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This paper deals with a general method for the reduction of quantum systems with
symmetry. For a Riemannian manifoldM admitting a compact Lie groupG as an
isometry group, the quotient spaceQ5M /G is not a smooth manifold in general
but stratified into a collection of smooth manifolds of various dimensions. If the
action of the compact groupG is free,M is made into a principal fiber bundle with
structure groupG. In this case, reduced quantum systems are set up as quantum
systems on the associated vector bundles overQ5M /G. This idea of reduction
fails, if the action ofG on M is not free. However, the Peter–Weyl theorem works
well for reducing quantum systems onM. When applied to the space of wave
functions onM, the Peter–Weyl theorem provides the decomposition of the space
of wave functions into spaces of equivariant functions onM, which are interpreted
as Hilbert spaces for reduced quantum systems onQ. The concept of connection on
a principal fiber bundle is generalized to be defined well on the stratified manifold
M. Then the reduced Laplacian is well defined as a self-adjoint operator with the
boundary conditions on singular sets of lower dimensions. Application to quantum
molecular mechanics is also discussed in detail. In fact, the reduction of quantum
systems studied in this paper stems from molecular mechanics. If one wishes to
consider the molecule which is allowed to lie in a line when it is in motion, the
reduction method presented in this paper works well. ©2000 American Institute
of Physics.@S0022-2488~00!01104-X#

I. INTRODUCTION

Symmetry has always played an important role in mechanics. When a Hamiltonian system
admits a symmetry group, the system reduces to a Hamiltonian system of less degrees of freedom.
Reduction of Hamiltonian systems with symmetry is established by Marsden and Weinstein1 and
is explained in a textbook.2 The reduction method has found a wide variety of applications. In
particular, the notion of moment map, which is a key word in the reduction method, has been
introduced in differential geometry.

The reduction method is applicable to molecular mechanics, both classical and quantum. In
fact, the translational invariance allows one to separate the relative motion of atoms from the
motion of the center of mass. Contrary to this, the rotational invariance of molecules is not able to
separate the vibrational motion from the rotational motion of the whole molecular system, which
was shown by Guichardet.3 The nonseparability of vibration and rotation of a molecule is an
underlying principle that allows cats to fall on their legs when launched in the air. While they have
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zero angular momentum and is free from external torque during the fall, they can make a rotation
after a vibrational motion. It was Guichardet3 who gave a decisive answer to this seemingly
strange fact. He defined a natural connection on the center-of-mass system and thereby applied the
holonomy theorem to show that the existence of nonvanishing curvature results in the nonsepa-
rability of vibration and rotation. It is to be noted here that the center-of-mass system is made into
a fiber bundle if collinear configurations of the molecule are gotten rid of. The connection is
defined on this restricted center-of-mass system.

In spite of the nonseparability of vibration and rotation, the reduction method is still appli-
cable. One of the authors~T.I.! applied the reduction method of Marsden and Weinstein to the
molecular system by the use of conservation of angular momentum and gave a reduced Hamil-
tonian system,4 according to which the ‘‘internal’’ motion of molecules is coupled with rotation
through a kind of gauge field. The expression of the reduced equation of motion in terms of local
coordinates is given in Ref. 5. He also constructed the Schro¨dinger equation to describe the
internal motion of molecules in both two and three dimensions, using differential geometry of
fiber bundles and connections.6–8 However, in the previous papers,6–8 collinear configurations of
the molecule in which all the atoms are aligned in a line inR3 were out of consideration for the
reason that the collinear configurations form a singular point set which prevents the center-of-mass
system from being made into a principal fiber bundle. The bundle picture is extended to be
applicable to a system of rigid bodies. Classical and quantum mechanics for the system of jointed
identical axially symmetric cylinders is treated in Ref. 9.

It is Kummer10 who first discussed the reduction of the cotangent bundle of a principal fiber
bundle with a connection. He may have been aware of a use of the connection in many-body
systems. However, he did not refer to the center-of-mass system as a principal fiber bundle in
general, but referred to a planar three-body system as anS1-bundle. He claimed also that the
reduction method had been applied to the planar three-body system by Satzer.11 Guichardet is the
first who showed that the connection defined on the restricted center-of-mass system as a principal
fiber bundle played an important role in the study of many body systems; he showed that the
holonomy group of the connection coincides with the structure group by the use of the Ambrose–
Singer holonomy theorem, along with the conclusion that any rotation can be realized as a ho-
lonomy associated with a closed loop in the base manifold~or a shape space!.

This paper has an aim to improve the previous theory so that it may be applicable on the
whole center-of-mass system which includes the singular point set stated above. Since the center-
of-mass system is endowed with a natural Riemannian metric and admits the action of SO~3! as an
isometry group, a general setting to start with is that a configuration spaceM is a Riemannian
manifold on which a compact Lie groupG acts by isometry. For a quantum system onM with
symmetry Lie groupG, the reduced quantum system by symmetry is to be defined on the quotient
spaceQ5M /G. However, a problem arises since theQ is not a smooth manifold in general,
which may include singular points. A part ofQ, denoted byQm , is a smooth manifold, which is
called the internal or shape space endowed with local coordinates describing the internal degrees
of freedom of the molecule. One can set up a reduced quantum system on the smooth manifold
Qm .6,7 However, if one considers the wholeQ, then a question arises as to how wave functions of
internal coordinates should behave on the singular point set. This article will provide a general
formulation to describe quantum mechanics of a reduced system with singular points taken into
account.

Let L2(M ) be the Hilbert space of square integrable functions on the Riemannian manifoldM,
which is to be looked upon as the space of wave functions on the center-of-mass system. The
group actionG3M→M ; (g,x)°gx induces a unitary representation ofG in L2(M ) through the
action G3L2(M )→L2(M ); (g, f (x))° f (g21x). This representation will be decomposed into
irreducible ones to give rise to representation subspaces ofL2(M ) accordingly. To get an idea of
the decomposition ofL2(M ), the Peter–Weyl theorem on unitary representations of compact
groups is of great help, since the theorem is understood to provide the decomposition of the
Hilbert spaces of functions on groups. The decomposition ofL2(M ) is then performed in a similar
manner, to define the spaces of equivariant functions onM according to respective irreducible
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unitary representations ofG. These spaces will give rise to wave functions reduced by the use of
the angular momentum conservation, since choosing an irreducible unitary representation of the
isometry group amounts to keeping an angular momentum eigenvalue fixed. The equivariant
functions will be shown to satisfy a good boundary condition, in a natural manner, on the set of
singular points. The general formalism for reducing wave functions is applicable to molecular
mechanics. In particular, a triatomic molecule will be studied in detail.

The idea of using the Peter–Weyl theorem for quantization is old; it dates back to Casimir’s
work on quantum mechanics of rigid body in 1931. The idea of using the invariant functions to set
up a reduced quantum system by symmetry is also old; for example, the quantum theories of
electromagnetism12 or gravitation13,14 are described by gauge invariant and reparametrization in-
variant states, respectively. The idea of using equivariant functions is not new, either; it has
already been introduced by T.I.~Refs. 8,7! in molecular quantum mechanics and by Landsman and
Linden15 in quantization on homogeneous spaces, respectively. A point to make in the present
paper is to extend the concept of equivariant functions on a principal fiber bundle to any manifold
on which a compact group dose not necessarily act freely.

There are other methods of reduction by symmetry. A more algebraic formulation was set up
by Landsman16 and Wren,17 who used a representation theory ofC* algebras due to Rieffel.18 The
present formulation is rather geometric and comprehensible in applications. On the other hand, the
path integral formulation is compatible with a method of reduction by symmetry. It has been
shown15,19,20that path integral over a Lie groupG is reduced to path integral over a homogeneous
spaceQ5G/H when the system possesses symmetry given by a subgroupH. However, this
method is only applicable to homogeneous spaces, which are free from singularity, while the
method proposed in the present paper will be applicable even when the quotient spaceQ
5M /G is not a smooth manifold, as will be shown later.

On the other hand, S´niatycki and Weinstein,21 and other people22 have studied reduction and
quantization of symplectic systems with symmetry. They consider reduction of symplectic mani-
fold when the momentum map takes a singular value and therefore the level set does not form a
smooth manifold. In our context, singularity refers to points of a configuration space which admit
larger isotropy groups than those at generic points. The subject to be considered here is different
from what has been considered in Refs. 22,21, and a relation between these subjects will not be
examined.

The plan of the present paper is as follows: In Sec. II, the Peter–Weyl theorem on unitary
representations of compact groups is reviewed briefly. This theorem is extended to be applied to
a unitary representation of a compact Lie groupG in a Hilbert spaceH in order to decomposeH
into a series of invariant subspaces. The decomposition procedure is then applied to the unitary
representation ofG in the Hilbert spaceL2(M ). As far as the decomposition is concerned,M is
assumed only to be equipped with aG-invariant measure, and does not need to be a Riemannian
manifold. The above stated decomposition ofL2(M ) proves to be a decomposition into a series of
spaces of ‘‘equivariant’’ functions. Section III contains a study of geometric structure of the
G-manifoldM, where the assumption is not yet made thatM is a Riemannian manifold. It will be
shown that the orbit spaceQ5M /G becomes not a smooth manifold but a collection of smooth
manifolds of various dimensions, which structure is called stratification. With this stratification
taken into account, a connection onM, equivariant functions onM, and covariant derivatives will
be defined. In Sec. IV,M is assumed to be a Riemannian manifold, andG to act onM by isometry.
The Laplacian acting on smooth functions onM will be reduced to be defined on each space of
equivariant functions according to the decomposition ofL2(M ), which will provide a reduced
quantum system onQ. The reduced systems are well defined. In fact, the equivalence condition
will provide a boundary condition on equivariant functions at singular points. As a simple ex-
ample, the Laplacian onR2 will be studied. In Sec. V, the general formalism developed in the
preceding sections is applied to molecular mechanics. A general setting forN-atomic molecules
will be established, and then triatomic molecules will be studied in detail. Sec. VI contains
conclusions and discussions.
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II. REDUCTION OF QUANTUM SYSTEMS WITH SYMMETRY

A. The Peter–Weyl theorem

We start with a brief review of the Peter–Weyl theorem, which will provide a key idea to the
reduction method for quantum dynamical systems with symmetry.

Let G be a compact Lie group. Then there is the unique Haar measuremG on G which is
normalized to satisfy*GdmG51. LetL2(G) denote the space of all the square integrable functions
on G, L2(G)ª$ f :G→C u *Gu f (g)u2dmG(g),`%, which is equipped with the inner product

^ f , f 8&ªE
G

f ~g! f 8~g!dmG~g! ~2.1!

for f and f 8 of L2(G).
Let rx:G→U(H x) denote an irreducible unitary representation ofG on a Hilbert spaceH x

of finite dimensiondx
ªdimH x, wherex is to label all of inequivalent irreducible unitary rep-

resentations ofG, andU(H x) denotes the space of unitary operators onH x. By r i j
x (g) we denote

the matrix elements ofrx(g) with respect to some orthonormal basis ofH x, where indices range
over i , j 51,2, . . . ,dx.

