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PHYSICS OF PLASMAS VOLUME 10, NUMBER 8 AUGUST 2003
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(Received 16 September 2002; accepted 13 May R003

The diocotron instability in a low-density non-neutral electron plasma is examined via numerical
simulations. For the simulations, a current-vortex filament model and a special-purpose computer,
MDGRAPE-2 are used. In the previous work, a simulation method based on the current-vortex
filament model, which is called “current-vortex method,” is developed. It is assumed that electric
current and vorticity have discontinuous filamentary distributions, and both point electric current
and point vortex are confined in a filament, which is called “current-vortex filament.” In this paper,
the current-vortex method with no electric current is applied to simulations of the non-neutral
electron plasma. This is equivalent to the traditional point-vortex method. MDGRAPE-2 was
originally designed for molecular dynamics simulations. It accelerates calculations of the Coulomb
interactions, the van der Waals interactions and so on. It can also be used to accelerate calculations
of the Biot—Savart integral. The diocotron modes reproduced by the simulations agree with the
result predicted by linear theory. This indicates that the current-vortex method is applicable to
problems of the non-neutral plasma. The linear growth rates of the diocotron instability in the
simulations also agree with the theoretical ones. This implies that MDGRAPE-2 gives the
sufficiently accurate results for the calculations of the current-vortex method. A mechanism of
merging of electron clumps is demonstrated by the simulations. It is concluded that the electric field
induced by the conducting wall makes the nonlinear stage unstable and causes the clumps to
merge. ©2003 American Institute of Physic§DOI: 10.1063/1.159251]6

I. INTRODUCTION model®~® We assume that electric current and vorticity
have discontinuous filamentary distributions. Both the point
Many features of non-neutral electron plasmas haveslectric current and the point vortex are confined in each
been investigated both experimentally and theoreticafly. filament, which is called the current-vortex filament. By in-
Above all, one of the most ubiquitous phenomena is the diotegrating the magnetic induction equation and the vorticity
cotron instability observed in a low-densityf.<wZ) Non-  equation around a filament, we obtain time development
neutral electron plasma column confined radially by a uni-equations of the current-vortex filaments. It is analytically
form axial magnetic field. The diocotron instability was first ghown that the two-dimensional equations of motion of low-
examérjleod theoretically by MacFarlanet al’ and Levy density non-neutral electron plasmas with the guiding-center
et al,*"**and observed experimentally by WebsteKapet- approximation coincide with those of the two-dimensional

12 13 ;
ar]nakoget al,” and Pglgrrurr:gat al= The I|ne|‘ar theory for IInonmagnetized fluids, i.e., the Euler equations. Thus, we ap-
t ed dlocogg? T'r?Stab' 'ti as hbeen dhgve cr)]ped and V‘;e ply the current-vortex method in the limit of no electric cur-
understood: us we have chosen this phenomenon fof o 14 the two-dimensional electron plasmas. In this limit,

the qualitative and quantitative benchmark of our simulation[he method is equivalent to the traditional point-vortex
model (current-vortex filament model and simulation methodto-2!

method(a special-purpose computer, MDGRAPE-2 . . .
; . ) As a simulation method, we use a special-purpose com-
As a simulation model, we use a current-vortex filament

model. We have developed a two-dimensional “magnetohypUter’ MDGRAPE-2. If no electric current is assumed, the

- 5 . current-vortex method needs the Biot—Savart integral to de-
drodynamic” vortex method® We call it the current-vortex termine a flow velocity fromdiscretized vorticities. Other
method. The concept is based on the current-vortex filament. € a flow velocily Tromdiscretized vorticities. Dthe

wise, the method needs the additional Biot—Savart integral to
determine a magnetic field from electric currents. Unfortu-
dElectronic mail: yyanagi@phys.h.kyoto-u.ac.jp nately, it takes a considerable time to calculate the Biot—
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Savart integral in simulations. To improve performance of en
vortex simulations, one may needs special methods, such as V-E=—, ()
the vortex-in-cell code. However, we took a way to use a 0
special-purpose computer, MDGRAPE-2. It was originally = w,=2-VXu, (4)

designed for molecular dynamics simulations, and acceler- B—B.> ®)

ates calculations of the Coulomb interactions, the van der 0%

Waals interactions, and so on. We find that MDGRAPE-2wheren,, me, €, p, andB, are the number density of elec-

can accelerate calculations of the Biot—Savart integral. Yourons, the electron mass, the electron charge, the kinetic pres-

will see that MDGRAPE-2 is an “accelerator” not only for sure, and the uniform magnetic field in tkzedirection, re-

molecular dynamics simulations but also for plasma simulaspectively. Notationw, is the z-component of the vorticity.

tions. Notationsu, B, and E are the flow velocity, the magnetic
The simulation results show that the model is valid forfield, and the electric field on the-y plane. A unit vector in

the electron plasmas, because the diocotron modes observedirection is denoted by Equationg1), (2), and(3) are the

in the simulations are consistent with the theoretically pre-equation of motion, the equation of continuity, and Gauss’

dicted modes. The growth rates obtained by the simulationtheorem, respectively.

agree with the growth rates of linear theory. This indicates In the present analysis, a cold-fluid guiding-center model

that MDGRAPE-2 gives sufficient precision for the simula- is adopted in which electron inertial effects are neglected.

tions. The motion of a strongly magnetized electron fluid element
The angular velocities of the particles are influenced byis determined from

the radius of the conducting wall. In the simulations of time _

evolution of two circular clumps, it is found that the direc- en(E+uxB)=0. ©®

tion of EXB force exerting the backward clump is outward, In the electrostatic approximation, the electric field is deter-

while the one exerting the forward clump is inward. The mined by the scalar potentigl, namely,E=—V ¢, and Eq.

angular velocity of the backward clump, which is determined(6) gives

by the distance from the conducting wall, becomes larger

than the forward one. Thus the backward clump catches up u=-— B—V¢x 2, )
with the forward one from outsid@ear the wa)land merges 0
with the forward one. It is concluded that the electric field V.u=0. (8

induced by the conducting wall makes the nonlinear stage ¢ .
unstable and causes the clumps to merge. By means of Eq(4), the vorticity w, reduces to

In Sec. Il, we present the simulation model, current- en, wge
vortex filament model, the simulation method and the iniial ~ @,=_5~=_—=2wp, 9)
conditions. In Sec. lll, we present simulation results. We 00 ce

compare the results to linear theory. The merging propertiewhere wpe=.(ﬂeez/(fome))1/2 and wc.=eBy/m,. Notation
of the electron clumps produced by the diocotron instabilitywp is the diocotron frequency. Equatid®) means that the

are discussed. In Sec. IV, we give conclusions. vorticity is proportional to the electron density, or the
diocotron frequencyvp .
II. SIMULATION MODEL AND METHOD On the other hand, two-dimensional flow velocity is de-

termined by the Euler equation. Namely, the flow velocity is

In Sec. Il A, the basic equations for non-neutral plasmagbtained by the stream functiof
are given. In Sec. Il B, the simulation model is discussed. N
The two-dimensional equations of motion of non-neutral u=—-Vyxz (10
plasmas with the guiding-center approximation coincide withit follows from Eq.(7) that the scalar potentia is related to
the two-dimensional Euler equations. Thus we use the previhe stream functiony= ¢/B,.2° The electron fluid motion,
ously developed simulation model, current-vortex methodtherefore, can be determined by the two-dimensional Euler
with no electric current. In this limit, our model reduces to equations.
the traditional point-vortex method. In Sec. 11C, a special-
purpose computer, MDGRAPE-2, is briefly reviewed, which
is used to accelerate the calculations of the Biot—Savart inB. Simulation model

tegral. In the last part of this section, we explain the initial Here we explain the current-vortex method used in the

conditions of the simulations. simulations. We use the two-dimensional ideal magnetohy-
A. Basic equations drodynamic equations,
We use the following basic equations: Jw; .
) o=~ (U)o, (B-V)j, (19
NeMg E+(u~V))u=—Vp—ene(E+u><B), (1) oA,
——=—(u-V)A,, (12)
Me 1y =0 2 !
a5t TV (new=0, @ V.u=0, (13)
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E+uxB=0, (14)

B=—2xVA,, 15 ' ol ok
U o e
jZ:i -V XB, (17)

- L1}
whereA, andj, are thez-components of the magnetic vector
potential and the electric current density, respectively. The
mass density is normalized to unity. - -

We assume that the electric current and the vorticity
have discontinuous filamentary distributions, and the point
electric current and the point vortex are confined in each
filament coaxially. In other words, the electric current and
the vorticity always align and form the current-vortex fila-
ments. It follows that the electric current densjgyr,t) and
the vorticity w,(r,t) are denoted by

JSOIUB

FIG. 1. A photograph of MDGRAPE-2 is shown.

The equations determine the time evolutions of the current-
vortex filaments. In the limit of;(t) =0, Egs.(20)—(24) re-
duce to the following normalized equations:

i(r =2 J)ar=r(1), (18 e u(rt), 26
w ) =3 Q0 a(r-ri(t), a9 O, 27

where &(r) is Dirac’s two-dimensional delta function. The
notationr;(t) is the position vector of théth current-vortex U(rkvt):;k 27 Qi(HOVG(r—ri) Xz (28)
filament,J;(t) andQ;(t) are the total electric current and the '
circulation inside theth filament. Equationg18) and (19)  The factor 2r in the Biot—Savart integral?8) is introduced
directly show that there is the current-vortex filament atto cancel out the factor 1/¢2) in the Green function. We use
ri(t). these normalized equations in the simulations, because the
We rewrite the vorticity Eq(11) and the magnetic in- €quations to determine the time evolution of two-
duction Eq.(12) in terms of the filamentary representations dimensional non-neutral electron plasmas with guiding-
(18) and (19). By integrating the resulting equations over a center approximation have the same form as the two-
circle area whose center and radius iprande, respectively, dimensional Euler equations for nonmagnetized fluids. To
we obtain solutions concerning the specific filament, say thécorporate the effect of the conducting wall around the elec-

kth filament. The solutions are given by trons, we use the method of imagés.
- Ji(t) 5 C. Simulati hod
E—u(rk,t)—mB(rk,t), (20 . Simulation metho
Equation(28) is the Biot—Savart integral. One must no-
dQy(t) (21) tice that it takes a considerable time to calculate the Biot—
dat Savart integral in simulations. Usually the calculation time is
proportional toN?, whereN is the number of mesh points. In
dJi(1) -0 22) this work, we use a special-purpose computer,
dt ' MDGRAPE-2, to accelerate the calculations of the Biot—
Where Savart integral. A photograph of MDGRAPE-2 is shown in
Fig. 1. MDGRAPE-2 is a standard PCI board that can be
R installed even on Pentium IIl based PCs. It was originally
u(rk,t)=i¢k Qi(OVG(re—ri) X2, (23 designed for molecular dynamics simulations, and acceler-
ates the calculations of the Coulomb interactions, the van der
R Waals interactions, and so éh.The calculation speed of
B(r,t)=>, Ji()VG(r,—r) X2 (24)

MDGRAPE-2 depends on the number of particles that inter-
act with each other and the number of boards installed on a
andG(r) is the two-dimensional Green function that obeys PC. This is due to the communication time between the host
V2G(r)=— 8(r). (25) CPU and PCI bgard: If the number' qf particles exceeds 10
the communication time is not negligible. In such a case, itis
Equationg20), (21), and(22) give the equation of motion of possible to implement the well known fast algorithms, such
the kth filament, the conservation laws of the circulation andas the vortex-in-cell method and the pseudoparticle multipole
the total electric current inside theh filament, respectively. method, on MDGRAPE-2 to reduce the communication

1#

=
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(a)<s < >
-1.0]

5]
1.51.00500051.015
5,

CH@)

3.51.0050.00,51.0 15

@z ()
Electrons 0

' 5'5766500051015 = e —— -
T=0 40 80 120 160 200
Conducting Wall FIG. 4. Time evolutions of the electron distributionsTat 0, 40, 80, 120,
160, and 200 are shown. Initial inner radius of the distribution of electrons
FIG. 2. An initial condition of the simulations is shown. A perfectly con- iS Ri=0.8Ro. Conducting wall is located &,,= (a) 1.1Ry, (b) 1.6R,, and

ducting wall is located aR,,. Outer and inner radii of the distribution of (C) ® respectively.
electrons are denoted B, andR,, respectively.

\“"j “.i = W
o e

O OO

_0154x10
time 2224For our case, however, the maximum number of the % m(50L)2

particles is 16 and there is not enough merit to implement In this case, the diocotron frequen%:wge/(che) is de-

the fast algorithm. Thus we simply use MDGRAPE-2 to ac- . L g

. X . . . termined by the average vorticity ag, = w,/2. The value of
celerate the calculation of Biot—Savart integral in the tradi- .
. . ) . the diocotron frequency becomes
tional point-vortex method. In this case, the maximum cal-
culation speed still reaches 120 GFlops, if the number of ene _ P A

; ; ; wp=5—=-w,=9.55x10 % — (30)

particles is 10 and the number of MDGRAPE-2 boards is 4. D™ 2eBy 2% 7 Lg'
It is about 8 times faster than the fastest vector-type super- L )
computer with one processor. The method how to calculatér_hus the vorticity is proportional to the electron number den-

the Biot—Savart integral on MDGRAPE-2 is given in Ref. 15.Sity. In the simulations, we sét=L¢/I's=1 for normaliza- -
tion, whereT means the time in the simulation. Time step is

AT=10*. All the length scales in the simulations are nor-
D. Initial conditions malized byR, from now on.

I's

=1.91x10 1.
LS

(29

An initial configuration of the electrons is shown in Fig.
2. A perfectly conducting wall is located &,,. Outer and !ll. SIMULATION RESULTS OF DIOCOTRON
inner radii of the distribution of electrons are denoted/yy INSTABILITY
andR;, respectively. The electron distribution is representeda. Time evolution of annular electron distribution
by the sum of point vortices in the simulations. The maxi-
mum number of point vortices is $0Each point vortex has
circulation 0.1%5. The outer radius of the electron distribu-
tion is Ry=50L4. Here the notationd’g and L are intro-
duced for normalization. The average vorticiy is obtained

by

In Figs. 3-5 time evolutions of the electron distributions
atT=0, 40, 80, 120, 160, and 200 are shown. There are two
main parameters in these simulations. One is a ratio of inner
to outer radii of the electron distributioR, /Ry, which is
chosen as 0.6 in Fig. 3, 0.8 in Fig. 4, and 0.9 in Fig. 5. The
other is a radius of the conducting wé&|,, which is chosen
as 1.R; in (a), 1.6Ry in (b), and« in (c) in Figs. 3 and 4,

15 ando in Fig. 5.

os 2 The simulation results show that the linearly most un-
(@) o stable modes are 2 at=120 in(a), 3 atT=80 in (b), 3 at
SerammmEras T=80in(c) in Fig. 3, 4 atT=80in (a), 5 atT=80 in (b), 5

. at T=80 in (c) in Fig. 4, and 9 atT=80 in Fig. 5. The
(b)EE o unstable modes obtained by the simulations agree with the
0: O

3 || ; oo [ [ o 2] T
» b Y £ ; s 00 : s * « . * |y .
A BI06 80051075 - :‘1]:0 :»abv}j *" él “‘ » * £ e g
4 By 2
T=0 40 80 120 160 200 A E10080005701.5

T=0 40 80 120 160 200
FIG. 3. Time evolutions of the electron distributionsTat 0, 40, 80, 120,
160, and 200 are shown. Initial inner radius of the distribution of electronsFIG. 5. Time evolution of the electron distribution &&=0, 40, 80, 120,
is R;=0.6R,. