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Conversion of Unused Heat Energy to Electricity by
Means of Thermoelectric Generation in Condenser

Takashi Kyono, Ryosuke O. Suzuki, and Katsutoshi Ono

Abstract—Thermoelectric power generation has the potential
to recover a large amount of energy loss at the vapor condensers
in the steam-based power plants. A suitable arrangement of ther-
moelectric modules was designed from the heat transfer theory in
the cylindrical heat exchanger. Even under the practical operation
limits, 150 kW can be generated by the thermoelectric conversion.

Index Terms—Steam-based power plants, surface condenser,
thermoelectric energy conversion.

I. INTRODUCTION

M AJOR part of electric energy demands are currently ful-
filled by steam-based power plants, such as thermal or

nuclear power stations. The efficiency of these plants is at most
40% and obviously the rest of the energy is unused or lost. The
greatest energy loss occurs in the plants’ condensers, as the la-
tent heat of condensation. However its retrieval is difficult since
the condensation of vapor takes place at low temperature and
pressure.

Thermoelectric power generation is adequate for utilizing
such low-grade heat and improving the total efficiency of
power plants. Thermoelectric generation is a direct and clean
heat-to-electricity conversion, and can be operated even if the
temperature difference between the heat sources is small [1].
The purpose of this work is to propose the utilization of unused
energy in condensers by means of thermoelectric conversion
and to calculate a theoretical amount of energy retrieval in a
heat exchanger.

II. FUNDAMENTALS OF THERMOELECTRICCONVERSION

The principles on thermoelectrics are described in [2] and [3].
Brief fundamental equations are shown to introduce the vari-
ables used here.

Thermoelectric power is generated by combining a series of
p-type and n-type elements. An example is shown in Fig. 1.
When temperature difference is applied on this module, the elec-
tromotive force developed by one thermoelectric coupleis
given by

(1)

where and are the Seebeck coefficients of p-type and
n-type elements, and and are the hot and cold junction
temperatures, respectively. From here on, the properties with
subindex and represent p-type and n-type properties, respec-
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Fig. 1. Schematic illustration of thermoelectric module.

tively. The properties of materials for the thermoelectric couples
are generally evaluated by the figure of merit

(2)

where and are the resistivities and , and are the
thermal conductivities.

The output power becomes maximum when the inner elec-
trical resistance of the module is equal to the load. The output
power is then represented by

(3)

where is the electromotive force of the whole module, and
is the number of thermoelectric couples.

It is known that the semiconductors such as BiTe or PbTe,
or the compounds such as skutterudites have high efficiency to
convert heat to electricity. However, they are not appropriate in
a large scale application because these alloys are composed with
somewhat uncommon materials.-FeSi is also a well-known
thermoelement as a candidate for an environmentally friendly
material, but its performance declines at around room tempera-
ture due to its rather high resistivity. For these reasons, the au-
thors proposed to use Fe-12.8wt%Al-12.7wt%Si as p-type el-
ements and Fe-12.3wt%Al as n-type elements listed in Table I
[4]. These Fe-based alloys possess abundant natural resources
and better mechanical properties, which make this concept fea-
sible even if their performances are not as great as the above
mentioned semiconductors.

III. CONCEPT OFTHERMOELECTRICGENERATION IN

CONDENSER

A surface condenser has been mainly used in power plants.
It condenses vapor to water at the surface of coolant tubes in
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TABLE I
THERMOELECTRIC PROPERTIES FORFEALSI

AND FEAL AT 300 K

Fig. 2. Model of surface condenser for calculation.

which sea water is flowing as the coolant. The vapor volume
decreases drastically in a condenser, resulting in a decrease of
pressure down to 25–45 mmHg. The vapor temperature put into
the condenser is 40C at the highest, and it is kept almost con-
stant during condensation. The temperature of the coolant, sea
water, is around 15–19C in Japan. The temperature difference
between the vapor and the coolant can be converted to electricity
by thermoelectric generation.

IV. CALCULATION

Fig. 2 shows the model of a surface condenser used for cal-
culation. Coolant flows through a winding tube inside the con-
denser with a mass flow rate of , exchanging heat with the
vapor flow outside the tube (a mass flow rate of). This vapor
is assumed to be saturated. The real condenser contains a lot of
coolant tubes, but the number of tubes affects only the coolant
mass flow in terms of the condenser design. Hence, it is valid
and simple to consider one long coolant tube, except when de-
termining the heat transfer coefficient of the coolant. The axial
length of the coolant tube from the entrance is expressed as
and the total length as. Considering ideal condensation for
vapor-to-water change, the vapor temperatureremains con-
stant, while the coolant temperaturebecomes a function of.
Here, the coolant temperature distribution in the radial direction
in a narrow tube is neglected.

The calculation scheme for the output power consists of two
heat balance equations. One is the total heat balance in the con-
denser, which gives the relation between the vapor mass flow

and the coolant mass flow . The another is the local heat
balance in the coolant tube, which gives the relation between the
coolant mass flow and the junction temperature difference.
These two relations enables us to express the output power
with the vapor mass flow .

First, the total heat balance in the condenser can be written as

(4)

(5)

Fig. 3. Illustration of (a) coolant tube. (b) Its cross-sectional view.

where is the specific heat of the coolant and is the latent
heat of water. and are the coolant temperatures at
the entrance and the exit of the tube, respectively.

Second, we will develop the local heat balance equations
through the wall of the coolant tube. Fig. 3 shows the coolant
tube and its cross-sectional view. Here, a thermoelectric
module of thickness is attached to the coolant tube of radius
, assuming that the thickness of the electrode and that of

the coolant tube can be neglected. The hot and cold junction
temperatures of the module are expressed as and ,
respectively. The thermal conduction toward the axial direction
of the module is neglected because it is much smaller than
that toward the radial one. For the simplicity of the calculation
and low efficiency of the Fe-based alloy module, the Peltier
effect and Jule heat were not taken into account. From such
assumptions, the heat input into the module from the outside
of the tube becomes equal to the heat output from the inner
surface of the tube as shown in Fig. 3(b). The heat transfer
from the vapor to the coolant through the annular module per
unit length can be written as follows [5]

(6)

where

(7)

and are the heat transfer coefficients of the vapor and
coolant, respectively. is the thermal conductivity of the
module, given by

(8)

where and are the areas of the thermoelements at the inner
surface end.

The following differential equation can be obtained from the
heat balance in the control volume shown in Fig. 3(a)

(9)
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Integration of (9) gives the coolant temperature distribution
and the coolant tube length

(10)

(11)

where is the temperature difference
between the vapor and the coolant at the tube entrance, and

is that at the exit. Substituting (6) and
(10) into Fourier’s law expressed in the cylindrical coordinates,
the junction temperature difference can be written as

(12)

(13)

The two relations, (5) and (13), are used for the calculation of
the output power. By neglecting the cross-sectional area of the
insulator, the number of the thermoelectric couples per unit area

can be expressed as

(14)

The electromotive force and the electrical resistance of the
module is calculated as follows:

(15)

(16)

Substituting (15) and (16) into (3), the output poweris derived
as

(17)
The first term of (17) is maximized when and satisfy the
following:

(18)

The second term of (17), which also containsand , is al-
most constant at the peak of the first term. Therefore, the output
power is approximately optimized by (18) and expressed by
using as

(19)

where

(20)

TABLE II
CHARACTERISTICS OF THECONDENSER IN700-MW THERMAL POWERPLANT

and (8) is rewritten by introducing (18) as

(21)

Because , the output power becomes the maximum
when . In an ideal case thatequals to 1, the output power
takes the ideal value

(22)

becomes the larger by adopting thermoelements with the
smaller thermal conductivity and the thicker module, or by
increasing the heat transfer coefficientsor . As shown in
(19) and (22), is the ratio of and . Hence, can be
defined as dimensionless output power.

V. CALCULATION RESULTS

A. Application to Practical Limitations

In this subsection, the output power and the condenser size
will be analyzed as functions of the module thickness and the
heat transfer coefficients.

For concrete calculation, the numerical values are evaluated
as listed in Table II. They were derived from the representative
values of a thermal power plant of 700 MW. The latent heat

is the difference between the enthalpy of saturated vapor
and that of saturated water at 33C. Considering environment,
the coolant temperature increment is
regulated to be 7C in Japan.

The heat transfer coefficient of vapor can be estimated
from the Nusselt number for film condensation on horizontal
tube bundles [6], and it would be 10–30 kW/mK.

Assuming that the number of coolant tubes is 10 000, the
Reynolds number becomes 1.1410 , and the heat transfer
coefficient of coolant can be determined from the Nusselt
number for turbulence flow in tubes. From the Petukov’s equa-
tion [7], was calculated to be 10 kW/mK.

First, the output power is shown in Fig. 4 as functions of
the vapor heat transfer coefficient and the module thickness.
The output power becomes greater by increasingand , and
approaches kW . The increase of and makes
the junction temperature difference bigger and then enhances
the output power . However, the usage of the thick module
results in expansion of condenser size. This will be discussed
later.

Second, the total coolant tube lengthis shown in Fig. 5. The
coolant tube length becomes larger as the module thickness
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Fig. 4. Output powerP as functions of the vapor heat transfer coefficienth

and the module thicknessl.

Fig. 5. Coolant tube lengthL as functions of the vapor heat transfer coefficient
h and the module thicknessl.

increases, and becomes shorter as the vapor heat transfer coef-
ficient increases. The thicker module hinders heat transporta-
tion. As a result, the coolant tube lengthhas to be extended to
absorb all of the latent heat. On the contrary, the increase of
accelerates the heat transfer and diminishes.

Let us compare the coolant tube lengthobtained here with
the actual copper tube. When the copper tube thicknessis
0.001 m, the copper tube length becomes 131 km

kW/m K or 89 km kW/m K .
The volume of condenser is here evaluated simply by the

coolant tube length and the module thicknessas

(23)

Dividing this by the copper tube volume , the
nondimensional condenser volumeis defined

(24)

is shown in Fig. 6. In order to suppress under 10, for
example, the module thicknessshould be lowered below 0.01
m.

Table III summarizes the evaluations mentioned before.
Around 150 kW of electricity can be generated simply by
attaching the module of a few millimeters. The dimensionless
output power is 0.6–0.8. Although there is still a room

Fig. 6. Dimensionless condenser volumev as functions of the vapor heat
transfer coefficienth and the module thicknessl.

TABLE III
RESULTSCALCULATED FOR FEALSI–FEAL MODULE

Fig. 7. Output powerP and coolant tube lengthL as a function of vapor
temperatureT .

to improve the output power, a good thermal conductivity of
Fe-based module makes it difficult to increase the output power.

B. Possible Improvement

Some improvements are available by introducing some as-
sumptions. For example, the output power can be improved if a
larger temperature difference is applied to the modules. Fig. 7
shows the output power and the coolant tube length as a
function of the vapor temperature , which was fixed at 33C.
Here, the module lengthand the vapor heat transfer coefficient

are set at 0.005 m and 10 kW/mK, respectively. The latent
heat is assumed to be constant since it changes only by 2%
in our temperature region of . When the vapor temperature

rises up to 50C, the output power is almost tripled com-
pared with that for C. At the same time, the coolant
tube length strikingly decreases, because the increase of the
vapor temperature enhances the heat transfer between the
vapor and the coolant.
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Fig. 8. Output powerP as functions of vapor temperatureT and figure of
meritZ in logarithmic scale.

Second, the relationship between the output powerand the
figure of merit is studied. The material parameteris ma-
nipulated by changing only the relative Seebeck coefficient,
as a matter of convenience. The thermal conductivitiesand

are fixed at 5 W/m K, and the resistivities and are
fixed at 5 m. Calculation results are shown in Fig. 8. As ex-
pected, materials with higher can produce larger electricity.
For comparison, the figure of merit for Bi Te module, about
2.6 10 [8], and their other physical parameters [8] are used
for precise evaluation. BiTe can generate power of 5.5 MW,
11.7 MW, and 17.6 MW for C, 40 C and 50C, re-
spectively as shown in Fig. 8.

Our approach suggested here does not consider the Jule heat
and Peltier effect. These are vital for high performance materials
such as BiTe . According to more detailed numerical solution,
as we will report separately, the real output power is about 25%
less than that calculated by this analytical method in the case of
Bi Te module.

VI. CONCLUSION

Thermoelectric conversion can generate a great deal of elec-
tricity even from the minute temperature difference without any
unfavorable effect on the enviroment. The application of ther-
moelectric conversion to condensers in the steam-based power
plants was proposed and analyzed. Using the theoretical ap-
proach of heat conduction in the cylinder wall, the mathematical
function of thermoelectric output power could be deduced.
The module thickness, module thermal conductivity, and heat
transfer coefficients affected the output power, when the ther-
moelectric materials were fixed and their cross-section was opti-
mized. These factors coming from the module design were sum-
marized by introducing the nondimensional output power. The
module construction using Fe-based alloys is much easier, but
the usage of BiTe generates a few times larger electricity.
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