The Peter–Weyl theorem then states that all the functions$Adx r i j
x (g)%x,i , j form a complete

orthonormal set~CONS! in L2(G). Namely, one has the orthonormality relations,

dxE
G

r i j
x ~g!rkl

x8~g!dmG~g!5dxx8 d ik d j l ~2.2!

along with the completeness condition that if

E
G

r i j
x ~g! f ~g!dmG~g!50 ~2.3!

for all x,i , j , then f [0. Hence, any functionf PL2(G) can be expanded in a Fourier series in
$Adx r i j

x %x,i , j , so that one has

f ~h!5 (
x,i , j

dxr i j
x ~h!E

G
r i j

x ~g! f ~g!dmG~g!5(
x,i

dxE
G

r i i
x~hg21! f ~g!dmG~g!

5(
x,i

dxE
G

r i i
x~g! f ~g21h!dmG~g!. ~2.4!

The expansion formula~2.4! is put formally in a compact form,

(
x,i

dx r i i
x~g!5d~g!, ~2.5!

where d(g) is Dirac’s delta function onG with respect to the measuremG . The Peter–Weyl
theorem also implies that

L2~G!> % x~~H x!* ^ H x!, ~2.6!

where it is to be noted that (H x)* ^ H x is isomorphic with the direct sum ofdx copies ofH x.

B. Method of reduction

We now apply the Peter–Weyl theorem to a quantum dynamical system with symmetry to
obtain a series of reduced systems. A quantum dynamical system is defined to be a pair (H,H) of
a Hilbert spaceH and a HamiltonianH, whereH is a self-adjoint operator onH. Suppose that the
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system (H,H) admits a compact Lie groupG as a symmetry group, namely, each elementg
PG is represented as a unitary operatorU(g) which acts onH, commuting withH.

In view of ~2.4!, we define, for each label (x,i ), an operatorPi
x on H to be

Pi
x
ªdxE

G
r i i

x~g!U~g!dmG~g!, ~2.7!

which apparently commutes withH. From theG-invariance of the measuremG and from the
orthonormality relations~2.2!, it follows that

~Pi
x!†5Pi

x , Pi
xPj

x85dxx8d i j Pi
x . ~2.8!

Further, the completeness condition~2.5! implies that

(
x,i

Pi
x5 idH , ~2.9!

where idH is the identity operator onH. Equations~2.8! and~2.9! show that the set$Pi
x%x,i forms

a family of orthogonal projection operators onH, bringing about the orthogonal decomposition of
H,

H5 % x,i Im Pi
x , ~2.10!

which is an analog to~2.6!. Moreover, each subspace ImPi
x is invariant under the action of the

Hamiltonian H. Thus the dynamical system (H,H) is broken up into a family of subsystems
(Im Pi

x ,H) labeled by (x,i ). We call each system (ImPi
x ,H) a reduced quantum dynamical

system.
In the language of physics, the pair (x,i ) labels conserved quantities associated with the

symmetry groupG, and thereby define a closed dynamical system that consists of the states with
the assigned conserved quantities. For example, if the original system hasG5SU~2! symmetry,
the angular momentum is conserved. The states labeled by (j ,m) have the total angular momen-
tum and the component of the angular momentum fixed atJ25 j ( j 11) andJ35m, respectively,
and are described as vector-valued functions with 2j 11 components.

C. Characterization of the reduced system

To gain a deeper insight into the decomposition~2.10!, we introduce an operator onH by

Vi j
x
ªdxE

G
r i j

x ~g!U~g!dmG~g! ~2.11!

for each labelx and indicesi , j 51, . . . ,dx. In particular, one hasVii
x 5Pi

x . A straightforward
calculation shows that

~Vi j
x !†5Vji

x , Vi j
x Vkl

x85dxx8d jk Vil
x . ~2.12!

As an immediate consequence, one obtainsVi j
x Pk

x50 if kÞ j , so that the domain ofVi j
x reduces

naturally to ImPj
x on account of ~2.10!. Since (Vi j

x )†Vi j
x 5Vji

x Vi j
x 5Vj j

x 5Pj
x , it holds that

KerVi j
x 5Ker Pj

x . Similarly, from Vi j
x (Vi j

x )†5Vi j
x Vji

x 5Vii
x 5Pi

x , it follows that Ker (Vi j
x )†

5Ker Pi
x , and thereby that ImVi j

x 5(Ker (Vi j
x )†)'5(Ker Pi

x)'5Im(Pi
x)†5Im Pi

x . Therefore,Vi j
x

becomes a unitary transformation

Vi j
x :Im Pj

x→Im Pi
x . ~2.13!

As a collection ofVi j
x , we define another operatorVx:H x

^ H→H x
^ H by
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Vx
ªdxE

G
rx~g! ^ U~g!dmG~g!. ~2.14!

Then Eq.~2.12! implies that

~Vx!†5Vx, Vx Vx5dx Vx, ~2.15!

which shows thatVx/dx is a projection operator onH x
^ H. Further, it is easy to verify thatVx

satisfies, for anyhPG,

Vx~rx~h! ^ U~h!!5Vx, ~2.16!

~rx~h! ^ U~h!!Vx5Vx, ~2.17!

which implies that

Im Vx5~H x
^ H!G

ª$cPH x
^ H u ~rx~h! ^ U~h!!c5c, ;hPG%. ~2.18!

We call (H x
^ H)G the subspace of invariant vectors ofH x

^ H.
Let $e1

x , . . . ,edx
x % be an orthonormal basis ofH x, which defines an injectionei

x :C→H x by
l°lei

x for each i 51, . . . ,dx. Its adjoint operator (ei
x)†:H x→C is defined by a surjection

v°^ei
x ,v&,vPH x. The domain of respective maps extends to the tensor product space withH to

give rise toei
x :H→H x

^ H and (ei
x)†:H x

^ H→H. With these notations,Vi j
x is put in the form

Vi j
x 5(ei

x)† Vx ej
x . We then introduce an operator by

Sj
x
ª

1

Adx
Vx ej

x :H→H x
^ H. ~2.19!

The adjoint operator is expressed as

~Sj
x!†

ª

1

Adx
~ej

x!† Vx:H x
^ H→H. ~2.20!

Then the second relation of~2.15! yields

~Sj
x!†Sj

x5~ej
x!† Vx ej

x5Pj
x . ~2.21!

On the other hand, from~2.12!, we observe thatVx ej
x (ej

x)† Vx5Vx, and thereby obtain

Sj
x~Sj

x!†5
1

dx
Vx ej

x ~ej
x!† Vx5

1

dx
Vx. ~2.22!

SincePj
x andVx/dx are projection operators onH and onH x

^ H, respectively, Eqs.~2.21! and
~2.22! are put together to imply that the restricted map

Sj
x :Im Pj

x→̃ Im Vx5~H x
^ H!G ~2.23!

is a unitary transformation. Thus the subspace ImPj
x is characterized as (H x

^ H)G.
We turn to the HamiltonianH acting onH. It appears thatH is extended to an operator

idH x ^ H on H x
^ H. SinceH commutes withU(g) for eachgPG, the extended operator idH x

^ H commutes withVx and withSj
x as well, so that one has

Sj
xH5~ idH x ^ H !Sj

x . ~2.24!
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It then turns out that the reduced system (ImPj
x ,H) is identified with ((H x

^ H)G, idH x ^ H),
which will be investigated in the following sections in detail.

Before investigation into the reduced system, we wish to consider how the action ofG is
decomposed according to the decomposition ofH. In the below, the dual space (H x)* to H x is
taken as (H x)*ªHom (H x;C), irrespective of the inner product inH x. Then the map
Adx (Sj

x)†5(ej
x)† Vx:H x

^ H→H can be viewed as a mapTj
x :H→(H x)* ^ H in the manner as

follows: Using the identification EndH x>(H x)* ^ H x, we may regard the mapVx:H x
^ H

→H x
^ H as a mapVx:H→(H x)* ^ H x

^ H. Combining id(H x)* ^ (ej
x)†:(H x)* ^ H x

^ H
→(H x)* ^ H with Vx, we can expressTj

x as the map

Tj
x5~ id(H x)* ^ ~ej

x!†!Vx:H→~H x!* ^ H. ~2.25!

Then it can be verified that

~Tj
x!†Tj

x5(
k

Pk
x , Tj

x~Tj
x!†5 id(H x)* ^ Pj

x , ~2.26!

where (Tj
x)†:(H x)* ^ H→H is the adjoint operator. From this, it follows thatTj

x yields a unitary
transformation

Tj
x : %

k

Im Pk
x ——→

;

~H x!* ^ Im Pj
x . ~2.27!

Then the right invariance ofVx under theG action, expressed in~2.16!, makes the following
diagram commutative,

H 5 %
x,i

Im Pi
x ——→

Tj
x

~H x!* ^ Im Pj
x

U~h!↓ ↓ t
rx~h21! ^ id

H 5 %
x,i

Im Pi
x ——→

Tj
x

~H x!* ^ Im Pj
x ,

~2.28!

wheretrx(h21)5rx(h) is the contragredient representation ofG on (H x)* . As for the action of
the HamiltonianH, we obtain the following commutative diagram accordingly:

H 5 %
x,i

Im Pi
x ——→

Tj
x

~H x!* ^ Im Pj
x

H↓ ↓ id^ H

H 5 %
x,i

Im Pi
x ——→

Tj
x

~H x!* ^ Im Pj
x .

~2.29!

The commutative diagrams~2.28! and ~2.29! show that the decomposition of the representation
(G,H,U) is compatible with the spectral resolution ofH.

D. Equivariant functions

The general reduction method introduced in the previous section applies to a quantum system
on a configuration spaceM which admits the action of a compact Lie groupG.

Suppose that a compact Lie groupG acts on a differentiable manifoldM by diffeomorphisms,
namely, we are given aC` mapG3M→M satisfyingex5x and (gh)x5g(hx) for any xPM
and anyg,hPG with the identity elementePG. Then M is called aG-manifold. In addition,
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suppose thatM is equipped with a measuremM which is invariant under the action ofG. Let H
5L2(M ) be the space of square integrable functions onM with respect to the measuremM . The
groupG is represented onH5L2(M ) by unitary operatorsU(h),hPG, through

~U~h! f !~x!ª f ~h21x!, f PL2~M !. ~2.30!

Then the reduction method applies toH5L2(M ) to yield the Hilbert subspace ImPj
x . The unitary

transformation Sj
x given in ~2.23! allows us to identify ImPj

x(,L2(M )) with (H x

^ L2(M ))G(,H x
^ L2(M )). The spaceH x

^ L2(M ) can be identified with the Hilbert space,
L2(M ;H x), of square integrableH x-valued functions onM;

L2~M ;H x!ªH c:M→H x u E
M

uuc~x!uu2 dmM~x!,`J , ~2.31!

which is equipped with the inner product,

^f,c&ªE
M

^f~x!,c~x!&dmM~x!, f,cPL2~M ;H x!, ~2.32!

where^f(x),c(x)& denotes the inner product inH x. Then, the condition given in~2.18! along
with (2.30) implies thatcP(H x

^ L2(M ))G, when viewed as anH x-valued function, satisfies

c~hx!5rx~h!c~x!, hPG, ~2.33!

which shows thatc is equivariant under theG-action. We conclude therefore that the reduced
Hilbert space ImPj

x is identified with the space of square integrable equivariant functions, which
we denote byL2(M ;H x)G,

~H x
^ L2~M !!G>L2~M ;H x!G5$cPL2~M ;H x!uc~gx!5rx~g!c~x!,gPG%. ~2.34!

