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Recently, Syljiaen and SandvikPhys. Rev. E(to be publishel] proposed a new framework for construct-
ing algorithms of quantum Monte Carlo simulation. While it includes new classes of powerful algorithms, it is
not straightforward to find an efficient algorithm for a given model. Based on their framework, we propose an
algorithm that is a natural extension of the conventional loop algorithm with the split-spin representation. A
complete table of the vertex density and the worm-scattering probability is presented for the gexgéral
model of an arbitrans with a uniform magnetic field.
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[. INTRODUCTION Therefore, for largerS the algorithm consumes more
memory. The stochastic series expans{®$B [8,9] does
Among many numerical techniques for condensed mattenot have this difficulty, since it works directly on the original
physics, the Monte Carlo method is a popular choice when apin-configuration space. The SSE is based on the high-
long correlation length or a small excitation gap is antici-temperature series expansion of the partition function, rather
pated. Apart from the negative sign difficulty, most of the than the path-integral formulation. However, it was pointed
shortcomings of the quantum Monte CaflQMC) method out[10,12 that these two apparently different formulations
for spin systems have been removed or reduced. In particire essentially equivalent in the limit of the infinite order
lar, the QMC for finite temperature based on the path-expansion. The apparent difference was due to the different
integral representation has been improved considerably dutpdating method, rather than the formulations themselves.
ing the past decade. The improvement was achieved mainly Quite recently{10], Syljuasen and Sandvik introduced the
by the development of the loop-cluster algorithfd§ and  notion of “directed loops” and proposed a framework that
related methods. For instance, the critical slowing down wasaccommodates all of the above-mentioned ideas, i.e., the
tamed by the loop-cluster algorithms for a broad class ofoop updating, the worm updating, and the two formulations.
guantum spin systenig]. It was shown 3] that the typical Their framework can be compared with Kandel and Doma-
size of the clusters coincides with the correlation length. Beny’s framework[13] for the loop-cluster algorithms. In fact,
cause of this property, an effective update of configurationshe mathematical formulation of the Sylgen-SandviKSS
is possible. The other slowing down, due to small intervalsscheme has a similar structure to Kandel and Domaisgs
for discretization of the imaginary time, was completely re-Appendix A), and the resulting algorithm coincides with the
moved also by the loop-cluster QM{}], which became loop-cluster algorithm in some cases. In this sense, the SS
even more evident by the extension to continuous imaginargcheme can be viewed as a generalization of the Kandel-
time [5]. An efficient measurement of some of important Domany framework.
off-diagonal quantities was made possible through the im- An algorithm based on the SS scheme is characterized by
proved estimatof6]. the scattering probabilities of worms. Although the detailed
One of the difficulties that have been left unsolved untilbalance condition imposes a set of equations to be satisfied
recently was the freezing of configurations due to an externaby these probabilities, there are still a lot of degrees of free-
field competing with the exchange couplings. In the convendom. Some of the solutions to these detailed balance equa-
tional framework of the loop-cluster algorithms, the field tions lead to the single-cluster version of the conventional
term does not affect the graph assignment probabilities. It ifoop-cluster algorithm at zero magnetic field, which are
taken into account only in the flipping probabilities of clus- known to be efficient. However, all the solutions are not
ters. As a result, the cluster size does not correspond to theecessarily efficient or practical. There are obviously many
physical correlation length any more. It was demonstratedad solutions in which the “back-tracking” probabilify.0]
[7] that this difficulty can be removed, in the case of Bie or “turning-back” probability are dominating. In addition,
=1/2 antiferromagnetic Heisenberg model, by introducingthe straightforward solutions of the heat-bath type do not
two singular points at which the local conservation rule ofwork either, as we see below in Sec. V. Although an efficient
particle numberor magnetizationis violated. These singu- solution was discussdd0] for S= 1/2 XXZ models, the pre-
lar points are called “worms.” This extension of the configu- scription was not given for gener8l
ration space makes it possible to take the external field into Similar to the Kandel-Domany framework, the SS scheme
account in the hopping probability of worms. does not give a concrete prescription for obtaining a good
Another difficulty is large memory requirement due to the solution that leads to an efficient algorithm for specific mod-
split-spin representatiopd]. When one uses the loop algo- els. A rule of thumb for obtaining a good solution is to mini-
rithm for a spin problem with largés it is customary to mize the turning-back probability. However, even if the
replace each spin operator by a sum & Rauli matrices. turning-back probability is fixed, we still have many degrees
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of freedom to play with, and the efficiency of the algorithm

strongly depends on the choice of the worm-scattering prob-

abilities, as we demonstrate in Sec. V. While this freedom Va

can be quite useful for constructing new types of efficient

algorithms, it makes finding a reasonable solution a non-

trivial task. K2 2

In this paper, we propose a natural extension of existing 1 1

algorithms that determines a unique set of scattering prob- AW

abilities of worms. The resulting algorithm is within the SS Vi

scheme and expected to be efficient for a wide class of quan- 1

tum spin systems. The algorithm can be obtained by the K1 0 yw:

coarse-graining mapping applied to an algorithm in the split- Vs

spin representation. In Sec. Il, we first discuss algorithms in 2 2

the split-spin representation. In Sec. Ill, we show how we 0 1

can obtain an algorithm in the original spin representation by

coarse graining the split-spin algorithm. Based on this gen- FIG. 1. various objects in (+ 1)-dimensional space-time in the

eral prescription for the coarse-grained algorithms, wecase ofS=1. The vertical direction corresponds to the temporal

present in Sec. IV a complete table of the worm-scatterin@oordinate whereas the horizontal direction corresponds to the spa-

probability for theXXZ models with arbitraryS. Finally, in  tial coordinate. Kinks K, ,K,, andK3), vertices ¥,,V,,V3, and

Sec. V, we compare the present algorithm with other algoV,), and worms W; and W,) are shown. A numbe(0, 1, or 2

rithms such as the directed loop algorithm with the straightprinted on every segment means the number of part[ceS(7)

forward heat-bath solution. +S]. Horizontal lines represent vertices. The kinks coincide with
the vertices at which particles jump from segments to segments.

Va2 K3

Il. ALGORITHMS IN THE SPLIT-SPIN REPRESENTATION . . . )
ments in the conventional loop-cluster algorithms. In particu-

It has been pointed out in previous papgk8,12 that, in  |ar, for models in which the magnetization conserves, verti-
the limit of the infinite order expansion, a Monte Carlo algo- ces are represented by short horizontal lines, each connecting
rithm based on the series expansion can be reformulated o or more neighboring vertical lines. If a vertex connects
terms of the language of the path-integral with continuouswo lines, we call such a vertérurleggedsince it joins four
imaginary time, and vice versa. In what follows, therefore,segmentswhere a segment is a part of a vertical line which
we describe algorithms in this limit for the sake of simplicity, is delimited by two vertices. Avorm s a kink of a special
and use the path-integral language. The translation into thieind located on a segmefit1]. A worm can move continu-
series-expansion language and its modification for a finiteyusly as the simulation proceeds, while locations of ordinary
order expansion should be straightforward. kinks and vertices are fixed until they are deleted. In the

A simulation based on the path-integral representaidon applications discussed in the present paper, there are only
the SSE in the infinite order expansion lindtan be visual-  zero or two worms at the same time in the whole system.
ized in a @+ 1)-dimensional space-time whedds the real- For quantum spin systems, one cycle of update in the SS
space dimension. At each point in this space-time an integralcheme consists of the following operations on these objects:
variable is defined, and it takes on one of tH&+21 values (1) assigning vertices to a given world-line configuratic?),
—S,—S+1,..., andS In the case o5=1/2 the variables creating a pair of wormg3) letting one of them move along
are one-bit(or Ising variables. Accordingly, we consider segments and be scattered by vertices until it comes back to
world-lines, which are trajectories of up-spins in this spacethe other worm to be annihilated, arid) deleting all the
time. In the present paper, we use the term “world-line con-vertices with no kinks on them. In the rest of the present
figurations” to refer to the spin configurations in the space-paper, we see these operations in more detail.
time for generalS although they are not represented by When a world-line configuration is given, we first assign
simple lines forS>1/2. A Monte Carlo algorithm is nothing vertices. Vertices are assigned to every part of the system
but a procedure by which the world-line configuration is up-probabilistically with a density that depends on the local
dated so that the limiting probability distribution may coin- world-line configuration. In addition, all the kinks are re-
cide with the weight of the configuration, i.e., the exponen-garded as vertices. After placing all vertices, we choose a
tial of the action. point on a segment at random and create a pair of worms

In the SS scheme, we deal with objects defined in thehere. Then, one of the worms starts moving. As a worm
(d+1)-dimensional space-timé-ig. 1). A vertical line of passes a point in the space-time, it changes the local spin
length B represents a spin. Kink is a point at which the value there. When the moving worm encounters a vertex, it
local spin configuration changes. A partidier an up-spiln may be scattered. The outgoing direction after the scattering
jumps from one vertical line to another only at kinks. In is determined stochastically with certain predetermined scat-
models without particle numbéor magnetizationconserva-  tering probabilities. When a moving worm meets the other
tion, a point at which a particle disappears or appears is alsworm, they annihilate. Therefore, what we have to specify in
a kink. Every kink is located on aertex Vertices in the SS order to define an algorithm are the density of vertices and
scheme play a role comparable to that of local graph elethe scattering probability of worms. The SS scheme imposes
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conditions on these. The conditions are summarized in Ap- (a) (b)
pendix A.

When spins in a given model are larger th&na 1/2, it is
customary to replace the original spin operators by the sum
of 2S Pauli sping4,14), i.e.,

2S
Sa—>~S|aE 21 (_Tia”' (a=X,y,Z),
uw=

FIG. 2. Two types of 12-legged vertices that appear in $he
=3/2 SU4) models in the split-spin representation.
wheredy), is anS= 1/2 spin operator. The partition function
is expressed in terms of thesedegrees of freedom. Since cial vertices, each located at= 3 connecting all the (8)
the original phase space corresponds to the subspace wertical lines on a sité To be specific, when a worm moves
which upwards along the vertical linei,w) and hits the point

5 ((i,u),B) from below, it jumps to((i,»),0) and goes on
(S92+(9)2+($H%2=5(S+1) upwards. The line to which the worm jumps, i), is chosen

with equal probability among those on which the local spin

holds, we have to project out all the states orthogonal to thigtate is the same as the spin state right above the incoming
subspace to obtain the correct partition function. This can bgyorm. Namely, it is chosen among suafs that o;,(0)

done by inserting the projection operater =07,(B) may hold.

Z=Trg)(e M) =Tr,, y(PePHISH). Il. COARSE GRAINING

Hereafter, the representation basedSpegrees of freedom One of the drawbacks of the split-spin representation
is referred to as “the original spin representation” whereasmentioned above is that it may require much more memory
that based omr; , the “split-spin representation.” than the original spin representation. For example, in the

For many models, it is rather straightforward to obtain anloop algorithm for the SU{) models[15], we insert graphs
algorithm in the split-spin representation. For example, wehat involve all Pauli spins on two neighboring sites at the
can obtain an algorithm for th&XZ models with arbitrary same imaginary timéFig. 2). In the split-spin representation,
magnitude of spins from that for the corresponding model insertion of a graph of this type createsNef 1)=4S new
with S=1/2, simply by regarding the former as a superposi-segments. Since the memory requirement is roughly propor-
tion of many of the latter. If we do so, we conside® 2er-  tional to the number of segments, a loop algorithm for the
tical lines for each original spin. Accordingly, a point in the SUN) model requires memory resources proportional to
space-time is specified by three numbéfs ), r) rather 2(N—1). If we can construct an algorithm in the original
than two {, 7). The coupling between two original spil8s  spin representation, insertion of a graph would create only
and §; is transformed into (8)? couplings, each couples two new segments. This leads to a memory requirement
o, andao; smaller by factor 14— 1) than that of the split-spin repre-
sentation.

Another drawback is the lack of portability of the code. In
the split-spin representation, there are many kinds of verti-
ces, in principle, depending on the number of legs. There-
— X X Yy Yy o .z 2z fore, we have to change the core part of the code to accom-
_MEV (JU‘M01V+JU‘MUJ”+J TiuTjv modate new kinds of graphs for each model unless we
implement all possible sorts of graphs initially, which is im-
practical. On the other hand, in the coarse-grained represen-
tation, all the vertices are four-leggéir models with two-
body interactionsand there are only four different types of
whereJ>0, h=H,/(2S), andH, is the external field per scattering of worms. Therefore, the core part of codes for all
bond (e.g.,H,=H/d for the hypercubic lattice wherel is  models are the same except for the densities of vertices and
the external field per sije For the vertex assignment, we the scattering probabilities of worms. For example, if we
apply the procedure for the directed loop algorithm ®r have a code based on the SS scheme for theN$ufodel
=1/2[10] to every one of ()% combinations ofr spins. To  we can immediately obtain a code for tX&' model simply
be more precise, the density for the vertex between two spliby changing the arrays of the probability tables.
spins is the same as that in the directed loop algorithm for In order to take full advantage of the SS scheme, there-
S=1/2 with H, replaced byh=H,/(2S). Similarly, the fore, we have to construct probability tables for algorithms
worm-scattering probabilities f@=1/2 can be used for split based on the original spin representation rather than the split-
spins with the same modification éf, . spin representation. For this purpose, we consider a “coarse-

For the projection operator, we do essentially the same agraining” map and its stochastic inverse. The map is basi-
we usually do in the conventional loop algorithm f&  cally disregarding the detailed information of split spins. The
>1/2[14]. In the present framework, we represent it by spe-nverse of the map is to choose stochastically one of the

- - ey Hp o~
—H=I8S+I¥S+ IS5+ F(§+5),

h
+§(0'izﬂ+0'jzy)),
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split-spin configurations which are transformed by coarse =2 m=1 =2 m=1 I=2 m=1
graining into a given original-spin configuration. With these : i
maps and an algorithm in the split-spin representation, we

can construct an algorithm in which we manipulate only i i i
original spin degrees of freedom. (a) (b) (@

To illustrate the idea in more detail, we again take the
XXZ model with an arbitrary magnitude of spiBsWe can _ . ; _ . .
define a coarse graining map from a split-spin World—linesenta_tlon' The _thl_ck _horlzontal lines rep_resent vertlc_es._ The spin-
. = A . ) . . lowering worm is indicated by an open triangle. A solid line repre-
configurationS into an original spin world-line configuration ¢ants a world line wit; ,(r) =1 whereas a dotted one represents

Sas n;,(7)=0. In casea), the worm cannot be scattered. There are two
caseq (b) and(c)] where the worm can be scattered.

FIG. 3. Scattering at a vertex f{&=3/2 in the split-spin repre-

S={0i,(}—S={S(D}, (s9)

Pn; n.
iu'jv
where o ,(7) is the value ofaiZM at the imaginary timer, : @
whereasS;(7) is the sum of them, i.e§(7)=Z,0i,(7). 2 Pﬁ?z)njy
v

Similarly, we can define a map for vertices. Since the only
interaction is of second order in the spin operators, a verte
of the XXZ model has only four leg6.e., connects only two
lines). If a vertex connects two lines,w) and (,»), we
associate with it a vertex that connects two coarse-graine
linesi andj. Of course, in the latter representation, the infor-
mation concerning the indicgs and v is missing.

Obviously, these mappings are many-to-one mappin &o! . ) : . : ;
Y bping y ppIng plit-spin representation. Suppose an imaginary-time interval

However, we can define the inverse of this coarse-graininﬁ1 which the state of two neighboring siteand] are speci-

map. In the following, we adopt the “particle” picture in . . . !
which an up-spin is regarded as a particle whereas a dowrﬁ'—ed byl andm, respectively. The siteconsists of particles

spin a hole. Correspondingly, we use particle numbgrg ~ andl (=2S—1) holes whereas the sifeconsists ofm par-

ﬁere,pﬁsns,) is the density of vertices in the split-spin repre-

sentation where the local spin values arendn’ at the legs
8f vertices.

The coarse-graining map and its inverse can be used for
obtaining the vertex density and the worm-scattering prob-
bility in the coarse-grained representation from those in the

=0,1,...,8andn;,(7)=0,1, instead of(7) ando;,(7), ticles andm holes. Then, there arbm, Im, Im, and Im
to specify local states of spins. These are relateg|(e) and  possible combinations of 11, 10, 01, and 00 pairs-aipins,
oi,(7) by S(7)=li(7)—Sandao;,(7)=n;,(7)—1/2. respectively. Since we assign a vertex with denﬁ&?) for

The inverse mapping of a local state is rather simpleeach 11 pair, the total density of vertices connecting 11 pairs
Suppose that a model is &1 model and a local spin state is Imp{$>. The densities for other combinations can be ob-
at the point of interest i§(7)=1 in the coarse-grained rep- tained in a similar fashion. Thus, the total density of vertices
resentation. There are two split-spin states that are mapped {©
this state, i.e.(n;;(7),n;»(7))=(1,0) and (0,1). Both con-
figurations are chosen with the same probabilitg., 1/2 pim=I1MpSS)+1mp I+ 1TmpES+ Tmp ) 2
since there is no reason to put any bias. For gengrall
configurations that satisfy ,n;, =1 are chosen with the for two neighboring segments with spin valueand m.
same probability, wheré=0,1, ... ,5 is the local state on Next, we consider the scattering probability of worms at a
the coarse-grained line. vertex with no kink on it. Suppose a spin-lowering worm hits

The inverse mapping of a vertex can be defined in a simithe lower-left leg of the vertex from below in the coarse-
lar way. When two space-time points, ) and (j,7) are  grained picture. In order for this worm to be scattered, the
connected by a vertegwith no kink on iy in the coarse- worm and one of the legs of the vertex must be mapped onto
grained representation, we can map it to a vertex connectinghe same line by the inverse méfig. 3). There are two such
((i,u), 7 and((j,v),7) with some probability. Whei$=1, cases: the case where the spin value [Fify. 3(b)] on the
there are four different ways of choosipgand v that are to  legs on the other line and the case where it [§i@. 3(c)]. In
be connected. However, the probability for taking one ofthe first case there aren different choices of the line,

them is not 1/4 in this case. This is because the density Qfhereas we haven choices in the second case. Each indi-

vertices depends on the spin states at their legs. If, for exjigyal choice in the first case has the weight® whereas
ample, the density of vertex between two particl_es is highefhat in the second case has the Weigﬁf). Therefore, the
than that between a particle and a hole, a given coars robability for choosing the first caserisp{S p|, Wwhereas
grained vertex should be mapped to the former with large — (ss) ,
probability than the latter. In other words, the probability for that for the second casesp;o/ pim - If we choose the first
associating a coarse-grained vertex with a particular splitc@se, the probability with which the worm is scattered in the
spin vertex should be proportional to the density of the latterdirectionI’ is

Therefore, the probability for associating a coarse-grained

vertex betweenm andj with a split-spin vertex between, () P(ss)( r 1 1)

and (j,v) is given by 1- 1)
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The worm scattering probability for the second case is giverfor spin-lowering worms. Probabilities for spin-raising

similarly. All in all, the probability of a spin-lowering worm

worms can be obtained similarly.

being scattered into the direction specified by the directed Thus, we have described the way we derive the density of

graphI’ (# 1) becomes

(ss)p(ss) 1 b= (ss)p(ss)
mpi;’ P T 1~ 1 +mpip’ P T

1 0
1~ 0

G Tmpg)

Imp{3+ Imp )+ Tmp(;

©)

The probability for going throughI{= 1) is simply equal to
1— (probabilities of the three proper scatteripngshe sym-

bol
" m
[ m

vertices and the scattering probability of worms from an al-
gorithm in the split-spin representation. Although our de-
scription above may seem to give an actual procedure for
coarse-graining mapping and its inverse, we do not perform
these mappings in real simulation. They are only for deriving
the density(2) and the probabilitieg3) and(4). In the actual
simulation, we manipulate only coarse-grained variables.

In order to complete the description of the algorithm, we
have to specify the procedure for the pair creation and anni-
hilation of worms. Again, this can be done by the coarse-
graining map and its inverse. In the split-spin representation,
the pair creation of worms is done simply by choosing a
point ((i,u),7) in the system with a uniform probability dis-
tribution. If there is a hole at the chosen pojie., n;,(7)
=0], we create a pair of spin-raising worms there. If there is
a particle instead, we create spin-lowering worms. When
coarse grained, this procedure is mapped to choosing a point

upper-right, lower-left, and lower-right legs drem’,l, and
m, respectively, and there is an incoming spin-raisirg ©r
spin-lowering ) worm on the lower-left legPS(I'|2) is

the probability of the worm being scattered into the direction

I' when the initial state of the vertex 5 in the split-spin
representation. This probability coincides with that in e
= 1/2 case with the replacemet,— h. The scattering prob-

tion and creating a pair of spin-raising worms with probabil-
ity 1/(2S) or spin-lowering ones with probability/(2S),
wherel is the spin state at the chosen point.

The moving worm travels according to the scattering pro-
cess described above until it comes back to the original po-
sition ((i,u),7) where the other worm waits. When coarse
grained, this “coming-home” event is mapped to an event in

ability of a spin-raising worm can be obtained in the sameyhich a worm comes back td,¢). However, several other

fashion.

split-spin events are mapped to this same coarse-grained

The scattering probability at a vertex with a kink is sim- gyant. Namely, there are cases where the moving worm

pler than that for a vertex with no kink on it, because in this
case there is at most one type of vertex that may lead to

proper scatteringdiagonal, horizontal, or turning back-or

example, suppose a particle jumps from left to right at th

kink at the imaginary timer, and the spin-lowering worm is
approaching the vertex on its lower-left leg. The local skate
is given by
-1 m+1
Sl m

(S

comes to the point corresponding to a differenspin, i.e.,
?(i,v),r) with v# u. Worms in this case should not annihi-
late. It has to be mapped, therefore, to a “going-through”
event. Suppose that the worms are spin-lowering ones and
that the local value of the coarse-grained spih(isefore the
passage of the wonmThen, there aré cases in total which

are mapped to the same coarse-grained state. Only one of
them leads to the collision of two worms. Therefore, the
probability of pair annihilation is~* and that for going
through is 111, For the same reason, the probability of

Then, the vertex’s lower-left leg must be footed on positive?Mihilation should bel( " if the worms are spin-raising

segment$o; ,(7) = 1] because otherwise no particle can hop
to the neighboring site there. Similarly, the lower-right,
upper-left, and upper-right legs must be footed on negativ

negative, and positive segments, respectively. Therdrare

such choices of segments, and all the choices are equal{}q

probable. Among them, there arechoices where the lower-

e

ones.
The whole procedure of one Monte Carlo swesfCS)

with the algorithm described in this section can be summa-

rized as follows.

Step 1 Place vertices at random with the densit{2.)

at depends on the local spin stalte, Setnqq,,=0.

Step 2 Increasen gy, by 1. Choose a point in the whole

left leg is footed on the segment where the worm is locatedspace-time at random and create two worms there, one is to
Therefore, the probability of the worm being located on oneygve and the other is to stay. For the moving worm, choose

of the legs of the vertex is/(Im)=1"1. Then, the scattering
probability forI'’'s corresponding to proper scattering.,
r=1,.1)is
-1 m+1
P T |-

=I‘1P(SS)(FO -

the initial direction of motion, upward or downward, with the
probability 1/2. Then choose its initial type, spin-lowering or
spin-raising, with the probability/(2S) or 1/(2S), respec-
tively.

Step 3 Let the moving worm go until it hits a vertex or
comes back to the original position where the other worm
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stays. If it hits a vertex before it comes back to the original V. EFFICIENCY

position, go to step 4. Otherwise, go to step 5. It is practically impossible to evaluate the efficiency of

_S_tep 4 Choose the sgattering direc_tid“n with the prob- the algorithm for all possible combinations of coupling con-
ability P(I'[X), whereX. is the local spin state at the vertex giants the external field, the magnitude of spins, and the
before the worm's arrival. Change the type of the worm 8Shumber of dimensions. Therefore, here we only show an ex-

specified byl. Then, go back to step 3. _ _ample and make a few remarks concerning the efficiency of
Step 5 If the moving worm is a spin-lowering one, let it 4, algorithm described above.

go through the original point with the probability “*and particular interest is the algorithm in region Ill, be-
go to step 3. Otherwise let it go through with the probability .5 ;se the primary motivation for developing the algorithms
1—17* and go to step 3. If the moving worm does not gobased on the SS scheme is to solve the freezing problem of
through, let it annihilate with its partner and go to step 6. the conventional loop algorithms in this region. F8&r

Step 6 If ngoyneis smaller tham,,,,, go back to step 2. =1/2, good performance was demonstraftéd] in the iso-
Otherwise, erase all the vertices with no kink and go back taropic case|J’|=J for various values oM. Most impor-
step 1. tantly, no severe freezing was observed at low temperature.

One Monte Carlo sweep is defined as a process between |n what follows, we show that the present algorithm
two successive resets of vertice., two successive pas- solves this problem for an arbitray Several other directed
sages of step)1The numbem,,,,, the number of pair cre- |oop algorithms(algorithms 1—4in the original spin repre-
ations of worms during 1 MCS, can be an arbitrary positivesentation are also examined for comparison with the present
integer. We choose it so that every vertex may be visited byigorithm. Algorithms 1-3 are obtained by tuning solutions
a worm once in average during 1 MCS. of the weight equatioiA3) and the detailed balan¢g4) so

that the turning-back probabilities may be minimized. All of
these three algorithms have exactly the same turning-back
IV. THE XXZ MODELS probabilities. Algorithm 1 is characterized by the vanishing

. ) _ probability for the diagonal scattering when the field is zero
Since theXXZ models are of particular importance, we li.e., lim, oP(”|S)=0 for all 3], whereas it is finite even

summarize the probability of vertices and the scattering; h—q in algorithm 2. Algorithm 3 is a mixture of algo-
probability of worms for the models in Table I. Besides therithms 1 and 2. The details of these algorithms are given in
coupling constants, the scattering probability depends ”poﬂppendix B. Algorithm 4, on the other hand, is the heat-
the initial configuratior_w 9f t?e sciatt_erére., v_ert?:')), the type bath-type algorithm that c,an be obtained in thé most straight-
of the worm (*spin-raising” or “spin-lowering”), and the  ,yard way, although this is also a solution of E¢s3) and
incoming and outgoing direction. Because of the mirror im- A4). In algorithm 4, one of the four possible directioRss

age symmetries with respect to the horizontal an_d Verticatposen with the probability proportional to the weight of the
axes, scattering probabilities for any two cases which can bﬁnal state. To be specific

transformed to each other by mirror image transformations

should be the same. Therefore, without loss of generality, we W(sT)
assume that the incoming worm is located on the lower-left P(T|2)= ,
leg of the vertex. Then, the initial states can be categorized 2 W(EF')
into six classes, each specified by the spin states on all the T

legs and the kind of the incoming wor(iable ).

There are only a few possible final states for each initiawhereX is the initial state of the vertex aryl! is the final
state. Those final states can be specified by the outgoingtate of the vertex when the worm is scattered into the direc-
direction (') of the scattered worntFig. 4). There are four tionT.
such directions: turning-back, diagonal, horizontal, and In order to check the validity of these algorithms, we first
straight, as indicated in the top row in Fig. 4. The probabili-performed simulations for a small one-dimensional system
ties for scattering in these directions are denoted byL=4) and compared the results with the exact solution for
P(112),P(2),P(—|2), andP(T|X) respectively, where various set of parameterd,, H, andg. It turned out that all
3, is the local state in the coarse-grained spin representatiothe algorithms yielded correct results with 1% or less of the
In Table I, we present the first three only. The probability for statistical error. The present algorithm and Algorithm 1
going straightP(7|X) can be readily obtained by subtracting yielded roughly the same magnitude of error whereas the
the other three from unity. other three yielded larger errors than the first two.

The scattering probability also depends upon the coupling For a longer chainl{=64), 50 sets of simulations were
constants] andJ’. From the algorithmic point of view, the performed using each algorithm where each set consists of
whole parameter space is divided into six regidRig). 5. 20000 creations and annihilations of worm pairs. We can see
Within each one of the six regions, the scattering probabilitythe performances of five algorithms in Fig. 6. Plotted in Fig.
is a simple analytic function of the coupling constant, and it6 is A(M2)NY?/L, whereA(M?2) is the estimated statistical
is continuous in the whole parameter space. However, its firstrror of the squared staggered magnetizatiois, the system
derivatives are discontinuous at the boundary between twsize, and\,, is the average number of the vertices visited by
adjacent regions. In the case 8F1/2, the division is the the worm during its lifetime. Since the scattering process is
same as that in the previous pap&]. the most time-consuming part of the code, the total CPU
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TABLE I. The coarse-grained algorithm for ti&XZ spin models. The density of verticesand the scattering probabilities of worrRs
h=H,/(2S), |=2S—-1, andm=2S—m.

3 Region I Region IT Region III Region IV Region V Region VI
I m
(l m) p(Z)= A B B B A C
PUD= o MEETER 0 o M
2B 2C
]/ —~ ' _ —~ ' _ —~
P([3)= m(J—J' —h) m_J m(J—J' —h) 0 0 0
4A 2B 4B
m(—=J+J' +h)
P(l[S)= 0 m(—=J =T +h) m(—J=J'+h) +m(—J—J' +h) m(=J+J' +h) m(—J+J +h)
2B 2B 2B 2A 2C
I m P(/|E)= m(J+J'+h) 0 m(J+J' +h) mJ mJ mJ
I m 4A 4B 28 24 2C
P(o[sy= TS HR m/ m/ m(J—J"+h) 0
4A 2B 2B 2 4A
P(l|2)= 0 0 0 0 0 0
+1 m POAS)= J+T' +h 0 J+J'+h 1 1 1
I m+l X)) X)) 7 7 7
P(olsy= A ! I 0 0 0
1(20) ] 1(20)
P(l|2)= 0 0 0 0 0 0
(l—l m ) POS)= J+JI' —h 0 0 0 J+J'—h l
I m-1 120 127) 1
Peo- L - ; o 0
127) I I I 127)
I+1
. r_nH P(LI2)=P(/|2)=P(—[2)=0 and P(7[2)=1
m
-1 m
(/* m—l) P(LI2)=P(/|2)=P(—[2)=0 and P(7[2)=1
A=[Im(J+J' +30)+(Um+TIm)J =T +h)+Im(J+J' —h)]
B=Imh+(Im~+Im) _J2+h, C=Im(I +m)+Tm(J’ = h)]

time is roughly proportional to the total number of scatteringalgorithm 1, as was the case with Sykem and Sandvik’s
events of worms, including the “straight” scatterings. There-algorithm for S=1/2.

fore, the CPU time is proportional tN, . This is why the For a larger systemlL(= 64) with zero magnetic field, the
statistical error should be multiplied myi’z in order to make results of the present algorithm and algorithm 1 agree with
the comparison fair. In Fig. 6, we can clearly see that theeach other, while those of the other algorithms do (fag.
present algorithm performs as well as the best algorithnY). We consider that the correct result o= 64 is the one
among the the other four.e., algorithm }. Obviously, there that is obtained by the present algorithm and algorithm 1,
is no exponential slowing down for the present algorithm andand that the other algorithms fail to achieve equilibrium
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FIG. 4. Some examples of the final st&& of scattering for B
which the initial state i and the outgoing direction of the worm o . )
is specified by the directed gragh. A solid triangle denotes a FIG. 6. The statistical error in the estimate of the squared stag-

spin-raising worm whereas a open triangle a spin-lowering one. Thgered magnetization multiplied by the square root of the average
dots in the directed graphs represent segments for which spin varfiumber of scattering events during the lifetime of a worm. The

ables are not changed by the scattering. The symbols in the parefiystem is theS=1 antiferromagnetic Heisenberg chain of length
theses are abbreviated formsIof L =64 with a uniform magnetic fielt=0.1. Each point is a result

of 50 sets of simulations, where each set consists of 20000 pair

within the performed simulation. We performed similar creations and annihilations of worms.
simulations for various values &t ranging fromH=0.0 to
H=2.0. It turned out that the good algorithnthe present
and algorithm 1 always perform better than the bad ones >t ; )
(algorithm 2—4 although the difference between them be-the most efficient glgorlthm among many pos$|ble ones and
comes smaller as the field is increased. also that the straightforward heat-bath algorithm is rather

We can explain these facts in terms of the compatibility ofPC0r in some important cases. It should be noted that the
the clusters with the order parameter. One of the reasons wiiParse-grained algorithm discussed in the present paper sat-
the conventional loop algorithm works well even in the vi- 15fieS criterion(ii) mentioned above for an arbitrabyXZ
cinity of the critical point is the accordance between the typi-Mdel when the external field is vanishing. Therefore, we
cal cluster size and the correlation length. This accordance f€onsider that the present algorithm performs well for a rather
guaranteed by the two features of the algoritiinindepen- wide class of mod_els_ln the weak magnetlc field region. Even
dent flipping of clusters ani) perfect ordering within each fOr Strong magnetic field, we consider that the present algo-
cluster. Although the staggered magnetization is not strictlythm is at least as good as most of the other algorithms
the order parameter in one dimension, this criterion of good®@S€d on the SS scheme as we see above. ,
performance of loop-cluster algorithms still applies because  FOr the performance of the present algorithm in the re-
finite but relatively long-range correlation exists even in ongdions other than ll, we cannot conclude much at the mo-

dimension. It is easy to see that the present algorithm and 4

The results of the five algorithms, all based on the SS
scheme, illustrate that it is not trivial, in general, to obtain

algorithm 1 satisfy both condition§) and (ii) in the zero- i“gwuﬁ'ﬁ’
field limit whereas the other algorithms do not satisfy condi- 35 Ll E }H-
. " . . R E §
tion (ii) regardless of the field. This is the reason why the sl q Iﬁ% ﬁ ii |
former two algorithms perform much better than the latter -% ¢ % %% ﬁ ﬂ%
three in the weak field region. Therefore, we expect that the 25| u i
difference in the efficiency is even more pronounced near g iﬁi ¥ HE# {HHE i }
real phase transitions such as these in three-dimensional sy’s' 2r |' H E oy
tems. sl it i 1
‘ 9
e P %
h/J 1F l. Algorgt‘%sn?r;t —a— E
4 " Algorithm 2 —=—
Algorithm 3 —e—
v 0.5 - Algorithm 4 +—e— .
% 1\‘: :‘/ , 0 I I 1 I I 1 I
U ¥ 0 0.5 1 15 2 25 3 35 4
DV .0 P
-1 0 1 Jv'/d FIG. 7. The squared staggered magnetization estimated with the
present algorithm and those with the other algorithms for $he
FIG. 5. The six regions in the parameter space for X3z =1 antiferromagnetic Heisenberg chain witk- 64 andH=0. The
model with generaB. The same as the one in Sylgen and Sand- rest of the condition for the simulation is the same as that for the
vik's paper[10] for S=1/2. previous figure.
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ment. In the case 06=1/2, the algorithm in region | is split-spin representation. For example, on-site easy axis or
equivalent to the Wolff versiolti.e., the single-loop update easy plane anisotropy terms may be treated as the couplings
version of the loop algorithm when the external field is van- betweenos spins on the same site. Another example is the
ishing. A good performance of the algorithm in this region SU(N) model where the split-spin algorithm is known.

has been demonstrated in many applicatidr@, as well as

for S>1/2[4,14]. Since the turning-back probability is van- ACKNOWLEDGMENTS

ishing in the whole region |, we expect good performance of ) )

the algorithm not only on the line=0 but also in the whole The authors are grateful to O. Sylgen, A. W. Sandvik,
region I. The algorithm in regions Il and VI, on the other @d M. Troyer for enlightening comments. The present work
hand, may not be very efficient because of the presence & supported by Grants-in-Aid for Scientific Research Pro-
the relatively large turning-back probability. It is easy to seedram (No. 12740232 and No. 1454036from Monkasho,

that in the classical limit{'/J—) at zero external field, Japan.

the turning-back probability dominates in regions Il and VI,

leading to poor performance. For region VI, this may not be APPENDIX A: GENERAL FORMULATION

very problematic because in this regitat least in the clas- OF THE SS SCHEME

sical Ising limiy the conventional loop-cluster algorithm
works efficiently. For region Il, it is not known whether this
is a real problem or not. The algorithm in region IV is re-
duced to a single-spin-flipeTROPOLISalgorithm in the limit

of J'/J—0 andh—c. The performance of theETROPOLIS | m
algorithm should be good in this limit, although the region is p(l ,m)=W( ) (A1)
physically not very interesting. I m

In general, a directed loop algorithm is characterized by
the density of verticep(2) and the scattering probability of
wormsP(T'|2). The densityp(l,m) is simply given by

where the weightV(X) is defined as

VI. SUMMARY ' m
We have proposed an algorithms based on the Ssdjua W( < m )E(C5II’5mm’_<|,vm,|Hij||-m>)
and Sandvik scheme by introducing the split-spin represen-
tation and the coarse-graining procedure. The algorithm is a XA(0<I+€=<2S), (A2)
natural extension of the directed loop algorithm &+ 1/2, . .
in that the present algorithm coincides with it ®=1/2. In ~ WhereA(* ---")=1 when “..."is true and 0 otherwise. The

addition, the present algorithm is a natural extension of théymbole stands for the integer by which the worm changes
conventional loop algorithm, because if the external field isthe spin value, e.ge=—2 for a (— —) worm that lowers
vanishing, the present algorithm can be obtained throug€ spin value by 2. The variabteis the only free parameter
coarse graining the conventional split-spin loop algorithm. related to the vertex density.

Compared with the algorithms in the split-spin represen- The scattering probability, on the other hand, has a lot of
tation, the coarse-grained algorithm requires much smalléifeedom. The algorithm can be explained very clearly by
memory, in general. In particular, when the algorithm con-introducing an extended weighi(X,T") that is related to the
sists of vertices with more than four legs, as is generally th&veight W(X) as
case with the loop algorithms for models with high order
interaction terms, the memory can be reduced considerably. W)= W(,I). (A3)
The coarse-grained algorithm is also advantageous since the r

codes based on it can be very easily modified for other mod- _ _ _ _ L
els (we only need to change the arrays of the probabilityHere’ we consider a scattering event in which the initial state

tables. of the vertex is3, and the outgoing direction of the worm is

In the case of th&= 1 Heisenberg antiferromagnet in one | - We denote the final state of this eventds It should be
dimension, the algorithm’s performance is almost the sam@0ted that the sta® is directed in contrast to the state in the
as the best algorithm obtained by directly working on theordinary Monte_CarIo simulation. We cor_15|der the_ balance
original spin representation. Many other algorithms can als@€tween an arbitrary sequence of scatterings and its reverse.
be obtained in the same way. However, most of them, includE@ch sequence starts from pair creation of the worms and
ing the heat-bath algorithm, are much worse than the preseﬁf‘ds at pair an_n|h|lat|on. The detailed balance co?dmon
one. Existence of algorithm 1, a good direct solution to EqsShould be considered betweéh and the reverse of".
(A3) and(A4), suggests the existence of similar solutions for Therefore, the detailed balance condition is expressed as
an arbitraryS We have not succeeded in finding a complete

set of such solutions, although we believe that such solutions W(Z,I)=W(E"T). (A4)
exist. It would be an interesting future problem to find such — ) ) . .

The coarse-graining procedure presented in this paper apection and changing the type of the wormsif, wheread”
plies not only to theX X Z spin systems but also to any model is the inverse of’, obtained by inverting the direction of the
for which a directed loop algorithm can be constructed in thearrow inT'.
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TABLE Il. A =1 worm solutionflW(Z,T")] to the detailed balance equation for tBe 1 antiferromagnetic Heisenberg model. Applies
only if 0<H,=<4J. Free parameter,B,A’, andB’ are related to each other By+B=A"'+B'=J.

> W) i 7 / — > W(Z) i 7 / —

2 2 2 2
( N ) 0 0 0 0 0 ( ) 2H, 0 TH, H, 0
2t 2 2 2 7 2
2 1 2 1
( ) 0 0 0 0 0 ( ) PRELI SH, A g e
2t 27 1 2 2 ]
2 0 2 0
( N ) 0 0 0 0 0 ( ) w+H, | L L 0 J
2t 0 270 2 2
12 3H 7H H 12 3H SH H
R L L [ RS S R
L1 5H H 11 3H H )
v J+Hp 0 4p A_Tp B -1 J+Hp 0 4p B;+Tp A
1
1 0 i i 1 0 i i
(1* 0) Ao A ° ° (1 o) A s ° ° !
0 2 0 2
( ) 2+H, | 0 53 0 o ( ) 0 0 0 0 0
ot 2 2 2 )
0 1 0 1
( ) 2o 3H, B’ PO ( ) 0 0 0 0 0
0" 1 2 4 4 0 1
2 1 2 1
( ) J 0 0 H, o ( ) J 0 J 0 0
1" 2 2 2 1~ 2
0 1 0 1

J 0 J 0 0 J 0 0 0 J
1" 0 1= 0
1 2 1 2
( . ) 0 0 0 0 0 ( ) J 0 0 A
2t 271 2
1 0 1 0
( ) 7 0 0 gy ( ) 0 0 0 0 0
ot 1 2 2 0 1
2 0 2 0
( ) 7 0 0 a, Pl ( ) J 0 J 0 0
1" 1 2 4 1= 1
0 2 0 2

J 0 J 0 0 J 0 0 0 J
1" 1 1~ 1
1 1 1 1 ) )
C 0 0 0 0 0 - J 0 0 B A
2
1 1 1 1

J 0 0 A B 0 0 0 0 0
ot 2 0 2

It is worth mentioning that Eq4A3) and (A4) are quite  ing probability P(I'|2) of worms that satisfies the detailed
similar to the equations that appear in the general formulabalance condition as
tions of the loop-cluster algorithri¥,13]. The only differ-
ence is that here we use directed graphs and directed states P(I|3)= W(Z.I)
whereas only nondirected graphs and states appear in the W(Z)
conventional loop-cluster algorithm. It is easy to see that in
the case of zero magnetic field the extended weight in the
present scheme can be made independent of the directions o
states and graphs, and all the equations discussed in this
appendix coincide with those for conventional loop-cluster
algorithms. In Tables Il and IIl, we show the weight and the extended

Once we obtain any set of constant and positive weight that satisfy Eqs(A2)—(A4) for the S=1 antiferro-
W(X,I')’s that satisfy Eqs(A2)—(A4), we obtain a scatter- magnetic Heisenberg model. The vertex density and the

(A5)

fAPPENDIX B: SOME DIRECTED LOOP ALGORITHMS
FOR THE S=1 ANTIFERROMAGNETIC
HEISENBERG MODEL
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TABLE Ill. A =2 worm solution to the detailed balance equation for $3el antiferromagnetic Heisenberg model. Applies only if
OsH,=2J.
p

2 W(X) i 7 / — 3 W(Z) ! T /! —
2 2 2 2
0 0 0 0 0 2H, 0 2H, 0 0
2t 2 27 2
2 1 2 1 3H H
0 0 0 0 0 p H Ho 0o 0
(2++ 1) (2 1) = P It
2 0 2 0
0 0 0 0 0 20+H,  2J+H, 0 0 0
27t 0 2= 0
0 1 0o 1
34 He 0 g4 0 0 0 0 0 0 0
ot 1 2 2 0~ 1
0o 2 0o 2
) 204H,  2J-H, 2H, 0 0 0 0 0 0 0
ot 2 0 2
1 2 1 2
0 0 0 0 0 J 0 0 J 0
2t 1 2= 1
1 0 1 0
J 0 0 J 0 0 0 0 0 0
ot 1 0~ 1
11 11
0 0 0 0 0 J 0 0 0 J
27t 0 27 0
11 11
J 0 0 0 J 0 0 0 0 0
) 0 2

worm-scattering probability can be obtained through Egs. In addition to the worms changing spin values by 1, we
(A1) and(A5). can introduce worms that change spin values by an arbitrary

Table 1l shows the scattering probability for worms thatamount. ForS=1, we can introduce: 2 worms. In the ex-
change values of spin by 1. The weights contain two freeamples presented in Sec. V, we used bath worms and
parametersA=J—B and A’=J—B’. Note, however, that +2 ones. When a pair of worms are created, the type of
the turning-back probability does not depend on the choicgyorm is chosen with equal probability from all possible
of the free parameters. Algorithm 1-3 correspond to the folynes. For instance, when the initial spin statés< at the

lowing choices, respectively: y point chosen for the pair creation,-al or —2 worm is

algorithm 1, A= —2, A’=J; possible. Each one of them is chosen with probability 1/2.
4 The extended weight for-2 worms are listed in Table III.
H In fact, only thex1 worms are necessary for making the
algorithm 2, A=J, A'= Tp; algorithm ergodic and for satisfying the detailed balance. Al-
though it is likely that thex 2 worms are useful for improv-
_ Hp Hp, ing the efficiency of the algorithm for more complicated
algorithm 3, A=0.99+0.1~,  A’=0.9,"+0.1J. models, we have not encountered such a case yet.
[1] H.G. Evertz, G. Lana, and M. Marcu, Phys. Rev. L&Q, 875 Eksp. Teor. Fiz64, 853 (1996 [JETP Lett.64, 911 (1996];
(1993. Zh. Eksp. Teor. Fiz114, 570 (1998 [JETP87, 311 (1999].

[2]K. Harada and N. Kawashima, Phys. Rev.58, R11 949 [g] Aw. Sandvik, Phys. Rev. B9, R14 157(1999; Phys. Rev.
(1999; J. Phys. Soc. Jpr&7, 2768(1998. Lett. 83, 3069(1999; Phys. Rev. B56, 11 678(1997).

E& H Vr\(/Z:/UAShr;)r:é F\;?]\(/j' Eegﬁéffelralagtigsg'\] Stat. PI8g. 169 [9] For a review, see, A.W. Sandvik, @omputer Simulation Stud-

(1995 ies in Condensed Matter Physics X(Springer-Verlag, Berlin,
[5] B.B. Beard and U.-J. Wiese, Phys. Rev. L&, 5130(1996. 2009. _ _
[6] R. Brower, S. Chandrasekharan, and U.-W. Wiese, Physica A10] O. Syljusen and A. W. Sandvik, e-print cond-mat/0202316,
261, 520(1998. Phys. Rev. Eto be published

[7] N.V. Prokofes, B.V. Svistunov, and 1.S. Tupitsyn, Pisnzh.  [11] This wording is different from the original one by Prokefe

056705-11



K. HARADA AND N. KAWASHIMA PHYSICAL REVIEW E 66, 056705 (2002

et al, where the whole path connecting the two discontinuity [12] M. Troyer (private communication

points is called a worm. In the present paper we call the dis{13] D. Kandel and E. Domany, Phys. Rev.48, 8539(1991).
continuities themselves worms. Therefore, the worms in thd14] K. Harada, M. Troyer, and N. Kawashima, J. Phys. Soc. Jpn.
present paper should be called the “worm heads” and the 67, 1130(1998. . .
“worm tails” in the original definition. However, since we did [15] K- Harada, N. Kawashima, and M. Troyer, e-print

; : p ” cond-mat/0210080.
not feel necessity of referring to thg body of the worm, we [16] U.-J. Wiese and H.-P. Ying, Z. Phys. B: Condens. Masiar
call both worm heads and worm tails worms in short. 147 (1994

056705-12



