the

same way. The results showed, however, that time—variationnionuniequeness'
Y. ! ' . We redefines and defines’ as
necessary for convergence and that the convergence is experi-

mentally faster when the change is larger. Since a large amount _ (DaON> € M2N,N + M + 1)
of preprocessing the input signal greatly distorts or degradates D,0N ’

the quality, it is necessary to find a preprocessor with fast con- , D0y

vergence and small distortion. The solution is uniquely deter- Sh= <0NDb> € M(2N,N + M +1)

mined if the preprocessing is time-variant under some condi- ) ) _ )
tions[9], [10]. respectively, wher®y is an N-dimensional null vector. The

fact of rk (S, S’) = 2N is shown as follows:

B. Nonuniqueness Theorem
a ik (S, 5') = rk (S, S)

The nonuniqueness problem results from the propertiés of
: . : DaON Da
as mentioned above. Therefore, we first calculate the strict rank =rk
of S OnDy Dy
SinceS is a2N x (N + M) matrix and the left uppeN x — 1k <(Da0N) —(0nDa) Da)
N elements become a triangular matriX, < rk S < (N + O0nOn Dy
M) holds true anytime. Considering the structureSofif b is =2N

a combination ofz and its shifted ones, rK may be less than
i];[ ; Cﬁééﬁfﬁﬁ&i Se i(raer;]gg ilr? [tgf .(lfﬁzs]h;fk:: CK; I\;v er;;; N. Note that this result is a special case of the theorem in [9]
shown. However, unledsis represented as a combinationaof and [10].
and its shifted onesy is expected to become fully ranked, that
is, rk. S = N + M. Indeed, the following can be proven.
Theorem 1 (Rank of): Let A(z) andB(z) be thez-trans- In this paper, we evaluate the convergence rate, which is de-
forms of the patha andb, respectively. IfA(z) and B(z) are fined as the amount of how much the weight-error vegi@)
mutually prime, in other words, there exist FIR systefi$z) decreases in magnitude, i.e., the averadigof + 1)|/|lg(¢)]l-
and Py(z) s.t. A(z)Pi(z) + B(2)P2(z) = 1, then rkS = The “independence theory” employed in this section is a clas-
N+ M. sical assumption that the input signal vect6r) is independent
The proofis in Appendix A. When the ordéf, of A(z) and of the weight-error vectog(t). Nevertheless, even though the
the orderM, of B(z) are different, rkS = N + max(M,, M,) assumption is far from true, the results predicted by the inde-

whereOy isanN x N null matrix since r{(D,0)—(0D,)] =

IV. CONVERGENCERATE BASED ON INDEPENDENCETHEORY

is shown in the same way. pendence theory are usually found to be in agreement with ex-
In the above statemenfy/ < N is implicity assumed. periments and computer simulations [5].
WhenM > N, rk S = 2N is easily shown using the firgy Based on the independence theory, we derive the convergence

columns ofD, T and the lastV columns ofD;,”. Note that the rate from the maximum eigenvalue of the expected transition
nonunigueness problem does not exist in this case, whichmsitrix on the input vectos(¢) as in [5], [13], and [14]. We
also mentioned in [9] and [10]. evaluate the convergence rate for time-variant input signals in
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this section and devote the next section to analyses of the input-
sliding method.

A. Convergence Rate of N-LMS Algorithm

First, we show the convergence rate of the adaptive FIR ﬁltgir 2. Convergence properties for two kinds of input signal vectors when
of length V with the N-LMS algorithm ofu = 1. Qg'<< v gence prop put sig

According to the method based on the independence theory
in [5], the convergence rate is represented by the maximum
eigenvalue of the transition matrix of the weight error vectdtiven input signals with two kinds of statistics, each of which
lg(t)|| averaged over the input signalt), which obeys a SPans only anV-dimensional subspace, i.e.,
normal distribution N (0, Iy). In the case of the N-LMS

algorithm, the transition matrix is shown as in (6). Hence, the z1(t) =D,u € RN
convergence rate is described as the maximum eigenvalue of z5(t) =Dyu € R*Y
E[(Ix — z()xT(t))/(]|=(t)]|?)]. Although this is difficult to Da, Dy €M(2N, N)

calculate directly, we can approximate it by the large number

law to (1 — 1/N)Iy using u(t) ~N(0,Iy),iid.

