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Recently, Syljua˚sen and Sandvik@Phys. Rev. E.~to be published!# proposed a new framework for construct-
ing algorithms of quantum Monte Carlo simulation. While it includes new classes of powerful algorithms, it is
not straightforward to find an efficient algorithm for a given model. Based on their framework, we propose an
algorithm that is a natural extension of the conventional loop algorithm with the split-spin representation. A
complete table of the vertex density and the worm-scattering probability is presented for the generalXXZ
model of an arbitraryS with a uniform magnetic field.
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I. INTRODUCTION

Among many numerical techniques for condensed matter
physics, the Monte Carlo method is a popular choice when a
long correlation length or a small excitation gap is antici-
pated. Apart from the negative sign difficulty, most of the
shortcomings of the quantum Monte Carlo~QMC! method
for spin systems have been removed or reduced. In particu-
lar, the QMC for finite temperature based on the path-
integral representation has been improved considerably dur-
ing the past decade. The improvement was achieved mainly
by the development of the loop-cluster algorithms@1# and
related methods. For instance, the critical slowing down was
tamed by the loop-cluster algorithms for a broad class of
quantum spin systems@2#. It was shown@3# that the typical
size of the clusters coincides with the correlation length. Be-
cause of this property, an effective update of configurations
is possible. The other slowing down, due to small intervals
for discretization of the imaginary time, was completely re-
moved also by the loop-cluster QMC@4#, which became
even more evident by the extension to continuous imaginary
time @5#. An efficient measurement of some of important
off-diagonal quantities was made possible through the im-
proved estimator@6#.

One of the difficulties that have been left unsolved until
recently was the freezing of configurations due to an external
field competing with the exchange couplings. In the conven-
tional framework of the loop-cluster algorithms, the field
term does not affect the graph assignment probabilities. It is
taken into account only in the flipping probabilities of clus-
ters. As a result, the cluster size does not correspond to the
physical correlation length any more. It was demonstrated
@7# that this difficulty can be removed, in the case of theS
51/2 antiferromagnetic Heisenberg model, by introducing
two singular points at which the local conservation rule of
particle number~or magnetization! is violated. These singu-
lar points are called ‘‘worms.’’ This extension of the configu-
ration space makes it possible to take the external field into
account in the hopping probability of worms.

Another difficulty is large memory requirement due to the
split-spin representation@4#. When one uses the loop algo-
rithm for a spin problem with largeS, it is customary to
replace each spin operator by a sum of 2S Pauli matrices.

Therefore, for largerS, the algorithm consumes more
memory. The stochastic series expansion~SSE! @8,9# does
not have this difficulty, since it works directly on the original
spin-configuration space. The SSE is based on the high-
temperature series expansion of the partition function, rather
than the path-integral formulation. However, it was pointed
out @10,12# that these two apparently different formulations
are essentially equivalent in the limit of the infinite order
expansion. The apparent difference was due to the different
updating method, rather than the formulations themselves.

Quite recently@10#, Syljuåsen and Sandvik introduced the
notion of ‘‘directed loops’’ and proposed a framework that
accommodates all of the above-mentioned ideas, i.e., the
loop updating, the worm updating, and the two formulations.
Their framework can be compared with Kandel and Doma-
ny’s framework@13# for the loop-cluster algorithms. In fact,
the mathematical formulation of the Syljua˚sen-Sandvik~SS!
scheme has a similar structure to Kandel and Domany’s~see
Appendix A!, and the resulting algorithm coincides with the
loop-cluster algorithm in some cases. In this sense, the SS
scheme can be viewed as a generalization of the Kandel-
Domany framework.

An algorithm based on the SS scheme is characterized by
the scattering probabilities of worms. Although the detailed
balance condition imposes a set of equations to be satisfied
by these probabilities, there are still a lot of degrees of free-
dom. Some of the solutions to these detailed balance equa-
tions lead to the single-cluster version of the conventional
loop-cluster algorithm at zero magnetic field, which are
known to be efficient. However, all the solutions are not
necessarily efficient or practical. There are obviously many
bad solutions in which the ‘‘back-tracking’’ probability@10#
or ‘‘turning-back’’ probability are dominating. In addition,
the straightforward solutions of the heat-bath type do not
work either, as we see below in Sec. V. Although an efficient
solution was discussed@10# for S51/2 XXZ models, the pre-
scription was not given for generalS.

Similar to the Kandel-Domany framework, the SS scheme
does not give a concrete prescription for obtaining a good
solution that leads to an efficient algorithm for specific mod-
els. A rule of thumb for obtaining a good solution is to mini-
mize the turning-back probability. However, even if the
turning-back probability is fixed, we still have many degrees
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of freedom to play with, and the efficiency of the algorithm
strongly depends on the choice of the worm-scattering prob-
abilities, as we demonstrate in Sec. V. While this freedom
can be quite useful for constructing new types of efficient
algorithms, it makes finding a reasonable solution a non-
trivial task.

In this paper, we propose a natural extension of existing
algorithms that determines a unique set of scattering prob-
abilities of worms. The resulting algorithm is within the SS
scheme and expected to be efficient for a wide class of quan-
tum spin systems. The algorithm can be obtained by the
coarse-graining mapping applied to an algorithm in the split-
spin representation. In Sec. II, we first discuss algorithms in
the split-spin representation. In Sec. III, we show how we
can obtain an algorithm in the original spin representation by
coarse graining the split-spin algorithm. Based on this gen-
eral prescription for the coarse-grained algorithms, we
present in Sec. IV a complete table of the worm-scattering
probability for theXXZ models with arbitraryS. Finally, in
Sec. V, we compare the present algorithm with other algo-
rithms such as the directed loop algorithm with the straight-
forward heat-bath solution.

II. ALGORITHMS IN THE SPLIT-SPIN REPRESENTATION

It has been pointed out in previous papers@10,12# that, in
the limit of the infinite order expansion, a Monte Carlo algo-
rithm based on the series expansion can be reformulated in
terms of the language of the path-integral with continuous
imaginary time, and vice versa. In what follows, therefore,
we describe algorithms in this limit for the sake of simplicity,
and use the path-integral language. The translation into the
series-expansion language and its modification for a finite
order expansion should be straightforward.

A simulation based on the path-integral representation~or
the SSE in the infinite order expansion limit! can be visual-
ized in a (d11)-dimensional space-time whered is the real-
space dimension. At each point in this space-time an integral
variable is defined, and it takes on one of the 2S11 values
2S,2S11, . . . , andS. In the case ofS51/2 the variables
are one-bit~or Ising! variables. Accordingly, we consider
world-lines, which are trajectories of up-spins in this space-
time. In the present paper, we use the term ‘‘world-line con-
figurations’’ to refer to the spin configurations in the space-
time for generalS, although they are not represented by
simple lines forS.1/2. A Monte Carlo algorithm is nothing
but a procedure by which the world-line configuration is up-
dated so that the limiting probability distribution may coin-
cide with the weight of the configuration, i.e., the exponen-
tial of the action.

In the SS scheme, we deal with objects defined in the
(d11)-dimensional space-time~Fig. 1!. A vertical line of
length b represents a spin. Akink is a point at which the
local spin configuration changes. A particle~or an up-spin!
jumps from one vertical line to another only at kinks. In
models without particle number~or magnetization! conserva-
tion, a point at which a particle disappears or appears is also
a kink. Every kink is located on avertex. Vertices in the SS
scheme play a role comparable to that of local graph ele-

ments in the conventional loop-cluster algorithms. In particu-
lar, for models in which the magnetization conserves, verti-
ces are represented by short horizontal lines, each connecting
two or more neighboring vertical lines. If a vertex connects
two lines, we call such a vertexfourleggedsince it joins four
segments, where a segment is a part of a vertical line which
is delimited by two vertices. Aworm is a kink of a special
kind located on a segment@11#. A worm can move continu-
ously as the simulation proceeds, while locations of ordinary
kinks and vertices are fixed until they are deleted. In the
applications discussed in the present paper, there are only
zero or two worms at the same time in the whole system.

For quantum spin systems, one cycle of update in the SS
scheme consists of the following operations on these objects:
~1! assigning vertices to a given world-line configuration,~2!
creating a pair of worms,~3! letting one of them move along
segments and be scattered by vertices until it comes back to
the other worm to be annihilated, and~4! deleting all the
vertices with no kinks on them. In the rest of the present
paper, we see these operations in more detail.

When a world-line configuration is given, we first assign
vertices. Vertices are assigned to every part of the system
probabilistically with a density that depends on the local
world-line configuration. In addition, all the kinks are re-
garded as vertices. After placing all vertices, we choose a
point on a segment at random and create a pair of worms
there. Then, one of the worms starts moving. As a worm
passes a point in the space-time, it changes the local spin
value there. When the moving worm encounters a vertex, it
may be scattered. The outgoing direction after the scattering
is determined stochastically with certain predetermined scat-
tering probabilities. When a moving worm meets the other
worm, they annihilate. Therefore, what we have to specify in
order to define an algorithm are the density of vertices and
the scattering probability of worms. The SS scheme imposes

FIG. 1. Various objects in (111)-dimensional space-time in the
case ofS51. The vertical direction corresponds to the temporal
coordinate whereas the horizontal direction corresponds to the spa-
tial coordinate. Kinks (K1 ,K2, andK3), vertices (V1 ,V2 ,V3, and
V4), and worms (W1 and W2) are shown. A number~0, 1, or 2!
printed on every segment means the number of particles@[Si

z(t)
1S#. Horizontal lines represent vertices. The kinks coincide with
the vertices at which particles jump from segments to segments.
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conditions on these. The conditions are summarized in Ap-
pendix A.

When spins in a given model are larger thanS51/2, it is
customary to replace the original spin operators by the sum
of 2S Pauli spins@4,14#, i.e.,

Si
a→S̃i

a[ (
m51

2S

s im
a ~a5x,y,z!,

wheres im
a is anS51/2 spin operator. The partition function

is expressed in terms of theses degrees of freedom. Since
the original phase space corresponds to the subspace in
which

~S̃i
x!21~S̃i

y!21~S̃i
z!25S~S11!

holds, we have to project out all the states orthogonal to this
subspace to obtain the correct partition function. This can be
done by inserting the projection operatorP:

Z5Tr$Si %
~e2bH[ $Si %] !5Tr$s im%~Pe2bH[ $S̃i %] !.

Hereafter, the representation based onSi degrees of freedom
is referred to as ‘‘the original spin representation’’ whereas
that based ons im the ‘‘split-spin representation.’’

For many models, it is rather straightforward to obtain an
algorithm in the split-spin representation. For example, we
can obtain an algorithm for theXXZ models with arbitrary
magnitude of spinsS from that for the corresponding model
with S51/2, simply by regarding the former as a superposi-
tion of many of the latter. If we do so, we consider 2S ver-
tical lines for each original spin. Accordingly, a point in the
space-time is specified by three numbers„( i ,m),t… rather
than two (i ,t). The coupling between two original spinsSi
and Sj is transformed into (2S)2 couplings, each couples
s i ,m ands j ,n :

2H̃ i j [JS̃i
xS̃j

x1JS̃i
yS̃j

y1J8S̃i
zS̃j

z1
Hp

2
~S̃i

z1S̃j
z!,

5(
m,n

S Js im
x s j n

x 1Js im
y s j n

y 1J8s im
z s j n

z

1
h

2
~s im

z 1s j n
z ! D ,

whereJ.0, h[Hp /(2S), andHp is the external field per
bond ~e.g., Hp5H/d for the hypercubic lattice whereH is
the external field per site!. For the vertex assignment, we
apply the procedure for the directed loop algorithm forS
51/2 @10# to every one of (2S)2 combinations ofs spins. To
be more precise, the density for the vertex between two split
spins is the same as that in the directed loop algorithm for
S51/2 with Hp replaced byh[Hp /(2S). Similarly, the
worm-scattering probabilities forS51/2 can be used for split
spins with the same modification ofHp .

For the projection operator, we do essentially the same as
we usually do in the conventional loop algorithm forS
.1/2 @14#. In the present framework, we represent it by spe-

cial vertices, each located att5b connecting all the (2S)
vertical lines on a sitei. To be specific, when a worm moves
upwards along the vertical line (i ,m) and hits the point
„( i ,m),b… from below, it jumps to„( i ,n),0… and goes on
upwards. The line to which the worm jumps, (i ,n), is chosen
with equal probability among those on which the local spin
state is the same as the spin state right above the incoming
worm. Namely, it is chosen among suchn ’s that s in(0)
5s im(b) may hold.

III. COARSE GRAINING

One of the drawbacks of the split-spin representation
mentioned above is that it may require much more memory
than the original spin representation. For example, in the
loop algorithm for the SU(N) models@15#, we insert graphs
that involve all Pauli spins on two neighboring sites at the
same imaginary time~Fig. 2!. In the split-spin representation,
insertion of a graph of this type creates 2(N21)54S new
segments. Since the memory requirement is roughly propor-
tional to the number of segments, a loop algorithm for the
SU~N! model requires memory resources proportional to
2(N21). If we can construct an algorithm in the original
spin representation, insertion of a graph would create only
two new segments. This leads to a memory requirement
smaller by factor 1/(N21) than that of the split-spin repre-
sentation.

Another drawback is the lack of portability of the code. In
the split-spin representation, there are many kinds of verti-
ces, in principle, depending on the number of legs. There-
fore, we have to change the core part of the code to accom-
modate new kinds of graphs for each model unless we
implement all possible sorts of graphs initially, which is im-
practical. On the other hand, in the coarse-grained represen-
tation, all the vertices are four-legged~for models with two-
body interactions! and there are only four different types of
scattering of worms. Therefore, the core part of codes for all
models are the same except for the densities of vertices and
the scattering probabilities of worms. For example, if we
have a code based on the SS scheme for the SU(N) model
we can immediately obtain a code for theXY model simply
by changing the arrays of the probability tables.

In order to take full advantage of the SS scheme, there-
fore, we have to construct probability tables for algorithms
based on the original spin representation rather than the split-
spin representation. For this purpose, we consider a ‘‘coarse-
graining’’ map and its stochastic inverse. The map is basi-
cally disregarding the detailed information of split spins. The
inverse of the map is to choose stochastically one of the

FIG. 2. Two types of 12-legged vertices that appear in theS
53/2 SU~4! models in the split-spin representation.
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split-spin configurations which are transformed by coarse
graining into a given original-spin configuration. With these
maps and an algorithm in the split-spin representation, we
can construct an algorithm in which we manipulate only
original spin degrees of freedom.

To illustrate the idea in more detail, we again take the
XXZ model with an arbitrary magnitude of spinsS. We can
define a coarse graining map from a split-spin world-line
configurationS̃ into an original spin world-line configuration
S as

S̃[$s im~t!%→S[$Si~t!%,

wheres im(t) is the value ofs im
z at the imaginary timet,

whereasSi(t) is the sum of them, i.e.,Si(t)[(ms im(t).
Similarly, we can define a map for vertices. Since the only
interaction is of second order in the spin operators, a vertex
of theXXZ model has only four legs~i.e., connects only two
lines!. If a vertex connects two lines (i ,m) and (j ,n), we
associate with it a vertex that connects two coarse-grained
lines i andj. Of course, in the latter representation, the infor-
mation concerning the indicesm andn is missing.

Obviously, these mappings are many-to-one mappings.
However, we can define the inverse of this coarse-graining
map. In the following, we adopt the ‘‘particle’’ picture in
which an up-spin is regarded as a particle whereas a down-
spin a hole. Correspondingly, we use particle numbersl i(t)
50,1, . . . ,2S andnim(t)50,1, instead ofSi(t) ands im(t),
to specify local states of spins. These are related toSi(t) and
s im(t) by Si(t)5 l i(t)2S ands im(t)5nim(t)21/2.

The inverse mapping of a local state is rather simple.
Suppose that a model is anS51 model and a local spin state
at the point of interest isl i(t)51 in the coarse-grained rep-
resentation. There are two split-spin states that are mapped to
this state, i.e.,„ni1(t),ni2(t)…5(1,0) and (0,1). Both con-
figurations are chosen with the same probability~i.e., 1/2!
since there is no reason to put any bias. For generalS, all
configurations that satisfy(mnim5 l are chosen with the
same probability, wherel 50,1, . . . ,2S is the local state on
the coarse-grained line.

The inverse mapping of a vertex can be defined in a simi-
lar way. When two space-time points (i ,t) and (j ,t) are
connected by a vertex~with no kink on it! in the coarse-
grained representation, we can map it to a vertex connecting
„( i ,m),t… and „( j ,n),t… with some probability. WhenS51,
there are four different ways of choosingm andn that are to
be connected. However, the probability for taking one of
them is not 1/4 in this case. This is because the density of
vertices depends on the spin states at their legs. If, for ex-
ample, the density of vertex between two particles is higher
than that between a particle and a hole, a given coarse-
grained vertex should be mapped to the former with larger
probability than the latter. In other words, the probability for
associating a coarse-grained vertex with a particular split-
spin vertex should be proportional to the density of the latter.
Therefore, the probability for associating a coarse-grained
vertex betweeni andj with a split-spin vertex between (i ,m)
and (j ,n) is given by

rnimnj n

(ss)

(
m,n

rnimnj n

(ss)
. ~1!

Here,rnn8
(ss) is the density of vertices in the split-spin repre-

sentation where the local spin values aren andn8 at the legs
of vertices.

The coarse-graining map and its inverse can be used for
obtaining the vertex density and the worm-scattering prob-
ability in the coarse-grained representation from those in the
split-spin representation. Suppose an imaginary-time interval
in which the state of two neighboring sitesi and j are speci-
fied by l andm, respectively. The sitei consists ofl particles
and l̄ ([2S2 l ) holes whereas the sitej consists ofm par-
ticles andm̄ holes. Then, there arelm, lm̄, l̄ m, and l̄ m̄
possible combinations of 11, 10, 01, and 00 pairs ofs spins,
respectively. Since we assign a vertex with densityr11

(ss) for
each 11 pair, the total density of vertices connecting 11 pairs
is lmr11

(ss). The densities for other combinations can be ob-
tained in a similar fashion. Thus, the total density of vertices
is

r lm[ lmr11
(ss)1 lm̄r10

(ss)1 l̄ mr01
(ss)1 l̄ m̄r00

(ss) ~2!

for two neighboring segments with spin valuesl andm.
Next, we consider the scattering probability of worms at a

vertex with no kink on it. Suppose a spin-lowering worm hits
the lower-left leg of the vertex from below in the coarse-
grained picture. In order for this worm to be scattered, the
worm and one of the legs of the vertex must be mapped onto
the same line by the inverse map~Fig. 3!. There are two such
cases: the case where the spin value is 1@Fig. 3~b!# on the
legs on the other line and the case where it is 0@Fig. 3~c!#. In
the first case there arem different choices of the line,
whereas we havem̄ choices in the second case. Each indi-
vidual choice in the first case has the weightr11

(ss) whereas
that in the second case has the weightr10

(ss). Therefore, the
probability for choosing the first case ismr11

(ss)/r lm , whereas

that for the second case ism̄r10
(ss)/r lm . If we choose the first

case, the probability with which the worm is scattered in the
directionG is

P(ss)S GU1 1

12 1D .

FIG. 3. Scattering at a vertex forS53/2 in the split-spin repre-
sentation. The thick horizontal lines represent vertices. The spin-
lowering worm is indicated by an open triangle. A solid line repre-
sents a world line withnim(t)51 whereas a dotted one represents
nim(t)50. In case~a!, the worm cannot be scattered. There are two
cases@~b! and ~c!# where the worm can be scattered.
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The worm scattering probability for the second case is given
similarly. All in all, the probability of a spin-lowering worm
being scattered into the direction specified by the directed
graphG (Þ↑) becomes

PS GU l m

l 2 mD

[

mr11
(ss)P(ss)S GU1 1

12 1D 1m̄r10
(ss)P(ss)S GU1 0

12 0D
lmr11

(ss)1 lm̄r10
(ss)1 l̄ mr01

(ss)1 l̄ m̄r00
(ss)

.

~3!

The probability for going through (G5↑) is simply equal to
12 ~probabilities of the three proper scatterings!. The sym-
bol

S l 8 m8

l 6 m D
denotes the state where the spin states on the upper-left,
upper-right, lower-left, and lower-right legs arel 8,m8,l , and
m, respectively, and there is an incoming spin-raising (1) or
spin-lowering (2) worm on the lower-left leg.P(ss)(GuS) is
the probability of the worm being scattered into the direction
G when the initial state of the vertex isS in the split-spin
representation. This probability coincides with that in theS
51/2 case with the replacementHp→h. The scattering prob-
ability of a spin-raising worm can be obtained in the same
fashion.

The scattering probability at a vertex with a kink is sim-
pler than that for a vertex with no kink on it, because in this
case there is at most one type of vertex that may lead to a
proper scattering~diagonal, horizontal, or turning back!. For
example, suppose a particle jumps from left to right at the
kink at the imaginary timet, and the spin-lowering worm is
approaching the vertex on its lower-left leg. The local stateS
is given by

S5S l 21 m11

l 2 m D .

Then, the vertex’s lower-left leg must be footed on positive
segments@s im(t)51# because otherwise no particle can hop
to the neighboring site there. Similarly, the lower-right,
upper-left, and upper-right legs must be footed on negative,
negative, and positive segments, respectively. There arelm̄
such choices of segments, and all the choices are equally
probable. Among them, there arem̄ choices where the lower-
left leg is footed on the segment where the worm is located.
Therefore, the probability of the worm being located on one
of the legs of the vertex ism/( lm̄)5 l 21. Then, the scattering
probability for G ’s corresponding to proper scatterings~i.e.,
G5↑,↗,↓) is

PS GU l 21 m11

l 2 m D 5 l 21P(ss)S GU0 1

12 0D , ~4!

for spin-lowering worms. Probabilities for spin-raising
worms can be obtained similarly.

Thus, we have described the way we derive the density of
vertices and the scattering probability of worms from an al-
gorithm in the split-spin representation. Although our de-
scription above may seem to give an actual procedure for
coarse-graining mapping and its inverse, we do not perform
these mappings in real simulation. They are only for deriving
the density~2! and the probabilities~3! and~4!. In the actual
simulation, we manipulate only coarse-grained variables.

In order to complete the description of the algorithm, we
have to specify the procedure for the pair creation and anni-
hilation of worms. Again, this can be done by the coarse-
graining map and its inverse. In the split-spin representation,
the pair creation of worms is done simply by choosing a
point „( i ,m),t… in the system with a uniform probability dis-
tribution. If there is a hole at the chosen point@i.e., nim(t)
50], we create a pair of spin-raising worms there. If there is
a particle instead, we create spin-lowering worms. When
coarse grained, this procedure is mapped to choosing a point
from the whole space-time with uniform probability distribu-
tion and creating a pair of spin-raising worms with probabil-

ity l̄ /(2S) or spin-lowering ones with probabilityl /(2S),
wherel is the spin state at the chosen point.

The moving worm travels according to the scattering pro-
cess described above until it comes back to the original po-
sition „( i ,m),t… where the other worm waits. When coarse
grained, this ‘‘coming-home’’ event is mapped to an event in
which a worm comes back to (i ,t). However, several other
split-spin events are mapped to this same coarse-grained
event. Namely, there are cases where the moving worm
comes to the point corresponding to a differents spin, i.e.,
„( i ,n),t… with nÞm. Worms in this case should not annihi-
late. It has to be mapped, therefore, to a ‘‘going-through’’
event. Suppose that the worms are spin-lowering ones and
that the local value of the coarse-grained spin isl ~before the
passage of the worm!. Then, there arel cases in total which
are mapped to the same coarse-grained state. Only one of
them leads to the collision of two worms. Therefore, the
probability of pair annihilation isl 21 and that for going
through is 12 l 21. For the same reason, the probability of
annihilation should be (l̄ )21 if the worms are spin-raising
ones.

The whole procedure of one Monte Carlo sweep~MCS!
with the algorithm described in this section can be summa-
rized as follows.

Step 1. Place vertices at random with the densityr(S)
that depends on the local spin state,S. Setncount50.

Step 2. Increasencount by 1. Choose a point in the whole
space-time at random and create two worms there, one is to
move and the other is to stay. For the moving worm, choose
the initial direction of motion, upward or downward, with the
probability 1/2. Then choose its initial type, spin-lowering or
spin-raising, with the probabilityl /(2S) or l̄ /(2S), respec-
tively.

Step 3. Let the moving worm go until it hits a vertex or
comes back to the original position where the other worm
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stays. If it hits a vertex before it comes back to the original
position, go to step 4. Otherwise, go to step 5.

Step 4. Choose the scattering directionG with the prob-
ability P(GuS), whereS is the local spin state at the vertex
before the worm’s arrival. Change the type of the worm as
specified byG. Then, go back to step 3.

Step 5. If the moving worm is a spin-lowering one, let it
go through the original point with the probability 12 l 21 and
go to step 3. Otherwise let it go through with the probability
12 l̄ 21 and go to step 3. If the moving worm does not go
through, let it annihilate with its partner and go to step 6.

Step 6. If ncount is smaller thannmax, go back to step 2.
Otherwise, erase all the vertices with no kink and go back to
step 1.

One Monte Carlo sweep is defined as a process between
two successive resets of vertices~i.e., two successive pas-
sages of step 1!. The numbernmax, the number of pair cre-
ations of worms during 1 MCS, can be an arbitrary positive
integer. We choose it so that every vertex may be visited by
a worm once in average during 1 MCS.

IV. THE XXZ MODELS

Since theXXZ models are of particular importance, we
summarize the probability of vertices and the scattering
probability of worms for the models in Table I. Besides the
coupling constants, the scattering probability depends upon
the initial configuration of the scatterer~i.e., vertex!, the type
of the worm ~‘‘spin-raising’’ or ‘‘spin-lowering’’ !, and the
incoming and outgoing direction. Because of the mirror im-
age symmetries with respect to the horizontal and vertical
axes, scattering probabilities for any two cases which can be
transformed to each other by mirror image transformations
should be the same. Therefore, without loss of generality, we
assume that the incoming worm is located on the lower-left
leg of the vertex. Then, the initial states can be categorized
into six classes, each specified by the spin states on all the
legs and the kind of the incoming worm~Table I!.

There are only a few possible final states for each initial
state. Those final states can be specified by the outgoing
direction (G) of the scattered worm~Fig. 4!. There are four
such directions: turning-back, diagonal, horizontal, and
straight, as indicated in the top row in Fig. 4. The probabili-
ties for scattering in these directions are denoted by
P(↓uS),P(↗uS),P(→uS), andP(↑uS) respectively, where
S is the local state in the coarse-grained spin representation.
In Table I, we present the first three only. The probability for
going straightP(↑uS) can be readily obtained by subtracting
the other three from unity.

The scattering probability also depends upon the coupling
constantsJ andJ8. From the algorithmic point of view, the
whole parameter space is divided into six regions~Fig. 5!.
Within each one of the six regions, the scattering probability
is a simple analytic function of the coupling constant, and it
is continuous in the whole parameter space. However, its first
derivatives are discontinuous at the boundary between two
adjacent regions. In the case ofS51/2, the division is the
same as that in the previous paper@10#.

V. EFFICIENCY

It is practically impossible to evaluate the efficiency of
the algorithm for all possible combinations of coupling con-
stants, the external field, the magnitude of spins, and the
number of dimensions. Therefore, here we only show an ex-
ample and make a few remarks concerning the efficiency of
the algorithm described above.

Of particular interest is the algorithm in region III, be-
cause the primary motivation for developing the algorithms
based on the SS scheme is to solve the freezing problem of
the conventional loop algorithms in this region. ForS
51/2, good performance was demonstrated@10# in the iso-
tropic caseuJ8u5J for various values ofH. Most impor-
tantly, no severe freezing was observed at low temperature.

In what follows, we show that the present algorithm
solves this problem for an arbitraryS. Several other directed
loop algorithms~algorithms 1–4! in the original spin repre-
sentation are also examined for comparison with the present
algorithm. Algorithms 1–3 are obtained by tuning solutions
of the weight equation~A3! and the detailed balance~A4! so
that the turning-back probabilities may be minimized. All of
these three algorithms have exactly the same turning-back
probabilities. Algorithm 1 is characterized by the vanishing
probability for the diagonal scattering when the field is zero
@i.e., limh→0P(↗uS)50 for all S], whereas it is finite even
at h50 in algorithm 2. Algorithm 3 is a mixture of algo-
rithms 1 and 2. The details of these algorithms are given in
Appendix B. Algorithm 4, on the other hand, is the heat-
bath-type algorithm that can be obtained in the most straight-
forward way, although this is also a solution of Eqs.~A3! and
~A4!. In algorithm 4, one of the four possible directionsG is
chosen with the probability proportional to the weight of the
final state. To be specific,

P~GuS!5
W~SG!

(
G8

W~SG8!

,

whereS is the initial state of the vertex andSG is the final
state of the vertex when the worm is scattered into the direc-
tion G.

In order to check the validity of these algorithms, we first
performed simulations for a small one-dimensional system
(L54) and compared the results with the exact solution for
various set of parameters,J8, H, andb. It turned out that all
the algorithms yielded correct results with 1% or less of the
statistical error. The present algorithm and Algorithm 1
yielded roughly the same magnitude of error whereas the
other three yielded larger errors than the first two.

For a longer chain (L564), 50 sets of simulations were
performed using each algorithm where each set consists of
20 000 creations and annihilations of worm pairs. We can see
the performances of five algorithms in Fig. 6. Plotted in Fig.
6 is D(Mp

2 )Nv
1/2/L, whereD(Mp

2 ) is the estimated statistical
error of the squared staggered magnetization,L is the system
size, andNv is the average number of the vertices visited by
the worm during its lifetime. Since the scattering process is
the most time-consuming part of the code, the total CPU
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time is roughly proportional to the total number of scattering
events of worms, including the ‘‘straight’’ scatterings. There-
fore, the CPU time is proportional toNv . This is why the
statistical error should be multiplied byNv

1/2 in order to make
the comparison fair. In Fig. 6, we can clearly see that the
present algorithm performs as well as the best algorithm
among the the other four~i.e., algorithm 1!. Obviously, there
is no exponential slowing down for the present algorithm and

algorithm 1, as was the case with Syljua˚sen and Sandvik’s
algorithm forS51/2.

For a larger system (L564) with zero magnetic field, the
results of the present algorithm and algorithm 1 agree with
each other, while those of the other algorithms do not~Fig.
7!. We consider that the correct result forL564 is the one
that is obtained by the present algorithm and algorithm 1,
and that the other algorithms fail to achieve equilibrium

TABLE I. The coarse-grained algorithm for theXXZ spin models. The density of verticesr and the scattering probabilities of wormsP.

h[Hp /(2S), l̄ [2S2 l , andm̄[2S2m.
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within the performed simulation. We performed similar
simulations for various values ofH ranging fromH50.0 to
H52.0. It turned out that the good algorithms~the present
and algorithm 1! always perform better than the bad ones
~algorithm 2–4! although the difference between them be-
comes smaller as the field is increased.

We can explain these facts in terms of the compatibility of
the clusters with the order parameter. One of the reasons why
the conventional loop algorithm works well even in the vi-
cinity of the critical point is the accordance between the typi-
cal cluster size and the correlation length. This accordance is
guaranteed by the two features of the algorithm:~i! indepen-
dent flipping of clusters and~ii ! perfect ordering within each
cluster. Although the staggered magnetization is not strictly
the order parameter in one dimension, this criterion of good
performance of loop-cluster algorithms still applies because
finite but relatively long-range correlation exists even in one
dimension. It is easy to see that the present algorithm and
algorithm 1 satisfy both conditions~i! and ~ii ! in the zero-
field limit whereas the other algorithms do not satisfy condi-
tion ~ii ! regardless of the field. This is the reason why the
former two algorithms perform much better than the latter
three in the weak field region. Therefore, we expect that the
difference in the efficiency is even more pronounced near
real phase transitions such as these in three-dimensional sys-
tems.

The results of the five algorithms, all based on the SS
scheme, illustrate that it is not trivial, in general, to obtain
the most efficient algorithm among many possible ones and
also that the straightforward heat-bath algorithm is rather
poor in some important cases. It should be noted that the
coarse-grained algorithm discussed in the present paper sat-
isfies criterion~ii ! mentioned above for an arbitraryXXZ
model when the external field is vanishing. Therefore, we
consider that the present algorithm performs well for a rather
wide class of models in the weak magnetic field region. Even
for strong magnetic field, we consider that the present algo-
rithm is at least as good as most of the other algorithms
based on the SS scheme as we see above.

For the performance of the present algorithm in the re-
gions other than III, we cannot conclude much at the mo-

FIG. 4. Some examples of the final stateSG of scattering for
which the initial state isS and the outgoing direction of the worm
is specified by the directed graphG. A solid triangle denotes a
spin-raising worm whereas a open triangle a spin-lowering one. The
dots in the directed graphs represent segments for which spin vari-
ables are not changed by the scattering. The symbols in the paren-
theses are abbreviated forms ofG.

FIG. 5. The six regions in the parameter space for theXXZ
model with generalS. The same as the one in Syljua˚sen and Sand-
vik’s paper@10# for S51/2.

FIG. 6. The statistical error in the estimate of the squared stag-
gered magnetization multiplied by the square root of the average
number of scattering events during the lifetime of a worm. The
system is theS51 antiferromagnetic Heisenberg chain of length
L564 with a uniform magnetic fieldH50.1. Each point is a result
of 50 sets of simulations, where each set consists of 20 000 pair
creations and annihilations of worms.

FIG. 7. The squared staggered magnetization estimated with the
present algorithm and those with the other algorithms for theS
51 antiferromagnetic Heisenberg chain withL564 andH50. The
rest of the condition for the simulation is the same as that for the
previous figure.
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ment. In the case ofS51/2, the algorithm in region I is
equivalent to the Wolff version~i.e., the single-loop update
version! of the loop algorithm when the external field is van-
ishing. A good performance of the algorithm in this region
has been demonstrated in many applications@16#, as well as
for S.1/2 @4,14#. Since the turning-back probability is van-
ishing in the whole region I, we expect good performance of
the algorithm not only on the lineh50 but also in the whole
region I. The algorithm in regions II and VI, on the other
hand, may not be very efficient because of the presence of
the relatively large turning-back probability. It is easy to see
that in the classical limit (J8/J→`) at zero external field,
the turning-back probability dominates in regions II and VI,
leading to poor performance. For region VI, this may not be
very problematic because in this region~at least in the clas-
sical Ising limit! the conventional loop-cluster algorithm
works efficiently. For region II, it is not known whether this
is a real problem or not. The algorithm in region IV is re-
duced to a single-spin-flipMETROPOLISalgorithm in the limit
of J8/J→0 andh→`. The performance of theMETROPOLIS

algorithm should be good in this limit, although the region is
physically not very interesting.

VI. SUMMARY

We have proposed an algorithms based on the Syljua˚sen
and Sandvik scheme by introducing the split-spin represen-
tation and the coarse-graining procedure. The algorithm is a
natural extension of the directed loop algorithm forS51/2,
in that the present algorithm coincides with it forS51/2. In
addition, the present algorithm is a natural extension of the
conventional loop algorithm, because if the external field is
vanishing, the present algorithm can be obtained through
coarse graining the conventional split-spin loop algorithm.

Compared with the algorithms in the split-spin represen-
tation, the coarse-grained algorithm requires much smaller
memory, in general. In particular, when the algorithm con-
sists of vertices with more than four legs, as is generally the
case with the loop algorithms for models with high order
interaction terms, the memory can be reduced considerably.
The coarse-grained algorithm is also advantageous since the
codes based on it can be very easily modified for other mod-
els ~we only need to change the arrays of the probability
tables!.

In the case of theS51 Heisenberg antiferromagnet in one
dimension, the algorithm’s performance is almost the same
as the best algorithm obtained by directly working on the
original spin representation. Many other algorithms can also
be obtained in the same way. However, most of them, includ-
ing the heat-bath algorithm, are much worse than the present
one. Existence of algorithm 1, a good direct solution to Eqs.
~A3! and~A4!, suggests the existence of similar solutions for
an arbitraryS. We have not succeeded in finding a complete
set of such solutions, although we believe that such solutions
exist. It would be an interesting future problem to find such
solutions for various models.

The coarse-graining procedure presented in this paper ap-
plies not only to theXXZ spin systems but also to any model
for which a directed loop algorithm can be constructed in the

split-spin representation. For example, on-site easy axis or
easy plane anisotropy terms may be treated as the couplings
betweens spins on the same site. Another example is the
SU(N) model where the split-spin algorithm is known.
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APPENDIX A: GENERAL FORMULATION
OF THE SS SCHEME

In general, a directed loop algorithm is characterized by
the density of verticesr(S) and the scattering probability of
wormsP(GuS). The densityr( l ,m) is simply given by

r~ l ,m!5WS l m

l mD , ~A1!

where the weightW(S) is defined as

WS l 8 m8

l e m D[~cd l l 8dmm82^ l 8,m8uHi j u l ,m&!

3D~0< l 1e<2S!, ~A2!

whereD~‘‘ •••’’ !51 when ‘‘•••’’ is true and 0 otherwise. The
symbole stands for the integer by which the worm changes
the spin value, e.g.,e522 for a (22) worm that lowers
the spin value by 2. The variablec is the only free parameter
related to the vertex density.

The scattering probability, on the other hand, has a lot of
freedom. The algorithm can be explained very clearly by
introducing an extended weightW(S,G) that is related to the
weight W(S) as

W~S!5(
G

W~S,G!. ~A3!

Here, we consider a scattering event in which the initial state
of the vertex isS and the outgoing direction of the worm is
G. We denote the final state of this event asSG. It should be
noted that the stateS is directed in contrast to the state in the
ordinary Monte Carlo simulation. We consider the balance
between an arbitrary sequence of scatterings and its reverse.
Each sequence starts from pair creation of the worms and
ends at pair annihilation. The detailed balance condition
should be considered betweenS and the reverse ofSG.
Therefore, the detailed balance condition is expressed as

W~S,G!5W~S̄G,Ḡ !. ~A4!

Here, S̄G is the reverse ofSG obtained by inverting the di-
rection and changing the type of the worm inSG, whereasḠ
is the inverse ofG, obtained by inverting the direction of the
arrow in G.
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It is worth mentioning that Eqs.~A3! and ~A4! are quite
similar to the equations that appear in the general formula-
tions of the loop-cluster algorithm@4,13#. The only differ-
ence is that here we use directed graphs and directed states
whereas only nondirected graphs and states appear in the
conventional loop-cluster algorithm. It is easy to see that in
the case of zero magnetic field the extended weight in the
present scheme can be made independent of the directions of
states and graphs, and all the equations discussed in this
appendix coincide with those for conventional loop-cluster
algorithms.

Once we obtain any set of constantc and positive
W(S,G)’s that satisfy Eqs.~A2!–~A4!, we obtain a scatter-

ing probability P(GuS) of worms that satisfies the detailed
balance condition as

P~GuS!5
W~S,G!

W~S!
. ~A5!

APPENDIX B: SOME DIRECTED LOOP ALGORITHMS
FOR THE SÄ1 ANTIFERROMAGNETIC

HEISENBERG MODEL

In Tables II and III, we show the weight and the extended
weight that satisfy Eqs.~A2!–~A4! for the S51 antiferro-
magnetic Heisenberg model. The vertex density and the

TABLE II. A 61 worm solution@W(S,G)# to the detailed balance equation for theS51 antiferromagnetic Heisenberg model. Applies
only if 0<Hp<4J. Free parametersA,B,A8, andB8 are related to each other byA1B5A81B85J.
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worm-scattering probability can be obtained through Eqs.
~A1! and ~A5!.

Table II shows the scattering probability for worms that
change values of spin by 1. The weights contain two free
parametersA5J2B and A85J2B8. Note, however, that
the turning-back probability does not depend on the choice
of the free parameters. Algorithm 1–3 correspond to the fol-
lowing choices, respectively:

algorithm 1, A5
Hp

4
, A85J;

algorithm 2, A5J, A85
Hp

4
;

algorithm 3, A50.9J10.1
Hp

4
, A850.9

Hp

4
10.1J.

In addition to the worms changing spin values by 1, we
can introduce worms that change spin values by an arbitrary
amount. ForS51, we can introduce62 worms. In the ex-
amples presented in Sec. V, we used both61 worms and
62 ones. When a pair of worms are created, the type of
worm is chosen with equal probability from all possible
ones. For instance, when the initial spin state isl 52 at the
point chosen for the pair creation, a21 or 22 worm is
possible. Each one of them is chosen with probability 1/2.
The extended weight for62 worms are listed in Table III.

In fact, only the61 worms are necessary for making the
algorithm ergodic and for satisfying the detailed balance. Al-
though it is likely that the62 worms are useful for improv-
ing the efficiency of the algorithm for more complicated
models, we have not encountered such a case yet.
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