Here we have to note that according to the decomposition~2.10! along with ~2.23!, ~2.27!, and
~2.34!, the Hilbert spaceL2(M ) is decomposed into

L2~M !> % x~~H x!* ^ L2~M ;H x!G!. ~2.35!

So far we have characterized the reduced Hilbert space on theG-manifold M. We now have
to specify the Hamiltonian onL2(M ) and to reduce it. We will take a Hamiltonian as defined to
be the sum of the Laplacian onM and a potential energy function onM. In the succeeding
sections, we will study the geometric structure ofM in order to analyze the Laplacian onM
according to the decomposition~2.35!.

III. GEOMETRIC SETTING ON G-MANIFOLDS

A. Stratification of G-manifolds

According to Davis,23 G-manifolds can be viewed as collections of fiber bundles. We here
make a brief review of his idea in a suitable form for our application. For more rigorous defini-
tions, see the literature.24

Let M be aG-manifold. For a pointxPM , we denote theisotropy subgroupat x and the
G-orbit of x by Gxª$gPG u gx5x% and byOxª$gx u gPG%, respectively. Then one hasOx

>G/Gx .
TakeGx andGy for two pointsx,yPM . If Gx is conjugate toGy by an inner automorphism

Ag :G→G; h°ghg21 with somegPG; Gy5g•Gx•g21, then the orbitsOx andOy are diffeo-
morphic to each other by the correspondence induced byAg . Of course, ify is in the orbitOx ,
namely, if there exists somegPG such thaty5gx, then Gy is conjugate toGx by Ag . The
conjugacy class ofGx is called the orbit type ofOx and denoted by@Gx# or t. We say that the
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point x itself also has the orbit typet, if Ox has the orbit typet. Let T(M ) denote the set of all
the orbit types appearing inM; T(M )ª$@Gx# u xPM %. For eachtPT(M ), we denote a represen-
tative of the conjugacy class byGtPt.

One can introduce a partial order onT(M ) as follows: We say thatt1 is lower thant2

(t1 ,t2PT(M )), t1<t2 , if there are representativesGt1
Pt1 and Gt2

Pt2 such thatGt1
.Gt2

.
An orbit Ox is calledmaximalif its orbit typet is maximal with respect to this order. Orbits which
are not maximal are calledsingular. We say also that a pointx is maximal or singular according
to whether the orbit type ofOx is maximal or singular. For each orbit typetPT(M ), we denote
by M tª$xPM u GxPt% the set of points with the same orbit typet, which becomes a smooth
manifold. ThusM is stratified into a collection of the smooth submanifoldsM t , M5qtM t ,
which is partially ordered by the system of orbit types (T(M ),<). Each manifoldM t is called a
stratum.

The set of orbitsQªM /G becomes a topological space with respect to the quotient topology
which is defined by demanding that the canonical projection mapp:M→M /G is continuous. The
spaceQ is called anorbit space. A point qPQ is also classified by the orbit type ofp21(q). The
point q is said to be maximal or singular according to whether the orbit is maximal or singular.
The Q inherits differentiable structure fromM, if and only if all the orbits have the same orbit
type. If otherwise,Q is stratified into a collection of smooth manifolds of various dimensions.
SettingQtªp(M t), one hasQ5qtQt . The restriction ofp:M→Q onto each stratumpt :M t

→Qt defines a fiber bundle with fiberG/Gt . We then call the pentaplet (M ,G,Q,p,T(M )) a
stratified bundle.

If every point ofM has the same orbit type,p:M→Q is nothing but a usual fiber bundle. In
particular, if the groupG acts onM freely, namely,Gx5$e% for all xPM , then p:M→Q
becomes a principal fiber bundle with structure groupG. In this sense, we may regard the
G-manifold as a generalization of fiber bundles although the base spaceQ5M /G is not a smooth
manifold. Mechanics of molecules provides an example of a stratified bundle that is not a fiber
bundle, as shown in the later section.

According to the principal orbit theorem,25,23 if the orbit spaceQ5M /G is connected, there is
the maximumorbit type inT(M ) with respect to the order<. Although the maximum orbit type
is also named the principal orbit type in Refs. 25 and 23, we will call it maximum in this paper.
We assume thatQ is connected and that the maximum orbit exists. We denote the maximum orbit
type bym. Moreover, the principal orbit theorem25,23states that the maximum stratumMm is open
and dense inM. Thus the setM singªM2Mm of all the singular points coincides with the bound-
ary ]Mm . The image ofMm and ]Mm by the projectionp are denoted byQmªp(Mm) and
]Qmªp(]Mm), respectively. We put dimM5m and dimQm5n5m2p. Then the dimension of
the maximum orbit is dimG/Gm5p.

Though the orbit spaceQ is not a manifold, one can speak of differentiability of functions on
Q. A function ofw:Q→R is called ofCr class whenw+p:M→R is a differentiable function ofCr

class. Clearly,w+p is a G-invariant function onM. Conversely, anyG-invariant functionf on M
is identified with a function onQ. We denote the space ofG-invariant functions onM of Cr class
by Cr(M )G5$ f :M→R u f (gx)5 f (x), ;gPG, ;xPM %.

A tangent vectorX to M at x is usually defined as a differential operator acting onC`(M );
X:C`(M )→R. A tangent vector onQ is defined as follows: We define an equivalence relation;
in the tangent vector spaceTxM by stating thatX;Y if X f5Y f for all f PC`(M )G. The equiva-
lence class ofX is denoted byp* (X), which defines a linear mapp* (X):C`(M )G→R. The set
TqQª$p* (X) u XPTxM ,p(x)5q% becomes a vector space through the structure of the vector
spaceTxM and is called a tangent vector space atqPQ.

B. Stratified connection

Let (M ,G,Q,p,T(M )) be the stratified bundle defined above. IfG acts onM freely, the
stratified bundle becomes a principal fiber bundle. Although the concept of connection is usually
defined on principal fiber bundles, we would here like to define extended connections on stratified
bundles.
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Let us call a subspaceVxªTxOx of TxM a vertical subspaceat xPM . The action ofg
PG:M→M ; x°gx induces an actiong* :TxM→TgxM by differentiation. The complementHx

of Vx is called ahorizontal subspace. If the direct sum decompositionTxM5Vx% Hx is smooth
and if the family $Hx%xPM satisfies the invariance;Hgx5g* Hx , the decompositionTxM5Vx

% Hx defines aconnection. However, we should note that dimVx5dimOx and dimHx5dim M
2dimOx jump suddenly when the pointx passes singular points. Thus the smoothness of the
decompositionTxM5Vx% Hx must be required on each stratumM t , so that one understands that
for any smooth vector fieldX which is decomposed intoX(x)5XV(x)1XH(x) according to
TxM5Vx% Hx , the componentsXV andXH are also smooth on eachM t . Then the assignment
x°Hx for eachxPM is called astratified connectionover the stratified bundlep:M→Q.

The decompositionTxM5Vx% Hx induces a decomposition of the dual spaceTx* M5Vx*
% Hx* with Vx*ª$fPTx* M u f(v)50,;vPHx% andHx* 5$cPTx* M u c(u)50,;uPVx%.

Let g andgx denote the Lie algebras ofG andGx , respectively. The relationggx5Adggx is an
immediate consequence ofGgx5AgGx . The group actionG3M→M ; (g,x)°gx gives rise to
vector fieldsg3M→TM; (j,x)°jM(x) as infinitesimal transformations. Fixing a pointxPM ,
one obtains a linear mapux :g→TxM ; ux(j)5jM(x). It then follows that Kerux5gx and Imux

5Vx , and hence thatux :g→TxM induces an isomorphismũx :g/gx→̃ Vx .
The connection defined above is described in term of differential forms. A connection formv

is defined as the composition of the projectionTxM5Vx% Hx→Vx and the inverse map
( ũx)

21:Vx→̃ g/gx ,

vx :TxM5Vx% Hx→Vx→̃ g/gx ~3.1!

at each pointxPM . The formv is thus a one-form which takes values in quotient spaces of the
Lie algebrag. It has the following properties:

v~ux~j!![j~modgx!, jPg, ~3.2!

~g* v!x5Adg vx , gPG, ~3.3!

whereg* is the pull-back associated with the mapg* :TxM→TgxM and Adg is to be understood
as a map Adg :g/gx→g/ggx . To verify ~3.3!, we need the formula thatugx(Adgj)5g* (ux(j)) for
jPg and that (ũgx)

21+g* 5Adg( ũx)
21. The properties~3.2! and ~3.3! are generalization of the

well-known defining properties of usual connection forms. It is also noted that the composition
map

u x̃+vx :TxM5Vx% Hx→Vx ~3.4!

is a projection, and that Eq.~3.2! is equivalently written asvx+ ũx5 idg/gx
.

C. Equivariant forms

Let cPC`(M ,H x)G be a smooth equivariant function, that is, one hasc(gx)5rx(g)c(x)
for gPG ~see~2.33!!. If a point xPM carries a nontrivial isotropy groupGx , then the value of
c(x) becomes invariant under the action ofGx ; c(x)5rx(g)c(x) for gPGx . For a subgroup
G1,G, we here define (H x)G1 to be amaximum subspace of invariant vectorsunder the action
of G1 , that is, (H x)G1

ª$vPH x u rx(g)v5v, ;gPG1%. With this notation, we then have
c(x)P(H x)Gx.

Properties of subspaces of invariant vectors are worth remarking. One has obviously
(H x) $e%5H x. Further, one obtains (H x)G5$0%, if and only if there is no nontrivial invariant
vector. To a sequence of subgroups$e%,G1,G2(,G), there corresponds a sequence of sub-
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spacesH x.(H x)G1.(H x)G2(.$0%). For conjugate subgroupsG1 and AgG1 , it holds that
(H x)AgG15rx(g)(H x)G1. In particular, on an orbitOx , one has (H x)Ggx5rx(g)(H x)Gx on
account ofGgx5AgGx .

Like equivariant functions, we can define equivariant differential forms in a similar manner.
An equivariant k-formis defined as anH x-valued differentialk-form a:`kTM→H x satisfying
g* a5rx(g)a for any gPG. When an equivariantk-form a further satisfiesi (jM)a50 for any
jPg, it is called anequivariant horizontal k-form. While the set of all the differentialk-form on
M is denoted byVk(M ), the set of all theH x-valued differentialk-forms and the set of all the
equivariant horizontalk-forms are denoted byH x

^ Vk(M )>Vk(M ;H x) andVH
k (M ;H x)G, re-

spectively.
At each point xPM carrying a nontrivial isotropy groupGx , the equivariant hori-

zontal k-form a takes a restricted range as well as equivalent functions. It turns out that
ax(X1 , . . . ,Xk)P(H x)Gx for any X1 , . . . ,XkPTxM whenGx is connected. The proof is given
below: LetLX denote the Lie derivation by a vector fieldX on M, andr

*
x denote a representation

of the Lie algebrag on H x induced by differentiation of the representationrx of G. The defining
property of the equivariant formg* a5rx(g)a for gPG is differentiated to giveLjM

a

5r
*
x (j)a for jPg. This equation and the horizontal conditioni (jM)a50 for jPg are put

together with the Cartan formulaLjM
a5 i (jM)da1di(jM)a to provide

r
*
x ~j!a5 i ~jM !da, jPg. ~3.5!