N1 The angle) of =, (¢) andz.(t) is defined as

=)l = 3= a(t =) ~ B lo(t)]]. © [laal] 5 [l

i=0 cosf = . [Hzl”ﬂ 1/2E [||:L'1||2T/2.

Let us consider first the case @f < N. From (7), the con-
vergence rate depends on the arjlbetween the current error
vectorg(t) and the input signak(t). We show that the angl¥

When the input signal vectors(t) only span anV-dimen- approximately fluctuates arourg2.
sional subspace iR?", the convergence properties are a little Fig. 2 shows a schematic view of what happens in the space of
different. LetS and S+ denote theV-dimensional subspaceweight-error vectors when two statistical kinds of input signals
spanned by the input vecto#gt) and its orthogonal comple- are given.O A shows the spaces spanned by the weight-error
ment, respectively. Then, the componentsg(fi) in S+ are vectors orthogonal to the input vectss and the vectors in
never changed hy(t), whereas the theory in the previous sube) B’ that are perpendicular to the input vecigr Assume that
section holds true ii¥. This means that whefrinput vectors are the weight-error vector is changed by adaptation frdmo
drawn from the same distribution and given to an adaptive filtg¥ and that/ AOB is almost half of/ AOB’, meaning(1 —
of order 2V, then the convergence rates of the componengs ini /(2V))? ~ 1/2 in (7). Then,C, given by the next step, is lo-
andS+ are, respectively, — 1/N and 1. Hencel|g(t)|| can be cated around the point whereBOC is half of ZBOC’ since
described as the rate ofAB to AB’ is the same as that ¢fC to BC’ due to

(7). By repetition, the points given by the adaptation are located
1\ 2 around¢’ = 6/2 with width 6/6 since26/3*1/2 = 6 — 0/3
lg(0)| \/0082 0’ + sin? ¢’ <1 — N) (7) in this case iff is small, andd ~ sin6. In general, when the
components irt are shrunk at the rate of ¢ ), the points are
located around/2 with width §/2 — ¢, wherey satisfies

Therefore, the approximate value of the convergence rate is
1 — 1/N for the adaptive filter of ordelN.

B. Convergence Rate for Input Signals in Subspace

if the components o§(0) in S and S+ are||g(0)]| sin #" and
llg(0)]| cos @’ in magnitude, respectively. tan ¢

1= an(6— )
C. Convergence Rate for Time-Variant Signals

In the problem of stereo acoustic echo cancelers with alg1c—)r—]e proof is in Appendlx B. 1 o
rithms based on the time-variation of signal statistics such as tﬂ ue ES the assurlngtlon @ < N,n ~ 1is satisfied, and
input-sliding method, the input signal vectaét) have some then,p ~ 9./2’ andé’ ~ 6/2. Hence, from (7), the weight-error
kinds of statistical properties, one of which is employed at eaXﬁCtOl‘g(t) Is shrunk at the rate of
time ¢. Let us consider the case that the input vecirs are
drawn from one probability distribution fap steps and from 5 (0 .o [0 1\
the other for the next) steps. Therefore, the input signal has a \/ cos <5> + sin <—> (1 — —)
period of 2Y as in [2], [3], [9], and [10].

Based on the independence theory, Hiratal.[9], [10] con-
sidered the transition matrix and gave some intuitive comments
that a large amount of change in time may result in a faster con- Q sin? (%)
vergence. We here derive the convergence rate of an FIR filter ~l - - N
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-3

1.5

Fig. 3. Convergence properties for two kinds of input signal vectors whe
Q > N.

Q
by Q iteration steps, wher@ — 1/N)?@ ~ (1 — 2Q/N), etc., ?
are applied sincé€) < N. Therefore, the convergence rate is+— X
written as 0.5+
e\ et )
N - N

which does not depend on the perio@.2 ’ . .
Next, we consider the case ¢f > N. Since enough up- 0 0.2 0.4 0.6

dates are done for one statistical kind of input signal vectoi 0

the components i¥ become null, and the weight-error vector

_q(t) is projected ontas+ in Q iteration steps. Fig. 3 shows afig. 4. Convergence rate versus the angle of two statistics of input signals in

L . A C . the case of) < N, whereQ = 2 andN = 100 or 200.
schematic view of weight-error vectors in such a situatidn.
moves toB in @ steps, wheré® B are orthogonal ta:; andB

0.8

to C in the nextQ steps, wher®C are orthogonal ta:,. The 107
convergence rate is, therefore, described as 2X : . .
(cos )Y@ = (1 —sin®6) 1)
sin” #
~1 — 9 -
20 ©) 1.5
which only depends on the period)2 % X oy 3¢ X X
Finally, we give the result for general cases: WHhas small %
1129 1/2Q T 1
2 pt s 2l - -
[cos 0" + sin“ 6 (1 N) ]
in2 g/ 1\2@ 0.5¢
~p o Snf [1—(1——) (10)
2Q N
which depends on botN and@. We cannot determine the angle . . . . . ‘
¢’. However,§/2 is a lower bound o#’ sincet’ = 6 — ¢ and 0 2 4 6 8 10 12 14

» < 0/2, as mentioned in the case@f< N. Hence, (10) with Q

¢’ = 0 /2 gives a lower bound of the convergence rate.
Fig. 5. Convergence rate versus the peri@l & input signals in the case of

D. Computer Simulations Q < N, whereN = 200 andf = x/10.

To confirm the validity of the theoretical analyses above,
some computer simulations were done. In each of the ex-Fig. 4 shows the convergence rate versus the ahgfenput
periments below, the initial valug(0) of the weight-error signals in the case @) < N. The crosses show the experi-
vector was randomly chosen fromi(0, I2), and the exper- mental convergence rates and the solid lines represent the theo-
imental convergence rate was calculated as the averageratical convergence rates given by (8). The upper partis the case
llg@®)Il/llg(t — 1)|| from ¢ = 1001 to ¢ = 2000 over eight of Q = 2andN = 100 and the lower) = 2 andN = 200. The
trials. Since the rate was near unity, the difference from unitfieoretical values agree well with the experimental data. Fig. 5
was plotted instead in the figures. The two kinds of input signghows the convergence rate versus the per@d®input sig-

vectorsz; (¢) andz»(t) were made according to nals in the case af < N. The experimental convergence rate
Iy does not depend of, as the theory predicts.
z(t) = ( On ) u(t) Fig. 6 shows the convergence rate versus the ahgfénput
signals in the case @) > N. The crosses show the experi-
In cost .
zo(t) = Iy sin (t) mental convergence rate and the solid line represents the the-

oretical convergence rate given by (9). The theoretical values
agree well with the experimental data. Fig. 7 shows the conver-
respectively, s.t. their angle becontes gence rate versus the orde¥ 2f the adaptive filter in the case

u(t) ~N(0,Iy), i.i.d.
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0 0.2 Oé4 0.6 0.8 0 20 40 aQ 60 80 100

Fig. 6. Convergence rate versus the angle of two statistics of input signaldrig. 8. Convergence rate versus the peri6tl & input signals in the case of

the case of) > N, where? = 1000, andN = 20.

3

Q) =~ N, whereN = 50 and¢ = 7 /10.

-4 x 10~
1 x 10 . 1 x T
0.8t 1 0.8f
..0306' 1 206'
o X X o
! X - X
T 0.4f 0.4}
X
X
0.2t 0.2r e ——
0 ' : : : 0 : : - s
0 20 40 60 80 100 0 20 40 N 60 80 100
N

Fig. 7. Convergence rate versus the orddr@f the adaptive filter in the case Fig- 9. Convergence rate versus the orddr &f the adaptive filter in the case
of Q « N, whereQ) = 1000, andé = x/10. of @ = N, whereQ = 50 and¢ = =/10.

of Q > N. The experimental convergence rate does not depeffjerec(t) = 1for thefirst@ iteration steps ane(¢) = 0 for the
on N, as the theory predicts. following Q iteration steps in the period;2 The other channel

Figs. 8 and 9 show the convergence rate versus the perfttp N° Preprocessor. This method showed a good performance
20) and the order &, respectively, in the case 6f ~ N. The in their computational experiments and listening tests; however,
crosses show the experimental convergence rate, and the Jofdréason was not clear. We derive the convergence rate of the
line represents the theoretical lower bound of the convergerB§thod analytically in this section. Note th#t) is modified to

rate given by (10). The crosses are located above the theoretf@) Smoothly in the original method, i.e., transition areas are
line. given, in order to avoid the degradation of signals by clicks due
to sudden delays and restoration. However, we neglect this for
V. CONVERGENCERATE OF THE INPUT-SLIDING METHOD simplicity. In this section, we assunig < N since it holds true

in most applications.

A. Input-Sliding Method

The input-sliding method proposed in [2] and [3] is one dp: Convergence Rate Analysis
the methods based on preprocessing that gives the statistics ¢fig. 10 shows a schematic view of how the input-sliding
the input signals a time-variation. It employs a two-tap filtemethod works in a parameter space. Different from the sit-
c(t) + [1L — ¢(t)]z~" as a preprocessor for one of the channelsations in the previous section, the statistical characteristics
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of the vector delayed componentwise, in the adaptati(fn tf
the independence theory holds true, since

21(6) =Dult) = (1Y ) ult)

22(t) =Dyult) = ( s ) u(t)
u(t) ~N(0, Iy)

Fig. 10. Effects of a gradual change of input signal.

x(0) the angled betweens; (¢t) andz,(t) satisfies
(I LI A [T cosfg= -1
(2N) 2
x(® andd = /3 due to the whiteness af(¢). This implies that the
OITITITITITAT] 1 modified version may converge much faster than the original

input-sliding method. In fact, the modified version has much
slower convergence than the original one. An explanation
follows.

gradually change, as does the hyperplane onto which theThe input vectorse;(¢) andz,(¢) are rewritten more pre-
weight-error vector should be projected. Let us consider, cotisely as

cretely, the case where the input signal vectors are orthogonal

Fig. 11. Structure of input signal vector wiffi = 12 and@ = 3.

to OA and where the error vector is located/ast timet (see z1(t) =Dgun41(t) = (ﬁN ng> un 41 (1)
Fig. 10). If the input signal vector suddenly changes in statistics N EN

@B ' In O
a_nd b_ecomes orthogonal @25, the error vector moves in the #2(t) =Dpun11(1) = <0N IN) uni1 ()
direction of B. However, the preprocessor can affect only the N AN

current input signals:; (¢) andz»(t), which are the first and
the (V + 1)th elements of the input vecteaxt).

Fig. 11 shows the structures of the input signdly andz’(t)
before and after the statistics change, respectively, in the case
@ < N. Each square shows an input signal, and the elements
in the shadowed squares are delayed. From the relation bet

z(t) andz’(t) seen in Fig. 11, the angkeof OA andOC in
Fig. 10 satisfies

whereuy1(t) = (u(t),u(t — 1),...,u(t — N)) € RN*!
and assume the whiteness @f11(t), that is, un,1(t) ~

J A1) ildd.

ince the input signal is cyclostationary, we consider the ex-
ctatlon of the transition matrix over the periggd.Z'his means
At we assume the independence of evépysips instead of
each iteration step, as in the independence theory.

The expectation of the transition matrix ovep Zteps be-

E [+ (02 (1) comes

cosf = 2Q-1 . p
B l2(0)]? 2 [jla'(1)|] B| T (- 2E 22D
1=0
— (2N _ %) —1_ L (11) 2 z(t+1)xT(t + 1)
2N (2Q) ~E | Iy - ; W
Note thate’ () is a vector made by shifting the shadowed com- o 1 (t)27 () 2 ()23 (1)
ponents ine(t) = (z(t), #(t—1),...,z(t— N +1)). Hence, as “hv @ ( [ 1 ()11 } b [ ll2 ()] D

seen in the previous section, the convergence rat@fer N

5 .
is approximately written as (8) sincex(t)zT (t)/||z(t)||? is as small as of the order af/N.

Hence, its average in one step is written as

200 1/2Q
. sin (%) 1 1—cosf z1(H)zT (1) zo(t)xL (1) /
N 2N IQN - Q E 2 +E 2
1 1 w2 ll1 ()]l [EAQI
=1-— . T
i ey L[ (I ), L (T
2 2N \In Iy 2N \Jn Iy
:IZJ\T -T

C. Madification of Input-Sliding Method

The convergence raté — 1/(4QN) of the input-sliding ) .
method is much larger than-sin?(6/2) /N or1—sin? §/(2Q), ro 1 ( In 3 (In +J%) )
which are given when the input vectors are mutually indepen- 2N % (IN + Jfr) In
dent. To cope with this, we have the concept of the use of the T = Onv_1 In_1
input signal vector where all components are delayed, instead N= < 0 0%_1> )

using the same method in Section IV, where
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Suppose that for2 < k<N
Oy 1 In1 1 EN+1
ton = o+ 5]
N < 1 0§1> (Teh =55 |1+ =
is substituted fod -, and considef, y — 7" instead offyy — T, S S PO
where oN32 |7V aN T 27NN
1 T _ 1 . s .o T 1 . ™
7= L In (v +77%) = e N AN T v N
2N | 1 (IN + JJ’\,T) In :eﬁl i % B 46_]1\7
Then,I,ny — 1" has a null eigenvalue with an eigenvector and(Te), = —(Te)an_ps1 for N +1 < k < 2N from the

(1%, —1%)T. SinceT is similar toT”, I, — T also has a small

. i ) symmetry ofl” ande. Hence, the Rayleigh quotientbecomes
magnitude eigenvalue, and the convergence is much slower.

The slowness can be quantitatively evaluated using the v=elTe
Rayleigh quotient theprem [15]_: N e, e?
Theorem 2 (Rayleigh Quotientlet M € M(n) be a ZZZNW AN 2N
normal matrix (/ M* = M* M), and denote its eigenvalues by k=1 )
ALs.. ., A,. If the Raileigh quotient = e*Me with ||e|| = 1 _ L ™o
satisfies N 4N 2N
_ _ and then, the difference betwe®® andve is
[ Me — ve|| =< dth he diff b s andve |
> P> 1 s e1 e1 \T
o Aj—v[26>e (j>2) | Te — ve|| :‘ Nsm2 ING (4]\/,,0%1]\;_27 4N)
3 3\T
2 A ogr 4
A —v] < 572 +<4N’ N2 4N>
B (- %)) 1
In order to apply Theorem 2 to the matfix we set theith =0 <N5/2> :

elemente;, of the vectore to

1 . =« 3
Bk:ﬁ51nﬁ<k—z> (ISkSN) (13) l/:iSiHZL_iz ’/T2
er=—ean_pp1 (N+1<Ek<2N) (14) N 4N 2N 16N?

the minimum eigenvalue of’ in total is O(1/N™max(>=kk))

where||e|| = 1 is satisfied since - : X
when the minimum of the others 9(1/N*) sincev has a

el = Zeg precision With52/6 = O(1/N°~*) from Theorem 2. There-
— k fore, even in the fastest case, the convergence rate becomes
N 1 — O(1/N5/2), which is much slower than that of the orig-
:EZsinzl (k_§> inal methodl — 1/(2QN).
N =~ N 4 Although the above explanation only shows that the
N minimum eigenvalue of7" is smaller than or equal to
R o <k— §) O(1/N™ax(=k:k))  the actual minimum eigenvalue is well
N&~ N 4 approximated by the Rayleigh quotient = 72/(16N3),
=1. as shown in Fig. 12, where the crosses represent the min-

imum eigenvalues, and the solid and the dashed lines show

Denote theith element ofl’e by (T'e);,. Then 2 /(16N?) and1/N%/2, respectively.

1 ENt+k-1 , EN+k
(Te)k_ﬁ [ek + 2 + T] D. Computer Simulations With White Signal
_ 1 [ek _ ONkH2 eN”““] The figures in this section show the results of computer
2N1 - W2 3 2 simulations on the convergence properties of the input-sliding
=N sin N (k — Z) method and its modified version.
L In each of the experiments by the original input-sliding
1 {Sin£ (k _ §> sin (k _ 1) H method, the initial valugg(0) of the weight-error vector is
2 N 4 N 4 randomly chosen fronV (0, Iox'), and the experimental con-
1 [. = 3 . 3 T vergence rate is calculated as the averadgyof)||/|lg(t — 1)]]
“onsz [N <k B Z) TSy <k - Z) o8 W} from ¢ = 1001 to ¢ = 2000 over eight trials. The input signal
1 [ = 3\ ., 7 z(t) at timet is drawn from a normal distributiofv (0, 1).
=Noe Sy (k - Z) sin m} Fig. 13 shows the convergence rate versus the olesfZhe

er . adaptive filter. The crosses show the experimental convergence
=N IN rates, and the solid lines represent the theoretical convergence
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Fig. 13. Convergence rate versus the ordsr& the adaptive filter.

Fi_g. 15. Convergence rate versus the perigd @f input signals where
rates given by (12). The upper part is the cas€of 4 and N =128,
the lower@ = 8. The theoretical values agree well with the

experimental data. E. Computer Simulations With Speech Signal

In each Of. t'h.e experiments by thg modified mput-.slldmg The theoretical analyses are based on the assumption that the
meth_od, the initial valug(o) of the wgght-error vector is Set_input signal is white and stationary. In order to elucidate the
to e in (13) and (14), msteac_i of being rar_1dom|y chos_en, finits of the analyses for real sound signals, we show the results
order to reduce the computational complexity by removing the computer simulations with a speech signal.
faster modes in advance. The experimental convergence rate is. o5 -h of the experiments, the initial valyé0) of the

calcglated as the iaVﬁragel|ty‘(_|§%||/.||g(t B ,1)” lirom ¢ = 100_1 weight-error vector is randomly chosen fraWi(0, Ion ), and
to = 2000 over eight trials. The input signai(t) at timet is the experimental convergence rate is calculated as the average

draFW” fermha ”Omr“]a' distribution’ (0, 1). e ortenp O 190I/llg(t = )] from ¢ = 1001 to ¢ = 2000 over eight
h 'ga N O;{\lls the cr(])nvergence Eite V?FLSUS the or E trials. The input signak(t) is a real sound shown in Fig. 16,
the adaptive filter in the case @ = 4. The crosses show, .1 is correlated. i.e..

the experimental convergence rate, and the solid line represents

the theoretical convergence rates given by the Rayleigh quotient 2000

v = 72/(16N?). The theoretical values agree well with the ex- t_%m z(t — 1)z(t)

perimental data. Fig. 15 shows the convergence rate versus the\/ = = 0.8936.

period 2) of input signals withV = 128. The experimental 200 20

. ot = Da(t—1)) Y a(t)(t)
convergence rate does not dependpas the theory predicts. t=1001 t=1001
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8000 ' and time-variant, the convergence rate depends on both the pe-
6000k riod 2Q) of the input signal and the orde\2of the adaptive
filter, but if one of them is sufficiently larger than the other, the
40007 1 rate depends on either of them. Last, the input-sliding method
§2000_ was precisely analyzed. The method has a slow convergence
E v ‘ | rate since the preprocessor affects only the current input signal.
& o I ‘ Wyt A simple modification, which was expected to accelerate the
= ‘ ! ‘ ‘ | convergence under the independence theory, actually makes the
~2000 convergence much slower. The validity of these analyses was
—4000F ] confirmed by computer simulations.
~6000 500 " e;gﬂgns 1500 2000 APPENDIX A

PROOF OFTHEOREM 1
Fig. 16. Waveform of the input speech signal. ) )
Consider the independency of the column vector$bf=

(D", Dy"). Let 0F = (0,...,0) € R*. Then,N column

x 107
1275¢ vectors of D,
a 0 0
Dl =| . o € M(N + M, N)
0.8} 00 - a
o are linearly independent since the upper-right components of the
*&) | ] diagonal are null.
] 6 Next, we consider whether or not each of the column vectors
AR of D,T can be represented as a linear combination of the vec-
0.4f % 1 tors located on its left side inl{, T, D,T). If we assume that
X % (",0% )7 is a linear combination of the column vectors of
0.2k X % | D,”, thatis, there exists@ = (v0,...,7v-1)" € RN s.t.
X b T
( =Dy
0 ‘ . On-1
0 50 N 100 150  then
Fig. 17. Convergence rate versus the ord¥r& the adaptive filter. B(Z) :A(Z ”Y(Z)
N-1
Hencecos § in (11) should be substituted with =)= vz
1=0
cosf = # holds true. This means that
L A(z)P B(z)P.
and then, the convergence rate is writtent as0.1064/(4QN) ()F1(2) + B(2)Po(2)
instead of (12). =A(z)P1(z) + A(2)y(2) P2(2)
Fig. 17 shows the convergence rate versus the ordfeoP =A(z) (P1(2) + 7(2)P2(2)) -

the adaptive filter. The crosses show the experimental CO”V‘FﬁereforeA(z)Pl(z) + B(2)P3(z) is a multiple of A(z), and

gence rates, and the solid line represents the theoretical cRRzver becomes 1. Therefore A{z) Py (2) + B(2) Pa(2) = 1,
vergence rates given above in the casé&)of 4. The differ- bT.O%_l)T is independent of the column vectors of
ence between the theoretical values and the experimental 5@_ with regard to (0,57,0%_,)7, if we assume
is larger than that in Fig. 13. This may result from the time-variy 2)Pi(2) + B(2)Pa(2) — 1 :';m]:j_chat there exist, and
ation of the input signal since it accelerates the convergencevags,: (

the preprocessor does. 0

b

_ T

VI. CONCLUSIONS 0 b | =Da"y=b <0N_1 )
N-2

The convergence properties of stereo acoustic echo canceiIF

with preprocessing have been examined. First, the condition o
the paths from the talker to the microphones was elucidated ' B(z) =A(z)y(z) — 8oB(z)

I][gads to

under which the nonuniqueness problem exists. The degreesgft .1 = (50 + z—l) [A(2)Py(2) + B(2)Pa(2))
nonuniqueness evaluated depends on the primeness of the paths. _ —1 1
Second, the convergence rates of the acoustic echo cancelers =A(2) (% + 271) Pi(e) + B(2) (b0 +277) Pa()
with the N-LMS algorithm were shown based on the indepen- =A(2) (80 +27") Pi(2) + A(2)v(2) P2 (2)

dence theory. When the input signal vectors are not fully ranked =A(z) ((60 + z7") Pi(z) + v(2) Pa(2))
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T 0
—f0<é - — . 15
p-0<bp< -3 (15)
When 4 is located outside COD (higher thank), the point
after the adaptation is located o), the point monotonically
approaches the intersection with¥;, and A satisfies the condi-

tion; otherwise A satisfies the condition of (15).
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