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Reduction of dynamical systems is closely related with symmetry. The purpose of
this article is to show that Fourier analysis both on compact Lie groups and on
finite groups serves as a reduction procedure for quantum systems with symmetry
on an equal footing. The reduction procedure is applied to systems of many iden-
tical particles lying inR3 which admit the action of a rotation group SO~3! and of
a symmetric or permutation group. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1473873#

I. INTRODUCTION

As is widely recognized, reduction of dynamical systems is closely related with symmetry. A
well-known example of reduction in ordinary quantum mechanics inR3 comes from rotational
symmetry.1 It gives rise to the conservation of the angular momentum, and thereby the quantum
state of the system can be restricted to that with a fixed angular momentum eigenvalue. The
restricted state is described by one of the spherical harmonics multiplied by a function of the radial
variable. The original Schro¨dinger equation then reduces to provide a Schro¨dinger equation for the
radial function. In this manner, the original quantum system reduces to a quantum system of lower
degree~s! of freedom. This reduction procedure proves to be based upon Fourier analysis on the
rotation group SO~3!. The reason why Fourier analysis on SO~3! is referred to, instead of that on
S2 with spherical harmonics, is that Fourier analysis on SO~3! reduces to that onS2 through the
bundle structure SO(3)→S2, when SO~3! acts onR3.

As for discrete symmetry, systems of many identical particles admit symmetry by the action of
symmetric~or permutation! groups, that is, symmetry of particle exchanges. A point to make here
is that the particles are not assumed to be placed at vertices of regular polyhedrons, but free to
spread in the space. The center-of-mass system forN identical particles is actually shown to admit
the action of the symmetric groupSN . Fourier analysis on finite groups will work well in reducing
the quantum system of identical particles. However, the reduction by a finite group does not mean
that of degrees of freedom, but a reduction to ‘‘eigenstates’’ for the symmetric group.

A key idea to reduction procedure is the Peter–Weyl theorem2,3 on unitary irreducible repre-
sentations of compact Lie groups and of finite groups, both of which are stated in the same
manner. The Peter–Weyl theorem says that matrix elements of all the inequivalent irreducible
unitary representations provide a basis of Fourier analysis on the group in question. The purpose
of this article is to show that Fourier analysis both on compact Lie groups and on finite groups
serves as a reduction procedure for quantum systems with symmetry, continuous and discrete, on
an equal footing.

The fact that the Peter–Weyl theorem on compact Lie groups serves as a reduction procedure
for quantum systems has been already stated and applied, in a previous paper,4 to many-particle
systems. To understand how the Peter–Weyl theorem comes to be associated with reduction
procedure for many-particle systems, one has to review geometric method for many-particle
systems. For a long period before a bundle picture was introduced in the study of many-particle
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systems, a vain effort had been made to separate rotational and vibrational motions. However, the
separation of them was shown to be impossible by A. Guichardet5 by the use of the connection
theory or gauge theory applied to the center-of-mass system which is viewed as a principal fiber
bundle with structure group SO~3!, if collinear configurations of particles are gotten rid of. With
this constraint taken into account, reduction procedure was described in the bundle picture.6 Since
then, classical and quantum mechanics for many-particle systems have been studied in the bundle
picture.7–14

A question has been kept unsettled as to how the collinear configurations should be treated in
the study of reduction procedure. An answer to this question is brought about when the problem is
put in a generic setting.4 Since the center-of-mass system admits an SO~3! action, a geometric
setting to start with is simply that a manifoldM is given on which a compact Lie groupG acts.
The action ofG is not assumed to be free, so thatM is not made into a fiber bundle in general.
Though the bundle picture fails to work, the theory of unitary representations of compact Lie
groups works well on the space,L2(M ), of square integrable functions onM . By an effective use
of the Peter–Weyl theorem,L2(M ) is decomposed into a series of subspaces, each of which is
isomorphic with the space of equivariant functions taking values in a representation space, and
may be viewed as the space of eigenstates assigned by the parameter, like an angular momentum
eigenvalue, characterizing the representation chosen. If a given Hamiltonian isG-invariant, the
original quantum system reduces to a system on the space of equivariant functions, which may be
called a reduced system actually. The question mentioned above is now solved. In fact, the
reduction procedure in this sense can be applied to many-particle systems without excluding
collinear configurations. In this stage of reduction, we have not taken up a bundle picture, yet. If
the action ofG is free furthermore, the reduction procedure can be described in the bundle picture.
In fact, M is then made into a principal bundle,M→M /G, and the reduced system is brought into
one-to-one correspondence with a quantum system defined on a complex vector bundle associated
with the principal bundleM→M /G.10

A review article by Littlejohn and Reinsch15 is of great help in studying quantum mechanics
of many-particle systems in the bundle picture. A lecture note by Ezra16 is a unifying survey of
rotation, reflection and identical particle symmetry in molecules before the introduction of the
bundle theory in many-particle systems.

This article is organized as follows: Section II contains a brief review of the reduction of
quantum systems by a compact Lie group on the basis of the study in Ref. 4. Section III is devoted
to the study of the reduction by a finite group. The reduction procedure will run in parallel with
that by a compact Lie group. Section IV contains examples. To a better comprehension, the
reduction procedure is performed for quantum systems onL2(R3) with SO~3! symmetry. As is
stated in the beginning of this section, Fourier analysis on SO~3! reduces to that onS2 according
to the bundle structure SO(3)→S2, and thereby the quantum system onL2(R3) will reduce to a
series of systems defined on the closed half line$r PRur>0% with r the radial variable. Boundary
conditions for wave functions atr 50 are also analyzed by the use of the group theory. Section V
centers on the application of the reduction procedure to systems ofN identical particles. The
reduction procedures with both a compact Lie group SO~3! and a symmetric groupSN , a discrete
finite group, are performed simultaneously. Matrix representations ofS3 and S4 will be given
explicitly, which act on the center-of-mass systems for three and four particles, respectively.

II. REDUCTION BY A COMPACT LIE GROUP

We put the problem of reduction of quantum systems with symmetry in a general setting. This
section is a review from Ref. 4. LetM be a manifold on which a compact Lie groupG acts. Let
mM be aG-invariant measure onM . The spaceL2(M ) of square integrable functions onM is the
Hilbert space that we take as the space of wave functions. The inner product of functions onM is
denoted, as usual, by
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^ f 1 , f 2&L2(M )5E
M

f 1~x! f 2~x!dmM~x!. ~1!

The groupG is represented unitarily inL2(M ) through

~U~g! f !~x!5 f ~g21x!, gPG, xPM . ~2!

By the use of the representationg°U(g), one can decomposeL2(M ) into a direct sum of
subspaces. Before describing the decomposition, we have to make a brief review of the Peter–
Weyl theorem on unitary representations of compact Lie groups.

Let mG and L2(G) denote the normalized invariant measure onG and the space of square
integrable functions onG with respect tomG , respectively. Let (H x,rx) be unitary irreducible
representations ofG, wherex ranges over all the inequivalent unitary irreducible representations.
We denote byr i j

x the matrix elements of the representationrx with respect to some orthonormal
basis of the representation spaceH x, where i , j 51,...,dx , and dx5dimH x. The Peter–Weyl
theorem2 states that the set of all the matrix elements$Adxr i j

x %x,i , j form a complete ortho-
normal system inL2(G). Then any functionw in L2(G) is expanded into a Fourier series:

w~h!5(
x

dx(
i , j

r i j
x ~h!E

G
r i j

x ~g!w~g!dmG~g!5(
x

dx(
i
E

G
r i i

x~g!w~g21h!dmG~g!. ~3!

This theorem can be used to find a Fourier series expansion of a function onM . Given a
function f PL2(M ), we may viewf (hx) as a function ofhPG, if xPM is fixed arbitrarily. We
may write this function asf x , so thatf x(h)ª f (hx) for hPG. For w5 f x , Eq. ~3! provides

f ~hx!5(
x

dx(
i
E

G
r i i

x~g! f ~g21hx!dmG~g!. ~4!

In particular, forh5e, this formula gives a Fourier series expansion off :

f ~x!5(
x

dx(
i
E

G
r i i

x~g! f ~g21x!dmG~g!. ~5!

This expansion suggests we define operatorsPi
x on L2(M ) to be

Pi
x
ªdxE

G
r i i

x~g!U~g!dmG~g!. ~6!

Then, a straightforward calculation shows that

~Pi
x!†5Pi

x , Pi
xPj

x85dxx8d i j Pi
x . ~7!

Further, the Fourier series expansion~5! means that

(
x

(
i

Pi
x5 idL2(M ) , ~8!

where idL2(M ) denotes the identity map ofL2(M ). Equations~7! and ~8! implies that the set
$Pi

x%x,i forms a family of orthogonal projection operators and provides a resolution of unity.
Hence one has the orthogonal decomposition ofL2(M ),

L2~M !5 %
x

%
i 51

dx

Im Pi
x . ~9!
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Moreover, we define the operators

Pi j
x
ªdxE

G
r i j

x ~g!U~g!dmG~g!, ~10!

which prove to satisfy that

~Pi j
x !†5Pji

x , Pi j
x Pk,

x85dxx8d jkPi ,
x . ~11!

In particular, fromPii
x 5Pi

x along with ~11!, one has

Pi j
x Pj

x5Pi
xPi j

x , ~Pi j
x !†Pi

x5Pj
x~Pi j

x !†, ~12!

and further

~Pi j
x !†Pi j

x 5Pj
x , Pi j

x ~Pi j
x !†5Pi

x . ~13!

From ~12! and ~13!, it follows that when restricted to ImPj
x the operatorPi j

x provides a unitary
isomorphism

Pi j
x : Im Pj

x→
;

Im Pi
x , i , j 51,...,dx . ~14!

Furthermore, we can show that the operatorsPi j
x andU(g) are composed to give

Pi j
x U~g!5(

k
r jk

x ~g!Pik
x , U~g!Pi j

x 5(
k

rki
x ~g!Pk j

x . ~15!

We now denote byH x
^ L2(M ) the space ofH x-valued square integrable functions onM . The

inner product inH x
^ L2(M ) is defined by

^c,f&H x ^ L2(M )5E
M

~c~x!,f~x!!dmM~x!, c,fPH x
^ L2~M !, ~16!

where (c(x),f(x)) denotes the inner product ofc(x) andf(x) in H x. The second equation of
~15! then implies that the mapEj

x : L2(M )→H x
^ L2(M ) defined by

Ej
x5

1

Adx

~P1 j
x ,P2 j

x ,...,Pdx j
x !T, ~17!

the superscriptT denoting the transpose, satisfies

U~g21!Ej
x5rx~g!Ej

x , gPG, ~18!

which implies thatH x-valued functionsEj
x f with f PL2(M ) are subject to the transformation

~Ej
x f !~gx!5rx~g!~Ej

x f !~x!, gPG. ~19!

Put another way, theH x-valued functionsEj
x f arerx-equivariant functions. We here define the

space ofH x-valuedrx-equivariant square integrable functions to be

L2~M ;H x!G5$cPH x
^ L2~M !uc~gx!5rx~g!c~x!, gPG, xPM %. ~20!

We then observe from~19! that the operatorEj
x is a mapL2(M )→L2(M ;H x)G. The adjoint

operator (Ej
x)†: L2(M ;H x)G→L2(M ) is defined, of course, through
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^c,Ej
x f &H x ^ L2(M )5^~Ej

x!†c, f &L2(M ) , cPL2~M ;H x!G, f PL2~M !. ~21!

We note here that components ofrx-equivariant functions satisfy

Pi j
x c j5c i for c5~c i !PL2~M ;H x!G. ~22!

Then, from the definition of (Ej
x)†, it follows that

~Ej
x!†c5Adxc j for c5~c i !PL2~M ;H x!G. ~23!

Further, from~22! and ~23!, one can easily show that

~Ej
x!†Ej

x5Pj
x , Ej

x~Ej
x!†5 idL2(M ;H x)G, ~24!

which implies that when restricted to ImPj
x the mapEj

x provides a unitary isomorphism

Ej
x : Im Pj

x→
;

L2~M ;H x!G, j 51,...,dx , ~25!

so that all ImPj
x , j 51,...,dx , are unitarily isomorphic to one another.

Forming the direct sum ofdx copies ofL2(M ;H x)G, we obtain

%
j 51

dx

Im Pj
x>~H x!* ^ L2~M ;H x!G. ~26!

From ~9! and ~26!, L2(M ) is decomposed, in conclusion, into

L2~M !> %
x

~~H x!* ^ L2~M ;H x!G!. ~27!

We are now in a position to describe a method for reducing quantum systems with symmetry.
Let Ĥ be a Hamiltonian operator acting on a dense domain inL2(M ). We assume thatĤ and
U(g) commute for anygPG. Then Ĥ and Pi

x also commute, so that the subspace ImPi
x is

invariant underĤ. This implies that the quantum system (L2(M ),Ĥ) reduces to a series of
subsystems (ImPi

x ,Ĥ) or equivalently to (L2(M ;H x)G, idH x ^ Ĥ), where idH x ^ Ĥ means that
H x-valued functions are operated componentwise withĤ. The assumption we have used so far is
that M carries theG-invariant measuremM . To give an example ofĤ explicitly, we now assume
thatM is endowed with a Riemannian metric and thatG acts onM by isometry. We takedmM as
the volume element formed from the metric. As usual, we takeĤ52 1

2DM1v, whereDM is the
Laplacian onM andv is aG-invariant function onM . Since this Hamiltonian isG-invariant, the
quantum system (L2(M ),Ĥ) reduces to (L2(M ;H x)G, idH x ^ Ĥ).

If the action of the compact Lie groupG is free furthermore,M is made into a fiber bundle
M→M /G with structure groupG. Then, as is well known, the space of theH x-valued
rx-equivariant functions is in one-to-one correspondence with the space of sections in the complex
vector bundle associated with the principal bundleM→M /G. According to this, the Hamiltonian
operator idH x ^ Ĥ gives rise to a Hamiltonian operatorĤx acting on the space of sections. Let
Gx

2(M /G) denote the space of square integrable sections in the complex vector bundle. The
reduced quantum system (L2(M ;H x)G, idH x ^ Ĥ) now determines a quantum system
(Gx

2(M /G),Ĥx). To find Ĥx in an explicit manner, we need a further study, which we do not touch
upon here~see Ref. 4 for details!.

If the action ofG is not free, the orbit spaceM /G is not a manifold, and hence the bundle
picture of reduction procedure stated above fails to work. However, the reduction to
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(L2(M ;H x)G, idH x ^ Ĥ) remains to be the case. In some cases, orbit spaces become manifolds
with boundary. For example, forM5R3 andG5SO(3), theorbit spaceM /G is a closed half line
$r PRur>0%. This will be treated in Sec. IV.

III. REDUCTION BY A FINITE GROUP

We wish to show that the reduction procedure will work as well if we take finite groups in
place of compact Lie groups. We start with a review of the Peter–Weyl theorem for finite groups.
Let H be a finite group. Letp i j

x denote the matrix elements of the representation (K x,px) of H,
wherei , j 51,...,dx with dx5dimK x, andx ranges all the inequivalent unitary irreducible repre-
sentations. The Peter–Weyl theorem for finite groups3 says that all the matrix elements$p i j

x %x,i , j

form a complete orthogonal set inL2(H). The inner product forw,cPL2(H) is defined, as usual,
to be

^w,c&L2(H)5 (
gPH

w~g!c~g!. ~28!

The orthogonality of the matrix elements is expressed as

dx

uHu (
gPH

p i j
x ~g!p i 8 j 8

x8 ~g!5dxx8d i i 8d j j 8 , ~29!

whereuHu5#H, the order ofH. The Fourier inversion formula then holds to provide

w~g!5
1

uHu (x
dx (

1< i , j <dx
p i j

x ~g!^p i j
x ,w&L2(H)5

1

uHu (x
dx(

j 51

dx

(
kPH

p j j
x ~k!w~gk!. ~30!

Let M be a manifold which admits a right action ofH, where the right action means that
x(gh)5(xg)h for xPM andg,hPH. Let L2(M ) denote the space of square integrable functions
on M , where the measuremM on M is assumed to be invariant underH. The H is unitarily
represented inL2(M ) through

~V~g! f !~x!5 f ~xg!, xPM , gPH. ~31!

Applying the Peter–Weyl formula forf (xg) with xPM arbitrarily fixed, one obtains

f ~xg!5
1

uHu (x
dx (

1< i , j <dx
p i j

x ~g! (
hPH

p i j
x ~h! f ~xh!5(

x
(
j 51

dx

dx

uHu (
kPH

p j j
x ~k! f ~xgk!. ~32!

In particular, forg5e, this formula gives a Fourier series expansion off ,

f ~x!5(
x

(
j 51

dx

dx

uHu (
kPH

p j j
x ~k! f ~xk!. ~33!

This suggests we define operatorsQj
x on L2(M ) by

Qj
x5

dx

uHu (
kPH

p j j
x ~k!V~k!. ~34!

A straightforward calculation shows that

~Qi
x!†5Qi

x , Qi
xQi 8

x85dxx8d i i 8Qi
x , ~35!
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which means thatQj
x’s form a family of mutually orthogonal projection operators. The Fourier

series expansion~33! is now put in the form

f ~x!5(
x

(
j 51

dx

~Qj
x f !~x!, ~36!

which implies thatL2(M ) is decomposed into

L2~M !5 %
x

%
j 51

dx

Im Qj
x . ~37!

We now define operatorsQi j
x on L2(M ) to be

Qi j
x 5

dx

uHu (
kPH

p i j
x ~k!V~k!. ~38!

A straightforward calculation shows that these operators have the properties

~Qi j
x !†5Qji

x , Qi j
x Qi 8 j 8

x8 5dxx8d j i 8Qi j 8
x . ~39!

In particular, fromQii
x 5Qi

x together with~39!, one verifies that

Qi j
x Qj

x5Qi
xQi j

x 5Qi j
x , ~40!

and further that

~Qi j
x !†Qi j

x 5Qj
x , Qi j

x ~Qi j
x !†5Qi

x . ~41!

From ~40! and ~41!, it turns out that when restricted to ImQj
x the mapQi j

x provides a unitary
isomorphism,

Qi j
x : Im Qj

x→
;

Im Qi
x , i , j 51,...,dx. ~42!

We can also verify thatQi j
x andV(g) are composed to give

Qi j
x V~g!5(

,
p j ,

x ~g!Qi ,
x , V~g!Qi j

x 5(
,

p, i
x ~g!Q, j

x . ~43!

We here denote byK x
^ L2(M ) the space ofK x-valued square integrable functions onM . Then

the second equation of~43! implies that the operatorsF j
x : L2(M )→K x

^ L2(M ) defined to be

F j
x
ª

1

Adx
~Q1 j

x ,...,Qdx j
x

!T ~44!

have the property

V~g!F j
x5px~g!TF j

x , gPH. ~45!

This implies that forf PL2(M ) the K x-valued functionF j
x f is subject to the transformation

~F j
x f !~xg!5px~g!T~F j

x f !~x!, gPH. ~46!
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We may say that theK x-valued functionF j
x f is px-equivariant. We here define the space of

K x-valued square integrablepx-equivariant functions to be

L2~M ;K x!H5$cPK x
^ L2~M !uc~xg!5px~g!Tc~x!, gPH, xPM %. ~47!

Then Eq.~46! shows that the operatorF j
x is a mapL2(M )→L2(M ;K x)H. The adjoint operator

(F j
x)†: L2(M ;K x)H→L2(M ) is defined through

^c,F j
x f &K x ^ L2(M )5^~F j

x!†c, f &L2(M ) , cPL2~M ;K x!H, f PL2~M !. ~48!

We notice here that componentsc i of cPL2(M ;K x)H are related byQi j
x :

Qi j
x c j5c i , i , j 51,...,dx. ~49!

Then, writing out the defining equation of (F j
x)†, one obtains

~F j
x!†c5Adxc j for c5~c i !PL2~M ;K x!H. ~50!

Now it is easy to verify that

~F j
x!†F j

x5Qj
x , F j

x~F j
x!†5 idL2(M ;K x)H. ~51!

This implies that when restricted to ImQj
x the operatorF j

x provides a unitary isomorphism

F j
x : Im Qj

x→
;

L2~M ;K x!H, j 51,...,dx, ~52!

so that all ImQj
x , j51,...,dx, are unitarily isomorphic to one another.

Forming the direct sum ofdx copies ofL2(M ;K x)H, we obtain the isomorphism

%
j

Im Qj
x>~K x!* ^ L2~M ;K x!H, ~53!

and further, from~37!,

L2~M !> %
x

~~K x!* ^ L2~M ;K x!H!. ~54!

Reduction procedure for quantum systems with discrete symmetry is quite the same as that for
those with compact Lie group symmetry. If the HamiltonianĤ is invariant under theH action, the
original system (L2(M ),Ĥ) reduces to a series of subsystems (ImQj

x ,Ĥ) and then equivalently to
(L2(M ;K x)H, idK x ^ Ĥ).

IV. EXAMPLES

In this section, we give examples of the reduction procedure discussed in Secs. II and III. As
the group SO~3! is the most frequently used compact Lie group in ordinary quantum mechanics,
we first perform the reduction procedure withG5SO(3) andM5R3. In this case, one has matrix
elementsDmm8

, for r i j
x , where,50,1,2,..., umu,um8u<,, anddx52,11. Then the Fourier series

expansion~5! is put in the form

f ~x!5 (
,50

`

(
umu<,

~2,11!E
SO(3)

Dmm
, ~h! f ~hx!dm~h!, xPR3, ~55!

wheredm(h) is the invariant measure on SO~3! and expressed in terms of the Euler anglesh
5efê3euê2ecê3 as
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dm~h!5
1

2p2 sinu dudfdc with E
SO(3)

dm~h!51, ~56!

where ek , k51,2,3, are the standard basis ofR3 and êk denote the 333 matrices defined by
êka5ek3a for aPR3. We wish to show that Eq.~55! provides actually a Fourier series expansion
in terms of the spherical harmonics. To this end, we are to write out the integrals on the right-hand
side of ~55!. Let uxu5r and setx5rge3 , gPSO(3). Then, introducing new variablek5hg
PSO(3), oneobtains

E
SO(3)

Dmm
, ~h! f ~hx!dm~h!5 (

unu<,
E

SO(3)
Dmn

, ~k!Dnm
, ~g21! f ~rke3!dm~k!. ~57!

We now setk5ef8ê3eu8ê2ec8ê3, and use the fact that theD-functions17 are expressed as

Dmn
, ~k!5e2 imf8dmn

, ~u8!e2 inc8, ~58!

where we do not need to give the explicit expression ofdmn
, (u8), but need only to note that the

D-functions are factorized in accordance with the Euler variables. Then the integration with
respect todm(k) in ~57! is put in the form

E
SO(3)

Dmn
, ~k! f ~rke3!dm~k!5

1

8p2 E
0

2p

dc8einc8E
S2

dmn
, ~u8!eimf8 f ~rke3!sinu8du8 df8.

~59!

Since the right-hand side of~59! vanishes ifnÞ0, the Fourier series expansion~55! turns out to
take the form

f ~x!5 (
,50

`

(
umu<,

~2,11!E
SO(3)

Dm0
, ~k!D0m

, ~g21! f ~rke3!dm~k!

5 (
,50

`

(
umu<,

Ȳ,m~u,f!E
S2

Y,m~u8,f8! f ~rke3!sinu8 du8 df8, ~60!

where we have also setg5efê3euê2ecê3 and used the formulas that relateD-functions to spherical
harmonics:16

Dm0
, ~k!5A 4p

2,11
Y,m~u8,f8!, D0m

, ~g21!5Dm0
, ~g!5A 4p

2,11
Ȳ,m~u,f!, ~61!

andY,m(u,f) are given explicitly by

Y,m~u,f!5~21!mA~2,11!~,2m!!

4p~,2m!!
P,

m~cosu!eimf, ~62!

whereP,
m are associated Legendre functions.16 We notice here thatȲ,m(u,f)5Ȳ,m(ge3) may be

considered as functions onS2. If we introduce the notation

^Ȳ,m , f &S25..E
S2

Y,m~u8,f8! f ~rke3!sinu8 du8 df8, ~63!

which is a function ofr , the Fourier series expansion~60! is put in the form
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f ~x!5 (
,50

`

(
umu<,

Ȳ,m~u,f!^Ȳ,m , f &S2, x5refê3euê2e3 . ~64!

Thus we have obtained a Fourier series expansion in terms of spherical harmonics. It is of great
interest to view the functionf (rke3) in ~63! as a function onR13S2 which is reduced from a
function onR13SO(3) through the bundle projection SO(3)→S2 realized ask°ke3 .

We proceed to the projection and ‘‘transition’’ operators, which are defined by~6! and ~10!
and denoted byPm

, andPnm
, , respectively, in the case ofG5SO(3).Applied to a functionf (x)

with uxu5r andx5rge3 , the definition~10! gives rise to the function

~Pnm
, f !~x!5~2,11!E

SO(3)
Dnm

, ~h! f ~h21x!dm~h!5Ȳ,n~u,f!^Ȳ,m , f &S2, ~65!

which can be proved in a similar manner to that for bringing~55! into ~60!. Settingm5n in the
above equation results in

~Pm
, f !~x!5Ȳ,m~u,f!^Ȳ,m , f &S2, ~66!

which means that ImPm
, is the space of functions which are expressed asȲ,m times functions of

r . In particular, operatingȲ,m with Pnm
, , one obtains

~Pnm
, Ȳ,m!~u,f!5Ȳ,n~u,f!. ~67!

Then the unitary isomorphismPnm
, : Im Pm

, →Im Pn
, @see~14!# implies that the spaces ImPn

, , unu
<,, are isomorphic to one another as spaces of functions ofr . In the Dirac notation, we may
describePnm

, andPm
, as

Pnm
, 5uȲ,n&^Ȳ,mu, Pm

, 5uȲ,m&^Ȳ,mu, ~68!

respectively. Here, integration must be performed not overR3 but over S2, if one wishes to
evaluatePm

, f , for example.
We now proceed to the mapEj

x defined by~17!. From the definition along with~68!, we see
that Em

, : L2(R3)→H ,
^ L2(R3) is given by

Em
, f 5

1

A2,11 S P,m
, f

P,21 m
, f
]

P2, m
, f

D 5S Ȳ,,

Ȳ, ,21

]

Ȳ, 2,

D ^Ȳ,m , f &S2

A2,11
. ~69!

According to~19!, Em
, f must be aD,-equivariant function, that is, it must satisfy the condition

~Em
, f !~hx!5D,~h!~Em

, f !~x!, hPSO~3!. ~70!

However, this can also be shown to hold from the transformation rule for the spherical harmonics,

Ȳ,m~hge3!5 (
unu<,

Dmn
, ~h!Ȳ,n~ge3!, hPSO~3!, ~71!

and from the SO~3! invariance of̂ Ȳ,m , f &S2.
We have to note here that ifh is in Gx , the isotropy subgroup of SO~3! at x5rge3 , Eq. ~70!

reduces to

~Em
, f !~x!5D,~h!~Em

, f !~x!, hPGx . ~72!
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Since the left-hand side of the above equation is independent ofh, so is the right-hand side which
looks dependent onh. However, this is not a contradiction, but rather accounts for the fact that
Pnm

, f (5Ȳ,n^Ȳ,m , f &S2) is expressed asȲ,n times a function ofr . The proof runs as follows: Let
hPGx with xÞ0. Thenh must be a rotation about thex-axis, and is expressed as

h5et x̂/r5getê3g21, x5rge3 , tPR. ~73!

Put together, Eqs.~72! and ~73! give rise to

~Em
, f !~re3!5D,~etê3!~Em

, f !~re3!. ~74!

SinceDnm
, (etê3)5e2 intdnm , the above equation implies that 2, components of (Em

, f )(re3) van-
ish:

~Pnm
, f !~re3!50 if nÞ0. ~75!

From ~15! and ~75!, it follows that

~Pnm
, f !~x!5 (

uku<,
Dnk

, ~g!~Pkm
, f !~re3!5Dn0

, ~g!~P0m
, f !~re3!. ~76!

We observe from~61! and~76! that (Pnm
, f )(x) takes the form ofȲ,n(ge3) times a function ofr ,

A4p/(2,11)(P0m
, f )(re3).

With Pm
, f 5Ȳ,m^Ȳ,m , f &S2 instead off , the right-hand side of~69! is unchanged:

Em
, Pm

, f 5S Ȳ,,

Ȳ, ,21

]

Ȳ, 2,

D ^Ȳ,m , f &S2

A2,11
. ~77!

This equation must be a realization of the unitary isomorphism~25!, which is denoted byEm
, :

Im Pm
, →L2(R3;H ,)SO(3) in the present case, whereH ,>C2,11. From ~66! and~77!, both ImPm

,

andL2(R3;H ,)SO(3) may be identified with the space of functions of the form^Ȳ,m , f &S2. This
space can be endowed with a suitable norm. We setw,m(r )5^Ȳ,m , f &S2 for simplicity. Then, the
squared norm ofPm

, f 5Ȳ,mw,m is calculated as

E
0

`

drE
S2

w,m~r !w,m~r !Ȳ,mY,m r 2 sinu dudf5E
0

`

uw,m~r !u2r 2dr. ~78!

ThusL2(R3;H ,)SO(3) can be identified with the space of functions ofr which are subject to the
condition

E
0

`

uw~r !u2r 2dr,1`. ~79!

To consider boundary conditions forw(r ) at r 50, we now take into account the
D,-equivariance condition~70! at the origin. Since the isotropy subgroup at the origin is SO~3!
itself, theD,-equivariance condition~70! at the origin is expressed as

Ȳ,n~ge3!w,m~0!5 (
um8u<,

Dnm8
,

~h!Ȳ,m8~ge3!w,~0! for ; hPSO~3!. ~80!
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This implies that the vector (Ȳ,nw,m(0))unu<,PH , is invariant under the action of all the matri-
ces D,(h), hPSO(3). Since the representationD, is irreducible, w,m(0) must vanish if
dimH ,>2, i.e.,,>1. If ,50, then dimH 051, so thatw,m(0) does not need to vanish. It should
be a finite value. Thus the space of square integrable functions on the closed half line$r PRu r
>0%, as a reduced space of quantum states, should be given by

H wU E
0

`

uw~r !u2r 2dr,1`, w~0!50J for ,>1, ~81!

and

H wU E
0

`

uw~r !u2r 2dr,1`, w~r !is bounded asr→0J for ,50. ~82!

The reduction procedure for quantum systems with symmetry proceeds as follows: Let
(L2(R3),Ĥ) be a quantum system with a Hamiltonian operatorĤ. Assume thatĤ is invariant
under the action of SO~3!. According to the procedure stated in Sec. II, one obtains a reduced
quantum system (ImPm

, ,Ĥ) or (L2(R3;H ,)SO(3), idH
,

^ Ĥ). The spaceL2(R3;H ,)SO(3) may be
identified with theL2-space on the half line which is defined by~81! for ,>1 and by~82! for
,50.

We show that the reduced quantum system (ImPm
, ,Ĥ) gives rise to a quantum system to be

defined on the closed half line$r PRur>0%. For simplicity, we assume that the Hamiltonian
operator has the form

Ĥ52 1
2 D1v~r !, ~83!

where D and v(r ) are the standard Laplacian onR3 and a potential function depending onr
5uxu, respectively. TheD is expressed, in terms of the spherical polar coordinates, as

D5
1

r 2

]

]r S r 2
]

]r D1
1

r 2 L, ~84!

whereL is the spherical Laplacian onS2,

L5
1

sinu

]

]u S sinu
]

]u D1
1

sin2 u

]2

]f2 . ~85!

OperatingPm
, f 5Ȳ,mw,m with Ĥ, one obtains

ĤPm
, f 5Ȳ,mS 2

1

2

1

r 2

]

]r S r 2
]

]r D1
,~,11!

2r 2 1v~r ! Dw,m , ~86!

where we have used the fact that

LȲ,m52,~,11!Ȳ,m . ~87!

Equation~86! shows that the HamitonianĤ restricted to ImPm
, gives rise to the operator

Ĥ,
ª2

1

2

1

r 2

]

]r S r 2
]

]r D1
,~,11!

2r 2 1v~r !, ~88!
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which acts on functions ofr . Here we have denoted the restricted operator byĤ, without referring
to m, since it is independent ofm, actually. Thus we have obtained reduced quantum systems
which are defined on the space given by~81! or ~82! together with the reduced Hamiltonian
operatorĤ, given by ~88!.

In conclusion of this example, we consider what boundary conditions come out on wave
functions if those wave functions are assumed to be analytic at the origin. Letf be analytic at the
origin. Then f is expressed as

f ~x!5 (
n50

`

(
i 1 j 1k5n

i>0,j >0,k>0

ci jkx1
i x2

j x3
k5 (

n50

`

r nS Yn
(n)1Yn22

(n) 1¯1H Y0
(n) ~ if n is even!

Y1
(n) ~ if n is odd! J D ,

~89!

where Yk
(n) are spherical harmonics of degreek, k50,2,...,n or k51,3,...,n, depending on

whether n is even or odd. Here, use has been made of the fact that the space,Pn(R3), of
homogeneous polynomials of degreen is decomposed into the direct sum18

Pn~R3!5Hn~R3! % r 2Hn22~R3! %¯% H r nH0~R3! ~ if n is even!,

r n21H1~R3! ~ if n is odd!,
~90!

whereHk(R3) denotes the space of solid harmonics of degreek, and each spherical harmonicYk
(n)

in ~89! is expressed as a linear combination of the basis of spherical harmonics,Ykm , umu<k, of
degreek:

Yk
(n)5 (

umu<k
cm

(n)Ykm . ~91!

If we rewrite the Taylor series~89! as a Fourier series with respect to spherical harmonicsY,m ,
and put together the terms containing spherical harmonics of degree,, then we obtain

r ,Y,
(,)1r ,12Y,

(,12)1¯5 (
umu<,

~r ,cm
(,)1r ,12cm

(,12)1¯ !Y,m . ~92!

This implies that if a quantum state with the angular momentum eigenvaluesJ25,(,11) and
J35m is analytic at the origin, it isY,m times an analytic function ofr which has the term of the
lowest order, and those of every other higher order. This fact was pointed out in Ref. 1 with the
assumption thatv(r ) is analytic atr 50. Our conclusion holds true ifv(r ) is not analytic atr
50, as long as a wave function analytic at the origin is admitted as a quantum state.

We turn to an example of the reduction by a finite group. Since we shall deal with a nontrivial
application of it in the next section, we give here a quite simple example. LetM5Rn and H
5Z25$61%. The groupZ2 acts onRn in the manner

x°«x, xPRn, «PZ2 . ~93!

All the inequivalent unitary irreducible representations are the trivial representation,«°1, and the
tautological representation,«°«. Then the Fourier series expansion~36! becomes simply

f ~x!5 1
2 ~ f ~x!1 f ~2x!!1 1

2 ~ f ~x!2 f ~2x!!. ~94!

V. APPLICATION TO MANY-PARTICLE SYSTEMS

We consider a system of many particles lying inR3. Let x1 ,...,xN be position vectors of
particles andm1 ,...,mN their masses. LetM be the center-of-mass system, which is defined to be
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M5H x5~x1 ,...,xN!U(
i 51

N

mixi50J , ~95!

and isomorphic toR3(N21) as a vector space. The rotation group SO~3! acts onM in such a
manner that

~x1 ,...,xN!°~gx1 ,...,gxN!, gPSO~3!. ~96!

The configurations of particles are characterized by the linear subspaces

Fxªspan$x1 ,x2 ,...,xN%, xPM . ~97!

According to dimFx50,1,2,3, the configurationsx are pointlike, collinear, planar, and spatial,
respectively. LetMk , k50,1,2,3, denote the space of respective configurations of particles. Then
M is broken up into

M5 ø
k50

3

Mk , Mkª$xPM udimFx5k%. ~98!

One can show that SO~3! acts on ṀªM2øM3 freely, that is, if gx5x for some x
PM2øM3 , theng5I ~the 333 identity matrix!. This means that the isotropy subgroup is trivial
at every point ofṀ , that is,Gx5$e% for xPṀ . However, the isotropy subgroupsGx at xPM1

and atxPM0 are isomorphic with SO~2! and with SO~3!, respectively. On restrictingM to Ṁ , we
can makeṀ into a principal fiber bundleṀ→Ṁ /SO(3). However, the total spaceM cannot be
made into a fiber bundle. This is because one has ‘‘singular’’ orbits of SO~3! through points
outside of Ṁ ; the orbits through each point ofM1 and of M0 are diffeomorphic withS2

5SO(3)/SO(2) andwith a point, respectively, while generic orbits throughxPṀ are diffeomor-
phic with SO~3!.

Since a HamiltonianĤ for many-particle systems with internal interaction only is SO~3!
invariant, the reduction procedure with compact Lie groups is applied to provide a reduced system
(L2(M ;H ,)G, idH , ^ Ĥ) with G5SO(3) and,50,1,2,... . Note that at this level of reduction,M

does not need to be restricted toṀ . Equation~19! then takes the form

~Em
, f !~gx!5D,~g!~Em

, f !~x!, gPSO~3!, xPM , ~99!

which implies that theH ,-valued functionEm
, f describes an eigenstate associated with the eigen-

value,(,11) of the total angular momentum operator.
RestrictingM to Ṁ , we obtain a principal bundleṀ→Ṁ /SO(3) and can make up the vector

bundle associated withṀ→Ṁ /SO(3) by using a representation spaceH ,. The reduced system
(L2(Ṁ ;H ,)SO(3), idH , ^ Ĥ) is then in one-to-one correspondence with (G,

2(Ṁ /SO(3)),Ĥ,). If we
want to treat the whole ofM , we must impose boundary conditions on wave functions at the
boundary]Ṁ5M0øM1 .4 Since the collinear configurations are inM1 , we have to consider
boundary conditions on wave functions at collinear configurations. For a three-body system,
Mitchell and Littlejohn19 studied the behavior of wave functions at collinear configurations from
the viewpoint of bundle theory. By a coordinate-based method, Watson20 studied small vibrations
in the neighborhood of collinear configurations.

We turn to the reduction of quantum systems with discrete symmetry. The center-of-mass
systemM is looked upon as the set of configurations of the Jacobi vectors (r1 ,...,rN21), where
r j ’s are defined to be
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r j5S 1

m j
1

1

mj 11
D 21/2S xj 112

1

m j
(
i 51

j

mixi D , m j5(
i 51

j

mi . ~100!

We here assume that all particles are identical and set the masses all equal to one. Then Eq.~100!
becomes

r j5A j

j 11S xj 112
1

j (
i 51

j

xi D . ~101!

Since all particles are identical, the system is unchanged if particles are exchanged mutually. Put
another way, the configurations of particles admits symmetry by the action of the symmetric group
SN ;

~x1 ,...,xN!°~xs(1) ,...,xs(N)!, sPSN . ~102!

Since new Jacobi vectors associated with a new configuration (xs(1) ,...,xs(N)),

r j
s5A j

j 11S xs( j 11)2
1

j (
i 51

j

xs( i )D , j 51,...,N21, ~103!

are linearly related with the old Jacobi vectorsr j , there exists anN3N matrix A depending on
sPSN such that (r1

s ,...,rN21
s )5(r1 ,...,rN21)A. Thus one can find a matrix representationp:

SN→GL(N21,R) throughp(s21)5A. Thus,SN acts onM in the manner

~r1 ,...,rN21!°~r1 ,...,rN21!p~s21!, sPSN . ~104!

We have to note here that since we deal withSN as acting onM to the right, the productst of s,
tPSN is interpreted as this:s comes first and thent follows, so that one has (12)(1 2 3)
5(1 3), for example. If we choose the left action ofSN , we shall obtain (12)(1 2 3)5(2 3), of
course.

For example, ifN53, one obtains the two-dimensional representationp2 which has the
matrix expression as follows:

p2~s1!5S 1 0

0 1D , p2~s4!5S 21 0

0 1D ,

p2~s2!5S 21/2 )/2

2)/2 21/2D , p2~s5!5S 1/2 )/2

)/2 21/2D , ~105!

p2~s3!5S 21/2 2)/2

)/2 21/2 D , p2~s6!5S 1/2 2)/2

2)/2 21/2 D ,

where

s15~1!, s25~1 2 3!, s35~1 3 2!,
~106!

s45~1 2!, s55~2 3!, s65~1 3!.

Incidentally, it is well known that there are three inequivalent unitary irreducible representations of
S3 . The p2 is one of them, and the other two are the trivial representation:p0(s)51, and the
signum representation;p1(s)5sgn(s), both of which are one-dimensional representations. Ac-
cording to the Fourier series expansion formula~36!, f PL2(M ) is decomposed into
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f ~x!5~Q1
0f !~x!1~Q1

1f !~x!1(
j 51

2

~Qj
2f !~x!, ~107!

whereQj
,
ªQj

p,
, ,50,1,2, j 51,...,dp,

, are the projection operators defined by~34!. Denoting
(r1 ,r2)p2(sa

21), a51,...,6, simply byxsa , we can show that

~Q1
0f !~x!5 1

6 ~ f ~xs1!1 f ~xs2!1 f ~xs3!1 f ~xs4!1 f ~xs5!1 f ~xs6!!, ~108!

~Q1
1f !~x!5 1

6 ~ f ~xs1!1 f ~xs2!1 f ~xs3!2 f ~xs4!2 f ~xs5!2 f ~xs6!!, ~109!

~Q1
2f !~x!5 1

3 ~ f ~xs1!2 1
2 f ~xs2!2 1

2 f ~xs3!2 f ~xs4!1 1
2 f ~xs5!1 1

2 f ~xs6!!,

~110!

~Q2
2f !~x!5 1

3 f ~xs1!2 1
2 f ~xs2!2 1

2 f ~xs3!1 f ~xs4!2 1
2 f ~xs5!2 1

2 f ~xs6!).

We proceed to the reduction of quantum systems of many identical particles bySN . Since the
HamiltonianĤ should be permutation invariant, we can apply the reduction procedure with finite
groups to obtain (L2(M ;K x)H, idK x ^ Ĥ) with H5SN . As for SN , we have two representations
frequently used in many-identical particle systems, one of which is a trivial representation,p0:
g°1, and the other the signum representation,p1: g°sgn(g), where sgn(s) is equal to 1 or21
according to whethers is an even or odd permutation. Forp0 andp1, the projection operators
defined in~34! take the form

Q05
1

N! (
sPSN

V~s! and Q15
1

N! (
sPSN

sgn~s!V~s!, ~111!

respectively, where we have denotedQ1
0 andQ1

1 simply byQ0 andQ1, respectively, asp0 andp1

are one-dimensional representations. The operatorsQ0 andQ1 provide a method for forming wave
functions obeying Bose and Fermi statistics, respectively. In fact, from~46! with H5SN , one
obtains

~Q0f !~xg!5~Q0f !~x!, ~Q1f !~xg!5sgn~g!~Q1f !~x!, gPSN . ~112!

Note here that one hasF1
05Q0 and F1

15Q0, sincep0 and p1 are one-dimensional representa-
tions. Thus Bose and Fermi statistics are viewed asp0-equivariant andp1-equivariant states,
respectively, so that they are considered as reduced states with respect toSN .

To give another reduced state, we consider the system of three identical particles and the
representationp2 given by ~105!. Then we can formC2-valued p2-equivariant functionsF j

2f
which obey the transformation rule coming from~46!:

~F j
2f !~xg!5p2~g!T~F j

2f !~x!, j 51,2, xPM . ~113!

Since~113! is a generalization of~112! with N53, we may consider thatF j
2f obeys some kind of

statistics, like Bose or Fermi statistics. TheC2-valued equivariant functions are described explic-
itly as follows:

~F1
2f !~x!5

1

&
S ~Q11

2 f !~x!

~Q21
2 f !~x! D , ~F2

2f !~x!5
1

&
S ~Q12

2 f !~x!

~Q22
2 f !~x! D , ~114!

where
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~Q21
2 f !~x!5

1

3 S 2
)

2
f ~xs2!1

)

2
f ~xs3!1

)

2
f ~xs5!2

)

2
f ~xs6! D ,

~115!

~Q12
2 f !~x!5

1

3 S)2 f ~xs2!2
)

2
f ~xs3!1

)

2
f ~xs5!2

)

2
f ~xs6! D ,

andQ11
2 5Q1

2 andQ22
2 5Q1

2 are given in~110!. We notice in addition that terms containingf (xs1)
and f (xs4) disappear on the right-hand sides of~115! on account of vanishing coefficients
p21

2 (s1)5p21
2 (s4)50, etc.

In conclusion, we have to point out that the action~104! of SN on the center-of-mass system
M determines an (N21)-dimensional unitary representation ofSN . For example, forN54, we
can show, by the help of computer algebra, that the representation determined by~104! has the
matrix expression as follows:

p~1!215S 1 0 0

0 1 0

0 0 1
D , ~116!

p~123!215S 2
1

2
2

1

2
) 0

1

2
) 2

1

2
0

0 0 1

D , ~117!

p~124!215S 2
1

2
2

1

6
) 2

1

3
A6

1

6
)

5

6
2

1

3
&

1

3
A6 2

1

3
& 2

1

3

D , ~118!

p~132!215S 2
1
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It is known that there are two three-dimensional inequivalent unitary representations ofS4 , one of
which is isomorphic with the group of symmetries of the tetrahedron, and the other with the group
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of symmetries of the cube.18 The former is a discrete subgroup of O~3! and the latter a discrete
subgroup of SO~3!. Since the groupp(S4) given above includes matrices of determinant21, it
must be isomorphic with the group of symmetries of the tetrahedron.

In conclusion, we note that since the actions of SO~3! andSN commute, one can perform the
reduction procedure with SO~3! and further withSN , so that one can talk about Bose and Fermi
statistics for the reduced states in (G,

2(Ṁ /SO(3);H ,).
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