If jPgx , one hasjM(x)50 and hencer
*
x (j)ax50 from ~3.5!, which implies thatrx(g)ax

5ax for gPGx if Gx is connected. Thus we conclude thataxP(H x)Gx.

D. Associated vector bundles

So far we have discussed equivariant functions and forms on the stratified bundle. We now
wish to define vector bundles associated with the stratified bundle, like vector bundles associated
with principal fiber bundles.

Let us define an equivalence relation; in M3H x by the relation (x,v);(gx,rx(g)v) with
gPG. Let @x,v# denote the equivalence class with a representative (x,v). Then the vector bundle
associated with the stratified bundle (M ,G,Q,p,T(M )) by a representation (H x,rx) is defined to
be the quotient space,

M3rxH x
ª~ qxPM~$x%3~H x!Gx!!/;. ~3.6!

The projection mapM3H x→M naturally induces a projection mapprx:M3rxH x→Q;

@x,v#°p(x). Further, each pointxPM defines an isomorphismx̃:(H x)Gx→prx
21(p(x))5Ox

3rxH x by v° x̃(v)ª@x,v#. Note that, for each stratumQt , prx
21(Qt) is a vector bundle overQt

with fiber (H x)Gt, so that one hasM3rxH x5qtprx
21(Qt). In this sense, we may callM

3rxH x a stratified vector bundle. However, we will refer to it as theassociated vector bundlefor
simplicity. Moreover, each fiberprx

21(q) at qPQ inherits an inner product fromH x; for h,h8
Pprx

21(q), the inner product̂h,h8& is defined to be

^h,h8&ª^x̃21~h!,x̃21~h8!&, ~3.7!

where the RHS is the inner product defined onH x. It is easy to verify that the RHS is independent
of the choice ofxPp21(q).

A section of the associated vector bundle is a maps:Q→M3rxH x satisfying prx+s
5 idQ . An equivariant functionc defines a sectionc[ of the associated vector bundle through
c[(p(x))5@x,c(x)#5( x̃+c)(x). The c[(q) is well-defined. In fact,c[(p(gx))5@gx,c(gx)#
5@gx,rx(g)c(x)#5@x,c(x)#5c[(p(x)) for gPG. Conversely, a sections defines an equiva-
riant functions] throughs](x)5( x̃21+s+p)(x). Thus we can identify sections of the associated
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vector bundle with equivariant functions. When the corresponding equivariant functions] is
differentiable as anH x-valued function onM, the sections is called differentiable, whileQ is not
a manifold in general. The set of all of the differentiable sections ofM3rxH x is denoted by
G(M3rxH x). Thus the space of sectionsG(M3rxH x) is in one-to-one correspondence with the
space of equivariant functionsC`(M ;H x)G.

To associate equivariant horizontalk-forms with certain sections, we should set up another
vector bundle. The action ofgPG on the space of one-forms, (g21)* :Tx* M→Tgx* M , induces the
action on the space of horizontalk-forms, (g21)* :`kHx* →`kHgx* . This action is extended to
that on the space ofH x-valued horizontalk-forms `kH* ^ H x by the linear map generated by

f ^ vP`kHx* ^ H x°rx̃~g!~f ^ v !ª~g21!* f ^ rx~g!vP`kHgx* ^ H x. ~3.8!

We then take a subspace of invariant vectors

~`kHx* ^ H x!Gx
ª$zP`kHx* ^ H x u rx̃~g!z5z, ;gPGx% ~3.9!

and define an associated vector bundle, like~3.6!, through

M3rx̃~`kH* ^ H x!ª~ qxPM~$x%3~`kHx* ^ H x!Gx!/;, ~3.10!

where the equivalent relation; in M3(`kH* ^ H x) is defined as (x,z);(gx,rx̃(g)z). A pro-
jection mapprx̃ :M3rx̃(`kH* ^ H x)→Q is defined naturally as@x,z#°p(x). The space of
smooth sectionsG(M3rx̃(`kH* ^ H x)) is also in one-to-one correspondence with the space of
equivariant horizontal formsVH

k (M ;H x)G.

E. Covariant derivative

Covariant derivatives ofk-forms on the stratified bundle can be defined like those on the
principal fiber bundle.Covariant derivationis a linear mapD:VH

k (M ;H x)G→VH
k11(M ;H x)G

defined through

Da~X1 , . . . ,Xk11!5da~X1
H , . . . ,Xk11

H !, XiPTxM ,i 51, . . . ,k11, ~3.11!

for aPVH
k (M ;H x)G, whereXi

H is the horizontal component ofXi5Xi
V1Xi

H .
The covariant derivativeDa can be expressed by using the connection formv. To anyXV

PVx , there corresponds an elementjPg such thatXV5jM(x) uniquely modulogx . By the
definition of the connection formv, we then havej[v(XV)[v(X) (modgx). With the help of
~3.5!, one hasi (XV)da5 i (jM)da5r

*
x (j)a5r

*
x (v(X))a. The last equality holds well in spite

of the ambiguity in the value ofv(X) since r
*
x (z)ax50 for zPgx . Putting together these

equations results in

Da~X1 , . . . ,Xk11!5da~X12X1
V , . . . ,Xk112Xk11

V !

5da~X1 , . . . ,Xk11!

1 (
i 51

k11

~21! ir
*
x ~v~Xi !!a~X1 , . . . ,Xî , . . . ,Xk11!, ~3.12!

whereXî means the removing ofXi . Thus our result is expressed as

Da5da2r
*
x ~v!`a. ~3.13!

We should note that smoothness of the covariant derivative is ensured only within each stratum
M t .
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IV. REDUCTION OF THE LAPLACIAN

A. Reduced Laplacians

We have characterized the Hilbert space of the reduced quantum system and studied the
geometric structure of the manifold which is underlying the Hilbert space. Now we turn our
attention to the Hamiltonian acting on the Hilbert spaceL2(M ). As was anticipated, the Hamil-
tonianH we treat takes the formH5 1

2DM1V with the LaplacianDM and the potentialV.
First we give a precise definition of the Laplacian. We have been working with the

G-manifold M equipped with theG-invariant measuremM . We assume thatM has no boundary.
In what follows, we make another assumption onM; M is assumed to be oriented and equipped
with a Riemannian metricgM which is invariant under the action ofG. The metricgM induces a
volume formvM , which is also invariant under the action ofG. We assume also thatmM is the
measure associated with the volume formvM . Let Cc

`(M ) be the set of all theC` functions onM
with compact support. Then the LaplacianDM :Cc

`(M )→Cc
`(M ) is defined through

E
M

uud f~x!uugM

2 vM5E
M

f ~x!~DM f !~x! vM , ~4.1!

whereuud f(x)uugM

2 denotes the norm ofTx* M induced by the metricgM . We note that the domain

of DM is extended inL2(M ) to makeDM a self-adjoint operator. Of course, in order that this be
the case,M has to be assumed to be complete. Since both the metricgM and the volumevM are
G-invariant, the LaplacianDM is alsoG-invariant; namely,DM commutes withU(g) for any g
PG.

Next we turn our attention to the potential energyV(x). It is a smooth functionV:M→R
acting on f PL2(M ) by multiplication as (V f)(x)ªV(x) f (x). We assume thatV is also
G-invariant; V(gx)5V(x) for any gPG and xPM . Thus the action ofV also commutes with
U(g).

Since each term of the HamiltonianH5 1
2DM1V commutes withU(g) for anygPG, we can

apply the decomposition~2.10! and the commutativity~2.24! to bothDM andV separately. Hence,
DM and V act as (idH x ^ DM) and (idH x ^ V) on the reduced Hilbert space (H x

^ L2(M ))G

>L2(M ;H x)G. The Laplacian (idH x ^ DM) with the domain restricted to (H x
^ L2(M ))G

>L2(M ;H x)G is denoted byDx, and is called areduced Laplacian. The reduced LaplacianDx is
also a self-adjoint operator. Then for an equivariant functioncPCc

`(M ;H x)G, the defining equa-
tion of the LaplacianDx takes the form

E
M

uudc~x!uugM

2 vM5E
M

^c~x!,~Dxc!~x!& vM , ~4.2!

where in the LHSuudc(x)uugM

2 denotes the norm ofH x
^ Tx* M induced from the metricgM .

B. Rotational and vibrational energy operators

To make further study ofDx, we make intensive use of the vertical–horizontal decomposition
TxM5Vx% Hx introduced in Sec. III. We have not chosen a specific connection yet. Now we fix
the connection by demanding the orthogonalityVx'Hx with respect to the metricgM(x). Then,
the G-invariance of the metric ensures thatg* Hx5Hgx , and hence a unique connection is deter-
mined. Since the set of maximum pointsMm is an open dense subset ofM as noticed previously
and since the connection is smooth when restricted toMm , the Laplacian onMm will be smoothly
decomposed into two, vertical and horizontal components, by the use of the connection.

According to the orthogonal decompositionTx* M5Hx* % Vx* , the integrand of the LHS of
~4.2! is also written as

uudc~x!uugM

2 5uu~dc~x!!HuugM

2 1uu~dc~x!!VuugM

2 . ~4.3!
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By the definition of the covariant derivative~3.11! and the expression~3.13! in terms of the
connection form, the above equation is put in the form

uudc~x!uugM

2 5uu~d2r
*
x ~vx!!c~x!uugM

2 1uur
*
x ~vx!c~x!uugM

2

5uuDc~x!uugM

2 1uur
*
x ~vx!c~x!uugM

2 . ~4.4!

The second term of the RHS of~4.4! proves to be expressed as

uur
*
x ~vx!c~x!uugM

2 5gM
21^r*

x ~vx!c~x!,r
*
x ~vx!c~x!&

52gM
21^c~x!,r

*
x ~vx! ^ r

*
x ~vx!c~x!&

5^c~x!,Lx
x c~x!&, ~4.5!

where we have to make remarks on the notations used; thegM
21^, & denotes the inner product on

T* M ^ H x, the productr
*
x (vx) ^ r

*
x (vx) is to be understood as a tensor product inT* M

^ T* M ^ EndH x and theLx
x is defined by

Lx
x
ª2gM

21~x!+~r
*
x ~vx! ^ r

*
x ~vx!!PEndH x, ~4.6!

with gM
21(x) taken as the inner product onT* M ^ T* M . We notice also that at the second line of

~4.5!, we have used the fact that^r*
x (j)v,v8&52^v,r

*
x (j)v8& for any jPg and for anyv,v8

PH x. The equivariance of the connection form~3.3! and the invariance of the metric are put
together to imply that

Lgx
x 5rx~g! Lx

x rx~g21!. ~4.7!

Then we observe that the operatorLx acting onL2(M ;H x) through (Lx c)(x)ªLx
x c(x) leaves

L2(M ;H x)G invariant, so that one obtainsLx
xPEnd(H x)Gx. We can put theLx in another form.

Since the inner productgM(x):TxM ^ TxM→R gives rise to an isomorphismĝM(x):TxM

→Tx* M , its inverse ĝM
21(x):Tx* M→TxM induces an inner product on the cotangent space

gM
21(x):Tx* M ^ Tx* M→R in the dual manner. HencegM

21 is viewed as a symmetric tensor field
gM

21 :M→TM ^ TM. In terms ofgM
21 along with the connection formvx :TxM→g/gx and the

representation of Lie algebrar
*
x :g→EndH x, the tensor fieldLx:M→EndH x takes the form,

Lx
ª2~r

*
x

^ r
*
x !+~v ^ v!+gM

21 . ~4.8!

If rx is not a trivial representation and ifG acts onM nontrivially, thenLx is a positive definite
operator. We call theLx the rotational energy operator, the reason for which comes from mo-
lecular mechanics withG5SO~3!. In fact, when applied to molecular mechanics, the quantity~4.5!
is interpreted as the rotational energy density.

We proceed to study the first term of the RHS of~4.4!. To this end, we have to make a review
of Hodge’s star operator* M :Vk(M )→Vm2k(M ), which is defined through

a`* Mb5^a,b&gM
vM , a,bPVk~M !, ~4.9!

where ^a,b& in the RHS is the inner product oǹ kTx* M defined by the metricgM . Let
$e1 , . . . ,em% be a local orthonormal frame field onM with respect to the metricgM . Then the star
operator* M is explicitly given by

* Ma5
1

k! (
j 1 ,¯ j k51

m

~ i ~ej 1
!¯ i ~ej k

!a! ~ i ~ej 1
! . . . i ~ej k

!vM !. ~4.10!
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It is easily verified that* M* Ma5(21)k(m2k)a. The defining equation~4.1! of the LaplacianDM

is then rewritten as

E
M

uud f~x!uugM

2 vM5E
M

d f`* Md f5E
M

d~ f * Md f !2E
M

f d* Md f52E
M

f ~* M
21d* Md f ! vM ,

~4.11!

where we have used Stokes’ theorem to eliminate the first term on the second line. Then the
Laplacian takes the form

DM f 52* M
21d* Md f52* Md* Md f . ~4.12!

In terms of local coordinates (x1, . . . ,xm) of M, the metric and the volume form are expressed as
gM5( i , jgMi j (x) dxi

^ dxj and vM5vM(x) dx1`¯`dxm5AdetgMi j (x) dx1` . . . `dxm, re-
spectively. The LaplacianDM is then expressed as

DM f 52
1

vM~x! (
i , j 51

m
]

]xi S vM~x!~gM
21! i j ~x!

] f

]xj D , ~4.13!

as is well-known.
We examine~4.12! more closely, using the horizontal-vertical decompositionTxM 5Hx

% Vx . The measuremM of M projects to a measuremQ of Q throughp:M→Q;

E
Q

w~q!dmQ~q!ªE
M

~w+p!~x!dmM~x!, wPC0~Q!. ~4.14!

In what follows, we restrict ourselves to the maximum stratumMm , which is an open and dense
subset ofM. Let vQ be a volume form onQm associated with the measuremQ . We can define a
Riemannian metricgQ on Qm throughp* gQ5gMuH, wheregMuH denote the restriction of the
metric gM :TxM3TxM→R to the horizontal subspace;gMuH:Hx3Hx→R. Note that the defini-
tion of gQ is independent of the choice ofxPp21(p(x)), because of theG-invariance ofgM .
The mapp:(Mm ,gM)→(Qm ,gQ) then becomes a Riemannian submersion. It is to be noted that
the volume formvQ does not coincides with the volume form induced from the metricgQ . We
denote the set of all the horizontal and the verticalk-forms onMm by

VH
k ~Mm!ª$aPVk~Mm! u i ~X!a50,;XPVx , ;xPMm%, ~4.15!

VV
k ~Mm!ª$aPVk~Mm! u i ~X!a50,;XPHx , ;xPMm%, ~4.16!

respectively. Note that we have already put dimM5m, dimQm5n5m2p. We define the hori-
zontal and the vertical volume forms,vHPVH

n (Mm) andvVPVV
p(Mm), throughvH5p* vQ and

vM5vH`vV , respectively. It appears that the formsvH and vV are uniquely determined and
G-invariant.

Moreover, it can be shown that bothvH andvV are closed forms. It is easy to verify thatvH

is closed;dvH5d(p* vQ)5p* (dvQ)50, sincevQ is a top form ofQm . To prove thatdvV50,
we use a local trivialization over an open setW,Qm ; p21(W),Mm is identified withW3F,
where FªG/Gm is the maximum orbit. The trivialization induces a surjective map
pF :p21(W)→F which is G-equivariant, that is,pF(gx)5gpF(x) for each gPG and x
Pp21(W). A restriction of the mappF to each fiber gives a diffeomorphismp21(q)>F for each
qPW. Let vF be aG-invariant volume form onF which is normalized as*FvF51. ThenvF is
uniquely determined. Now the definition~4.14! of the measuremQ is put in the form,
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E
W

w~q! vQ5E
p21(W)

~w+p!~x! vM

5E
p21(W)

~w+p!~x! vH`vV

5E
W

w~q! vQS E
p21(q)

vVD . ~4.17!

Sincew is arbitrary, this equation implies that the volume formvV restricted to each fiberp21(q)
is also normalized as*p21(q)vV51 for eachqPQm , so thatvV is a G-invariant normalized
volume form on each fiberp21(q). It then follows thatvV5pF* vF . As a consequence, one has
dvV5pF* (dvF)50, sincevF is a top form ofF.

Using vH and vV , we define the horizontal and the vertical star operators* H :VH
k (Mm)

→VH
n2k(Mm) and* V :VV

k (Mm)→VV
p2k(Mm) through

* Ma5~* Ha!`vV , aPVH
k ~Mm! ~k<n!, ~4.18!

* Mb5~21!n vH`* Vb, bPVV
k ~Mm! ~k<p!, ~4.19!

respectively. According to the decompositionTx* M5Hx* % Vx* , we break upd f into d f5(d f)H

1(d f)V . Then* Md f is accordingly expressed as

* Md f5* H~d f !H`vV1~21!nvH`* V~d f !V . ~4.20!

SincedvH50 anddvV50, we obtain

d* Md f5~d* H~d f !H!`vV1vH`~d* V~d f !V!. ~4.21!

Thus Eq.~4.12! is expressed as

2DM f 5* M
21d* Md f5* H

21~d* H~d f !H!H1* V
21~d* V~d f !V!V , ~4.22!

which means that the LaplacianDM is decomposed into horizontal and vertical components.
The above argument can be extended toH x

^ Vk(Mm)>Vk(Mm ;H x) and toVH
k (Mm ;H x)G

straightforwardly; the star operators* M and* H are extended to be applicable toH x-valued forms
on Mm and toH x-valued horizontal forms onMm , respectively. Hence, for an equivariant func-
tion cPCc

`(Mm ;H x)G, Eq. ~4.22! gives rise to

2Dxc5* M
21d* Mdc5* H

21~d* H~dc!H!H1* V
21~d* V~dc!V!V . ~4.23!

For cPCc
`(Mm ;H x)G, we have (dc)H5Dc by the definition of the covariant derivation

~3.11!. In view of the first term of the RHS of~4.23!, we are led to the definition of the adjoint
operatorD†:VH

k11(Mm ;H x)G → VH
k (Mm ;H x)G of D;

D†
ª2* H

21D* H52~21!k(n2k)* HD* H . ~4.24!

By using~4.2!, ~4.4!, ~4.5!, ~4.22!, and~4.24!, we accomplish the decomposition of the Laplacian
Dx into the horizontal and the vertical components,

Dxc5D†Dc1Lxc, cPCc
`~Mm ;H x!G. ~4.25!

We call theD†D the vibrational energy operatorfor the reason that the integral~4.2! is inter-
preted as the vibrational energy when our general formalism is applied to molecular mechanics.
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As was noted above, the smoothness of the horizontal–vertical decomposition is ensured only
in the open dense subsetMm,M , so that the RHS of~4.25! makes sense only inMm . However,
Dx is actually a self-adjoint operator onL2(M ;H x) by definition, so that the LHS of~4.2! holds
for c defined throughoutM. Hence we may expect that some boundary condition arises on
]Mm5M sing to makeD†D1Lx into a self-adjoint operator onL2(M ;H x). Since the requirement
imposed onc is thatc is to be equivariant, we obtain the boundary condition on]Mm ,

rx~g!c~x!5c~x!, gPGx , xP]Mm , ~4.26!

or, in the form of derivative,

r
*
x ~j!c~x!50, jPgx , xP]Mm . ~4.27!

In case ofGxÞ$e% for the maximum orbit typem, the equivariant functions are, of course, subject
to the conditionrx(g)c(x)5c(x) for gPGx ,xPMm . The condition~4.26! or ~4.27! states that
at singular points the equivariant functions are subject to a stronger condition since dimGx rises
up at singular points.

C. Angular momentum and inertia tensor

Now we wish to introduce the angular momentum and the inertia tensor, which are closely
related with the connection form and the rotational energy operatorLx.

The angular momentumis a mapL:T* M→g* ; which is defined through

^Lx~p!,j&ª^p,ux~j!&, pPTx* M ,jPg, ~4.28!

where^•,•& ’s in the LHS and in the RHS denote the pairing betweeng* andg and that between
Tx* M and TxM , respectively, andux(j)(5jM(x)) is the infinitesimal generator induced byj
Pg. The angular momentumL:T* M→g* is a typical example of momentum maps due to
Marsden and Souriau.26 By the use of the isomorphismĝM :TM→T* M , the angular momentum
can be rewritten as the mapL̂ªL+ĝM :TM→g* ; v°L̂x(v) , which is expressed as

^L̂x~v !,j&ªgM~v,ux~j!!, vPTxM ,jPg. ~4.29!

Namely,L̂ is a g* -valued one-form onM, which we call the angular momentum form.
The inertia tensoris a tensor fieldI :M→g* ^ g* ; x°I x , which is defined through

I x~j,z!ªgM~ux~j!,ux~z!!,j,zPg. ~4.30!

On account ofugx(Adg j)5g* (ux(j)) and ofg* gM5gM for anygPG, the inertia tensor trans-
forms according to

I gx~Adg j,Adg z!5I x~j,z!. ~4.31!

In other words, the mapI :M→g* ^ g* is equivariant;g* I 5(Adg21* ^ Adg21* )I . For an arbitrary

xPM fixed, the quadratic formI x :g^ g→R can be regarded as a mapÎ x :g→g* , which has
Ker Î x5gx and ImÎ x5$fPg* u ^f,j&50,;jPgx%>(g/gx)* . Then it can give rise to an isomor-
phism Ĩ x :g/gx→̃ (g/gx)* . Hence, there exists the inverse (Ĩ x)

21:(g/gx)* →̃ g/gx , which is iden-
tified with a quadratic form (Ĩ x)

21:(g/gx)* ^ (g/gx)* →R. The mapÎ x will be referred to as an
inertia operator. The inertia operator is called the locked inertia tensor by Simoet al.27 The inertia
operator was first introduced by Guichardet,3 and used in Refs. 8,7 to break up the total energy
into the sum of rotational and vibrational energies.

From definition, the angular momentum, the inertia tensor, and the connection form turn out
to be related by
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L̂5 Î +v, ~4.32!

where each symbol is to be understood as follows:L̂x :TxM→g* , vx :TxM→g/gx , and Î x :g/gx

→g* . A proof of ~4.32! runs as follows: First, the identity

L̂+u5 Î , ~4.33!

can be proved by a straightforward calculation. In fact, for anyj,zPg, we have

^~ L̂+ux!~j!,z&5gM~ux~j!,ux~z!!5I x~j,z!5^ Î x~j!,z&. ~4.34!

Next, from the identity~4.33! it is deduced that

L̂+u+v5 Î +v. ~4.35!

From the definition of the angular momentum form~4.29!, it can be shown that KerL̂x5Hx , so
that Eq.~4.32! holds onHx . Moreover, sinceũx+vx :TxM5Vx% Hx→Vx is a projection as was
noted at~3.4!, Eq. ~4.35! shows that~4.32! holds onVx . The proof is thus completed. Since
Im L̂x>(g/gx)* , we may rewrite~4.32! asL̂5 Ĩ +v, so that the connection form is put in the form

v5 Ĩ 21+L̂. ~4.36!

This formula will be used to write out the connection formv in molecular mechanics.
Owing to the definition of the inertia tensor,I x5gM+(ux^ ux), the metricgMuV restricted to

the vertical subspace takes the form,

gMuV5I +~v ^ v!5^L̂,v&, ~4.37!

where use has been made ofũx+vxuVx5 id Vx
, another expression of~3.4!. Equation~4.37! can be

looked upon as describing the rotational energy in classical mechanics. Since the reduced qua-
dratic form Ĩ x5gM+( ũx^ ũx):g/gx^ g/gx→R is nondegenerate, it has the inverse quadratic form
( Ĩ x)

215gM
21+(vx* ^ vx* ):(g/gx)* ^ (g/gx)* →R, which is expressed as a tensor field,x°( Ĩ x)

21

Pg/gx^ g/gx ,

~ Ĩ x!
215~vx^ vx!+gM

21, ~4.38!

wheregM
21 is regarded as a symmetric tensor fieldM→TM ^ TM. From ~4.8! and ~4.38!, we

obtain a formula to expressLx, in terms of the inertia tensor, as

Lx52~r
*
x

^ r
*
x !+ Ĩ 21. ~4.39!

D. Coordinate representation

Now we wish to provide a coordinate representation of the reduced Laplacian given in~4.25!.
Take local coordinates (q1,q2, . . . ,qn) on an open subsetW of Qm . Then the metricgQ and the
volume formvQ take the formgQ5( i , jgQi j (q) dqi

^ dqj andvQ5vQ(q) dq1`¯`dqn, respec-
tively. For eachxPp21(W),Mm , we take a basis$j1(x), . . . ,jp(x)% of g/gx , where we have
used the same notation for elements ofg/gx as those forg for simplicity. Then the components of
the reduced inertia tensorĨ x are defined by

~ Ĩ x!abª Ĩ x~ja~x!,jb~x!!, a,b51, . . . ,p5dimg/gx , ~4.40!
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which gives a symmetric positive definite matrix of rankp. The components of its inverse are
denoted by (Ĩ x

21)ab. Let s be a local section onW of the bundlep:Mm→Qm , that is, a differ-
entiable maps:W→Mm such thatp+s5 idW . Then an equivariant functioncPCc

`(M ;H x)G is
pulled back to a functions* c:W→H x of the coordinates (q1,q2, . . . ,qn). Our aim is to obtain
a coordinate expression ofs* Dxc, according to the decompositionDx5D†D1Lx. The covari-
ant derivative~3.13! with a5c is expressed, in terms of (q1,q2, . . . ,qn), as

~s* Dc!~q!5(
i 51

n S ]

]qi
2~r

*
x +v+s* )S ]

]qi D D ~s* c!~q!dqi . ~4.41!

It then turns out from~4.24!, ~4.25!, and~4.39! that

~s* Dxc!~q!52
1

vQ~q! (
i , j 51

n S ]

]qi
2~r

*
x +v+s* !S ]

]qi D D vQ~q!~gQ
21! i j ~q!

3S ]

]qj
2~r

*
x +v+s* !S ]

]qj D D ~s* c!~q!

2 (
a,b51

p

~ Ĩ s(q)
21 !ab~r

*
x +ja+s!~q!~r

*
x +jb+s!~q!~s* c!~q!. ~4.42!

It should be noted here thatv(s* (]/]qi)) and r
*
x (v(s* (]/]qi))) denote a component of a

‘‘gauge potential’’ and its representation as a matrix acting onH x, respectively. Further,
r
*
x (ja(s(q))) denote a matrix representation of the infinitesimal generator~or the angular mo-

mentum operator! induced byja(x)Pg. Equation~4.42! is one of our main results.
If there exists a global sections:Qm→Mm , the fiber bundlep:Mm→Qm becomes a trivial

bundle;Mm>Qm3(G/Gm), ands* c becomes a smooth function over the entire domainQm . In
this case, the procedure of reduction is nothing but separation of variables. The reduction method
is a generalization of the method of separation of variables.

Equation~4.42! makes sense only in the maximum component,Qm , of the orbit spaceQ. At
a singular pointqP]Qm , the rank of the inertia tensorI s(q) decreases abruptly. As was noticed
earlier, the equivariance condition provides the boundary condition imposed onc and hence on
s* c, which is put in the form

r
*
x ~j!~s* c!~q!50, jPgs(q) . ~4.43!

If gs(q)5$0% in Mm , this imposes no condition ons* c. At singular pointsqP]Qm , the dimen-
sion of the isotropy algebrags(q) jumps up, so that the value ofs* c is more strongly restricted
there. The operator~4.42! should be accompanied by the condition~4.43!. This is another one of
our main results.

E. Example: Quantum mechanics on a plane

Quantum mechanics in a two-dimensional Euclidean space provides a simple but nontrivial
example of the formulation constructed above.

First we takeM5R2 andG5SO~2!. Then SO~2! acts onR2 in the usual manner. Let (r ,f) be
the polar coordinate ofR2. Then the orbit space becomesQ5R>0 , which is nothing but the radius
coordinater>0. A point with rÞ0 has a maximum orbitS1. The originr 50 has a singular orbit,
that consists of a single point$0%. In this example we haveMm5R22$0%, ]Mm5$0%, Qm

5R.0 , and]Qm5$0%. SinceR22$0%>R.03S1, the fiber bundlep:Mm→Qm is trivial. Then
the reduction method becomes the method of separation of variables in this case.

The spaceR2 is equipped with the standard metricgM5dr21r 2df2 and the standard measure
dmM5rdrdf. Then the projected measure ofR>0 is dmQ52prdr . At each maximum pointx
PR2 with rÞ0, the vertical and horizontal subspaces are given by
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Vx5R
]

]f
, Hx5R

]

]r
, ~4.44!

respectively. At the singular pointr 50, one hasV05$0% and H0>R2. The metric onR.0 is
gQ5dr2, and thereby one obtains the Riemannian submersionp:Mm→Qm . It should be noted
that dmQ52prdr does not coincide with the metric volumedr.

Any irreducible unitary representation of SO~2! is one-dimensional. It is labeled by an integer
nPZ and defined by

rn :SO~2!→U~1!; S cosa 2sina

sina cosa D °eina. ~4.45!

Accordingly, an equivariant functionc:R2→C which satisfiesc(gx)5rn(g)c(x) becomes a
functioncn(r ,f) subject to the conditioncn(r ,f1a)5einacn(r ,f). Thus we can putcn in the
form cn(r ,f)5einf f n(r ). Here the decomposition~2.10! with the projection operators~2.7!
realizes the ordinary Fourier expansion in angular coordinate,c(r ,u)5(n52`

` einf f n(r ). Since
SO~2! is an isotropy group at the originr 50, smooth equivariant functionscn must satisfy

]

]f
cnU

r 50

50, ~4.46!

which has an alternative expression

n fn~0!50. ~4.47!

This boundary condition illustrates the general condition~4.43!.
We proceed to reduce the ordinary Laplacian. The metric on the cotangent bundleT* R2 is

expressed as

gM
215

]

]r
^

]

]r
1

1

r 2

]

]f
^

]

]f
. ~4.48!

To obtain the reduced Laplacian, we calculate the integral~4.2! for cn ,

E
R2

uudcnuugM

2 dmM5E
R2S U]cn

]r U2

1
1

r 2 U]cn

]f U2D rdrdf5E
0

`S Ud fn

dr U
2

1
n2

r 2
u f nu2D 2prdr

5F2pr f n

d fn

dr G
0

`

1E
0

`

f nS 2
1

r

d

dr
r

d fn

dr
1

n2

r 2
f nD 2prdr . ~4.49!

Since f n(r ) is bounded asr→0 from ~4.47!, and sincer (d fn /dr)→0 asr→0 from the RHS of
the first line, the boundary term atr 50 vanishes. The other term atr 5` vanishes because of the
assumption thatcn has a compact support. Thus we are left with the reduced Laplacian,

Dnf n52
1

r

d

dr
r

d fn

dr
1

n2

r 2
f n . ~4.50!

We note here that the boundary condition~4.47! says thatf n(0)50 for nÞ0 and thatf 0(0) is
bounded forn50. This result gives an example of the general formula~4.42!. An eigenfunction of
the LaplacianDn with an eigenvalueE.0 is thenth Bessel functionJn(AEr). The Neumann
function Yn(AEr) does not satisfy the boundary condition~4.47!.
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F. Rigid body

We have to notice here that our theory covers quantum mechanics of rigid bodies. In mechan-
ics, a rigid body is defined as a collection of mass points in three dimensions, in which their
mutual distances are kept fixed. In this case, the symmetry groupG is SO~3! and the configuration
spaceM becomes a singleG-orbit. Hence the orbit spaceQ reduces to a single point. When the
orbit is maximal,M becomes SO~3! and the inertia tensorI is nondegenerated. When the orbit is
singular,M is isomorphic toS2 or a single point, and the inertia tensor is of rank two or zero,
respectively. For a rigid body, the horizontal component of the Laplacian~4.25!, or the vibrational
energy operator, vanishes, and therefore the Laplacian reduces to the rotational energy operator,

Dx5Lx52~r
*
x

^ r
*
x !+ Ĩ 21, ~4.51!

which is the Casimir operator acting on the representation spaceH x up to a normalization con-
stant. In the language of physics, since the rigid body executes no vibrational motion, it has only
rotational energy, which is determined by the angular momentum. A simple example will be given
in Sec. V.

V. QUANTUM MOLECULAR MECHANICS

A. Jacobi vectors

In the previous sections, we have set up a general formulation for reduction of quantum
dynamical systems on the configuration spaceM with symmetryG. The Hilbert spaceL2(M ) is
decomposed into the orthogonal direct sum of the spaces of equivariant functions according to the
irreducible unitary representations ofG, as was shown in~2.35!. The LaplacianDM is accordingly
reduced to the operatorDx of ~4.25! acting on each space of equivariant functionsL2(M ;H x)G.
We have studied quantum mechanics onM5R2 with symmetryG5SO~2! to give a concrete
example. It was a well-known but nontrivial example in which reduction by symmetry serves as
the method of separating variables.

Here, we wish to apply the general formulation to molecular mechanics, which is the original
problem that motivates us. We consider a molecular system consisting ofN atoms inR3. The
configuration of the molecule is described as an ennuple (x1 , . . . ,xN) of the position,xiPR3, of
each atom. Masses of the atoms are denoted by (m1 , . . . ,mN) with miPR.0 . Assume that we are
working with the center-of-mass system,

M5H ~x1 , . . . ,xN!P~R3!N u (
i 51

N

mixi50J , ~5.1!

which is a linear subspace of (R3)N. Let gPG5SO(3) act onx5(x1 , . . . ,xN)PM by gx
5(gx1 , . . . ,gxN). We callM andQ5M /SO(3) themolecular configuration spaceand theshape
space, respectively. We may regardx5(x1 , . . . ,xN) as a 33N matrix. According as the rank of
x is 3, 2, 1, or 0, the configurationx is called agenericconfiguration, aplanarone, acollinearone,
or a collision one, respectively. A generic or planar configuration has a maximum orbit which is
diffeomorphic to SO~3!. A collinear configuration, in which all the atoms are placed along a line,
has a singular orbit which is diffeomorphic toS2. A collision configurationx5(0, . . . ,0) has
another singular orbit which consists of a single point. We are going to review a geometric setting
on M in what follows. The topology of the shape spaceQ will be studied in the next subsection.

While a tangent vectorvPTxM is denoted byv5(v1 , . . . ,vN)P(R3)N along with the con-
dition ( i 51

N miv i50, a cotangent vectorpPTx* M is denoted byp5(p1 , . . . ,pN)P(R3)N along
with the condition ( i 51

N pi50. The pairing betweenTxM and Tx* M is given by
^p,v&ª( i 51

N (pi ,v i), where (•,•) denotes the standard inner product ofR3. Each element of the
Lie algebrajPso(3) is identified with a vectorjPR3 and induces the infinitesimal transformation
ux(j)5(j3x1 , . . . ,j3xN), where3 means the standard vector product inR3. Moreover, the
dual space of the Lie algebraso(3)* is also identified withR3.
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The space (R3)N is equipped with a Riemannian metricK,

Kª(
i 51

N

mi~dxi ,dxi !. ~5.2!

Although K is twice the kinetic energy, we will call it the kinetic energy simply. The subspace
M,(R3)N inherits the Riemannian metricK. From the definition~4.28!, the angular momentum
L:T* M→so(3)* >R3 is expressed as

~Lx~p!,j!5^p,ux~j!&,5(
i 51

N

~pi ,j3xi !5S (
i 51

N

xi3pi ,jD , ~5.3!

and hence takes the usual form

L5(
i 51

N

xi3pi . ~5.4!

According to~4.29!, the angular momentum formL̂:TM→so(3)* is expressed as

~ L̂x~v !,j!5K~v,ux~j!!5(
i 51

N

mi~v i ,j3xi !5S (
i 51

N

mixi3v i ,jD , ~5.5!

which implies that

L̂5(
i 51

N

mixi3dxi . ~5.6!

The Jacobi vectors are of great help in describing many-body systems. Let us remind us of the
definition of the Jacobi vectors. ByMiPR.0 andXiPR3 we denote the sum of the masses from
the first to theith atom and the center-of-mass of the set ofi atoms, respectively,

Miª(
j 51

i

mj , Xiª
1

Mi
(
j 51

i

mjxj ~ i 51, . . . ,N!. ~5.7!

In particular, one hasX15x1 , andXN is equal to the center of mass of the whole system. Then the
Jacobi vectors (r0

(N) ,r1
(N) , . . . ,rN21

(N) ) are defined by

r0
(N)

ªAMN XN , r i
(N)

ªS 1

Mi
1

1

mi 11
D 2~1/2!

~xi 112Xi ! ~ i 51, . . . ,N21!. ~5.8!

Of course, in the center-of-mass system, one hasXN5r0
(N)50. The Jacobi vectors

(r1
(N) , . . . ,rN21

(N) ) provide a coordinate system toM, and give rise to the isomorphismM
>(R3)(N21).

Good use is made of the Jacobi vectors to prove the additivity of the kinetic energyK and of
the angular momentumL̂ in the number of atoms. In fact, one can verify that

K (N)
ª(

i 51

N

mi~dxi ,dxi !5 (
i 50

N21

~dr i
(N) ,dr i

(N)!, ~5.9!

L̂(N)
ª(

i 51

N

mixi3dxi5 (
i 50

N21

r i
(N)3dr i

(N) . ~5.10!
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The additivity ofK (N) can be proved by induction with respect toN. A straightforward calculation
yields

K (N11)2K (N)5uudr0
(N11)uu21uudrN

(N11)uu22uudr0
(N)uu2

5MN11uudXN11uu21
MNmN11

MN1mN11
uudxN112dXNuu22MNuudXNuu2

5
1

MN11
uuMNdXN1mN11dxN11uu21

MNmN11

MN11
uudxN112dXNuu22MNuudXNuu2

5
MN

2 1MNmN112MNMN11

MN11
uudXNuu21

mN11
2 1MNmN11

MN11
uudxN11uu2

5mN11uudxN11uu2. ~5.11!

In a similar manner, the additivity of the angular momentum is verified as follows:

L̂(N11)2L̂(N)5r0
(N11)3dr0

(N11)1rN
(N11)3drN

(N11)2r0
(N)3dr0

(N)

5MN11XN113dXN111
MNmN11

MN1mN11
~xN112XN!

3~dxN112dXN!2MNXN3dXN

5
1

MN11
~MNXN1mN11xN11!3~MNdXN1mN11dxN11!

1
MNmN11

MN11
~xN112XN!3~dxN112dXN!2MNXN3dXN

5
MN

2 1MNmN112MNMN11

MN11
XN3dXN1

mN11
2 1MNmN11

MN11
xN113dxN11

5mN11xN113dxN11 . ~5.12!

In the following, we fix the number of atomsN and suppress the superscript (N).
According to the relations~4.33! and~5.10!, the inertia operatorÎ x :so(3)→so(3)* is defined

for eachjPso(3)>R3 by

Î x~j!5L̂~ux~j!!5 (
i 50

N21

r i3~j3r i !5 (
i 50

N21

~~r i ,r i ! j2~j,r i ! r i !. ~5.13!

According asx is a generic configuration, a planar one, a collinear one, or the collision one, the
rank of Î x is 3, 3, 2, or 0, respectively. Unfortunately, there is no concise expression for the inverse
( Ĩ x)

21 in general. However, the connection formv is expressed, from~4.36!, as

v5 Ĩ 21 (
i 51

N21

r i3dr i . ~5.14!

To formulate molecular mechanics, we need the invariant volume formvM of M associated
with the metricK,

vM5d3r1`¯`d3rN21 . ~5.15!
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Thus we have made a geometric setting to apply our formalism to molecular mechanics. However,
before application we have to examine the topology of the orbit space~or shape space! Q
5M /G for N-atomic molecules.

B. Topology of the shape space

Let M (m,n) and M (m,n)k be the vector space ofm3n matrices overR, and the set ofm
3n matrices of rankk, respectively. ByS(n) we denote the set of all the positive semi-definite
symmetricn3n matrices, and setS(n)kªS(n)ùM (n,n)k . Of course,k<m,n. Let O(n) denote
the orthogonal group acting onRn as usual. Then O~m! and O~n! act onM (m,n) to the left and to
the right, respectively. We can verify now that

M ~m,n!k>
O~m!/O~m2k!3S~k!k3O~n2k!\O~n!

O~k!
~5.16!

from the observation of the fact that an arbitrary linear mapw:Rn→Rm of rankk can be expressed
as a compositionw5 i +s+p of three linear maps, wherep, s, andi are an orthogonal submersion
p:Rn→Rk, a positive-definite symmetric operators:Rk→Rk, and an orthogonal immersion
i :Rk→Rm, respectively. Here we call a linear mapp:Rn→Rk an orthogonal submersion, when it
is surjective and satisfiesp+ tp5 id on Rk. Similarly, we calli :Rk→Rm an orthogonal immersion,
when it is injective and satisfiesti + i 5 id on Rk. The set of all the orthogonal submersions
$p:Rn→Rk% is identified with a Stiefel manifold O(n2k)\O(n), while the set of all the orthogo-
nal immersions$ i :Rk→Rm% is identified with another Stiefel manifold O(m)/O(m2k). An
equivalence relation; is defined on the triplet (i ,s,p) by the action ofgPO(k) through
( i ,s,p);( ig21,gsg21,gp). In particular, form5n5k, Eq. ~5.16! becomes

GL~n!5M ~n,n!n>S~n!n3O~n!, ~5.17!

which is nothing but the so-called polar decomposition of regular matrices.
Thus the configuration space of the molecule,M5(R3)N215M (3,N21), is identified with

M ~3,N21!>ø0<k<min(3,N21)

O~3!/O~32k!3S~k!k3O~N212k!\O~N21!

O~k!
. ~5.18!

Each component withk50,1,2,3 corresponds to the set of collision, collinear, planar, and generic
configurations, respectively. Note that a pointxPM is of the maximum type or of the singular
type, according ask52,3 ork50,1. Strata of the shape spaceQ5M/SO~3! are then given by

Qk
(N)>

SO~3!\O~3!/O~32k!3S~k!k3O~N212k!\O~N21!

O~k!
. ~5.19!

The topology of strata for few-body problems withN53 andN54 is already studied by one of
the authors7 and Narasimhan–Ramadas,28 respectively. Coordinates of theN-body problem are
also studied by Littlejohn and Reinsch.29 They also wrote a comprehensive review30 on gauge
fields in theN-body problem, and studied also complexes of rigid molecules.31

We write out topology withN52,3,4 to give definite examples. We denote byR.0 the
positive real numbers (0,`) and byDn, Sn, andRPn an n-dimensional disk, sphere, projective
space, respectively.

N52:

Q1
(2)>S~1!1>R.0 ,

Q0
(2)>$0%. ~5.20!

N53:
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Q2
(3)>S~2!2>R.03D2>R.03R2,

Q1
(3)>S~1!13

O~2!

O~1!3O~1!
>S~2!1>R.03RP1>R.03S1>R22$0%, ~5.21!

Q0
(3)>$0%.

N54:

Q3
(4)>

O~3!

SO~3!
3S~3!3>Z23R.03D5>R.03~S52S4!,

Q2
(4)>

S~2!23O~1!\O~3!

O~2!
>S~3!2>R.03~S42RP2!,

~5.22!

Q1
(4)>

S~1!13O~2!\O~3!

O~1!
>S~3!1>R.03RP2,

Q0
(4)>$0%.

In the case ofN53, the union ofQk
(3) , k50,1,2, forms the shape spaceQ>R23R>0 . The

maximum stratum isQ2
(3)>R23R.0 . For N54, the unionQ3

(4)øQ2
(4) is the maximum stratum,

which is diffeomorphic toR.03(S52RP2).

C. Triatomic molecules

To make a practical application of the above general formalism, we concentrate on the tri-
atomic molecules in the rest of the paper. The configuration space then becomesM5(R3)2

5$(r1 ,r2)%. The maximum stratumMm is diffeomorphic withM (3,2)2 , the space of 332 ma-
trices of maximal rank. The stratum of singular orbit type,]Mm , is the unionM (3,2)1øM (3,2)0 .
Dragt32 and his successors have introduced a useful coordinate system (a,b,g,r,x,f) of M by
setting

r15r S cos
x

2
cos

f

2
u31sin

x

2
sin

f

2
u2D , ~5.23!

r25r S cos
x

2
sin

f

2
u32sin

x

2
cos

f

2
u2D . ~5.24!

Here (u1 ,u2 ,u3) is an orthonormal basis ofR3 parametrized by the Euler angles (a,b,g) as

~u1 ,u2 ,u3!5g~e1 ,e2 ,e3!, g5eaJ3ebJ2egJ3, ~5.25!

where (e1 ,e2 ,e3) is the standard basis ofR3 and g is an element of SO~3! with (J1 ,J2 ,J3) the
standard basis ofso(3) defined byJiv5ei3v ( i 51,2,3) for eachvPR3. We notice here that the
orientation of the frame (u1 ,u2 ,u3) is different from that of the original article. We choose the
orientation to bring the collinear configurations into the direction ofu3 . The ranges of the coor-
dinates are given by

0<a,2p, 0<b<p, 0<g<2p,

0<r, 0<x< ~p/2!, 0<f,2p. ~5.26!

The geometric meaning of (r,x,f) is clear on introducing coordinates (q1 ,q2 ,q3) by
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q1ªuur1uu22uur2uu25r2 cosx cosf, ~5.27!

q2ª2~r1 ,r2!5r2 cosx sinf, ~5.28!

q3ª2uur13r2uu5r2 sinx. ~5.29!

They are invariant under the action of SO~3! on M, and provide the projectionp: M→Q
5M /SO(3); (r1 ,r2)°(q1 ,q2 ,q3). With this expression ofp, it is easy to show thatQ is ho-
meomorphic to the upper half spaceR>0

3 5R23R>0 . The space,p(Mm), of maximum orbits is
diffeomorphic with R23R.0 . The boundary surface,R23$0%, determined byq350 or x50
describes the orbit space for collinear configurations, in which the atoms make a line alongu3 .
The origin (0,0,0) represents the collision configuration. These observations coincide with~5.21!.
On the other hand, the Euler angles (a,b,g) are regarded as a coordinate system of the fiber of the
bundlep:Mm→Qm . Note that, in the set of singular points]Mm , one hasr15r cos (f/2) u3 ,
r25r sin (f/2) u3 with u35eaJ3ebJ2e3 , which shows that (a,b) serve as coordinates for the orbit
diffeomorphic withS2, and that (r,f) are coordinates for]Qm>R2.

In terms of the coordinates introduced above, we are to write out the geometric objects in the
explicit form. It is also convenient for later use to introduce the Maurer–Cartan one-form;

g21dg5J1~sing db2sinb cosg da!1J2~cosg db1sinb sing da!1J3~ dg1cosb da!

5J1 Q11J2 Q21J3 Q3 . ~5.30!

Then the metricgM5K obtained in~5.9! takes the form,

gM5uudr1uu21uudr2uu2

5dr21 1
4 r2 dx21 1

4 r2 cos2x df21r2~Q12 1
2 sinx df!2

1r2 cos2
x

2
Q2

21r2 sin2
x

2
Q3

2 . ~5.31!

The angular momentum formL̂:TM→so(3)* >R3 obtained in~5.10! is expressed as

L̂5r13dr11r23dr25r2 u1~Q12 1
2 sinx df!1r2 cos2

x

2
u2 Q21r2 sin2

x

2
u3 Q3 . ~5.32!

The inertia operatorÎ x :so(3)>R3→so(3)* >R3 obtained in~5.13! is put in the form,

Î x~j!5r13~j3r1!1r23~j3r2!5r2~j,u1! u11r2 cos2
x

2
~j,u2! u21r2 sin2

x

2
~j,u3! u3 .

~5.33!

The connection formv:TM→so(3)>R3 is then written out, according to~4.36!, as

v5 Ĩ 21L̂5u1~Q12 1
2 sinx df!1u2 Q21u3 Q3 . ~5.34!

Hence the vertical component of the metric~4.37! is given by

gMuV5I +~v^ v!5~ L̂,v!5r2~Q12 1
2 sinx df!21r2 cos2

x

2
Q2

21r2 sin2
x

2
Q3

2 ~5.35!

and thereby the metricgQ such thatp* gQ5gMuH becomes

gQ5dr21 1
4 r2 dx21 1

4 r2 cos2 x df2. ~5.36!

1839J. Math. Phys., Vol. 41, No. 4, April 2000 Reduction of quantum systems with symmetry

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Then its inverse is a tensor field given by

~gQ!215
]

]r
^

]

]r
1

4

r2

]

]x
^

]

]x
1

4

r2 cos2 x

]

]f
^

]

]f
. ~5.37!

The volume form defined by~5.31! is of the form

vM5 1
16 r5 sin 2x dr`dx`df`Q1`Q2`Q3 . ~5.38!

Then the volume form associated with the measure~4.14! is

vQ5
p2

2
r5 sin 2x dr`dx`df, ~5.39!

since*Q1`Q2`Q358p2.
To describe quantum mechanics for the triatomic molecule, we need the Hilbert space of

sections of vector bundles associated with the stratification. Any irreducible unitary representation
of SO~3! is characterized by a nonnegative integerl and denoted byr l :SO(3)→U(C2l 11). We
put Ĵiª(r l)* (ei) for the standard basiseiPR3>so(3). Since the base space of the stratified fiber
bundle p:M→Q>R23R>0 is contractible, the bundle is a trivial bundle. Through a global
sections:Q→M with a5b5g50 in ~5.23!, ~5.24!, and ~5.25!, any equivariant functionc:M
→C2l 11 is pulled back to a functionCªs* c:R>0

3 →C2l 11. Then the boundary condition~4.43!
takes the form

Ĵ3 C50 for x50 ~5.40!

on M (3,2)1 and

Ĵ1 C5 Ĵ2 C5 Ĵ3 C50 for r50 ~5.41!

on M (3,2)0 , respectively, with the coordinate system defined at~5.27!, ~5.28!, and~5.29!. What
Eq. ~5.40! means is as follows: At a collinear configuration determined byx50, the molecule
lying in the line alongu3 has the vanishing angular momentum aboutu3 ; (r l)* (u3)c(x)50, so
that one hasr l(g)(r l)* (e3)r l(g21)c(gs(q))50 with u35ge3 , which is equivalent to~5.40!.
Since Ĵ35diag(l ,l 21, . . . ,0, . . . ,2 l ), the componentsCm of C with mÞ0 vanish, if lÞ0.
Furthermore, Eq.~5.41! means that at the collision configuration determined byr50, the mol-
ecule cannot carry nonzero angular momentum, so that the wave function can have a nonvanishing
value only whenl 50. These conditions are analogs of that for the two-dimensional case~4.47!.
Now we have implemented the consideration of singular case by providing the boundary condition
~5.40! and ~5.41! which we skipped in the previous work.7

In conclusion, we write down the Laplacian~4.42!, combining ~5.33!, ~5.34!, ~5.37!, and
~5.39!,

2DC~r,x,f!5
1

r5 sin 2x
H ]

]r
r5 sin 2x

]

]r
1

]

]x

4

r2
r5 sin 2x

]

]x

1S ]

]f
1

1

2
sinx Ĵ1D 4

r2 cos2 x
r5 sin 2xS ]

]f
1

1

2
sinx Ĵ1D J C

1
1

r2 H ~ Ĵ1!21
1

cos2~x/2!
~ Ĵ2!21

1

sin2 ~x/2!
~ Ĵ3!2J C
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5H ]2

]r2
1

5

r

]

]r
1

4

r2 S ]2

]x2
12cot2x

]

]x D 1
4

r2 cos2 x
S ]

]f
1

1

2
sinx Ĵ1D 2J C

1
1

r2 H ~ Ĵ1!21
1

cos2~x/2!
~ Ĵ2!21

1

sin2~x/2!
~ Ĵ3!2J C, ~5.42!

which reproduces the result of Ref. 7. The first and last terms of the RHS of~5.42! are vibrational
and rotational energy operators, up to sign, respectively. As was pointed out in Ref. 7, if the
vibrational energy operator is separated off, and if the internal coordinates (r,x,f) are fixed, the
operator1

2D reduces to the well known Hamiltonian for a rigid rotor of plane body.

VI. CONCLUDING REMARKS

In this paper we formulated the general method of reduction of quantum systems with sym-
metry by the use of the Peter–Weyl theorem. Although the method is well-known implicitly
among Physicists, we developed it explicitly to give rigorous grounds to quantum mechanics
describing molecular motions. We studied the stratification of manifolds according to the action of
a symmetry Lie group and then defined a stratified bundle and a stratified connection as generali-
zation of fiber bundles and connections. Further, we showed that the reduced quantum system is a
pair of the Hilbert space and the Hamiltonian which are the space of equivariant functions and the
Laplacian expressed in terms of covariant derivation with the stratified connection, respectively.
We found the boundary condition that is imposed on the equivariant functions to make the reduced
Laplacian a self-adjoint operator. Finally, the general formulation for reduction was applied to
N-atomic molecules, and triatomic molecules were examined in particular.

The stratified connection on the stratified bundle is newly introduced as a generalization of
connections on principal fiber bundles and is used to describe the reduced Laplacian. One of our
main results is to have determined the boundary condition for making the reduced Laplacian
self-adjoint. Emmrich and H. Ro¨mer33 analyzed Laplacians on orbifolds to study quantization of
systems with gauge symmetry. They found that the Laplacian on an orbifold is not essentially
self-adjoint and therefore its self-adjoint extension is not unique. According to our method, the
reduced Laplacian is self-adjoint by its definition and the boundary condition is accompanied
automatically by the symmetry.

We would like to make some comments on remaining problems. First, although we built a
general formulation to deal with quantum molecular systems, we do not obtain spectrum of the
reduced Hamiltonian. Even the three-body problem is difficult to solve. It is desired to develop an
approximate method to solve the reduced eigenvalue problem of physically interesting systems.

Second, for application to real molecules, electronic structure must be considered. Of course,
spins and statistics of electrons and nucleus also must be taken into account. These are left for
future investigation.
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21J. Śniatycki and A. Weinstein, Lett. Math. Phys.7, 155 ~1983!.
22J. M. Arms, M. J. Gotay, and G. Jennings, Adv. Math.79, 43 ~1990!.
23M. Davis, Pac. J. Math.77, 315 ~1978!.
24M. Davis, Multiaxial Actions on Manifolds, Lecture Notes in Mathematics 643~Springer, Berlin, 1978!.
25G. E. Bredon,Introduction to Compact Transformation Groups~Academic, New York, 1972!.
26J. M. Souriau,Structure des Syste`mes Dynamiques~Dunod, Paris, 1975!.
27J. C. Simo, D. R. Lewis, and J. E. Marsden, Arch. Ration. Mech. Anal.115, 15 ~1991!.
28M. S. Narasimhan and T. R. Ramadas, Commun. Math. Phys.67, 121 ~1979!.
29R. G. Littlejohn and M. Reinsch, Phys. Rev. A52, 2035~1995!.
30R. G. Littlejohn and M. Reinsch, Rev. Mod. Phys.69, 213 ~1997!.
31K. A. Mitchell and R. G. Littlejohn, Mol. Phys.96, 1305~1999!.
32A.J. Dragt, J. Math. Phys.6, 533 ~1965!.
33C. Emmrich and H. Ro¨mer, Commun. Math. Phys.129, 69 ~1990!.

1842 J. Math. Phys., Vol. 41, No. 4, April 2000 S. Tanimura and T. Iwai

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp


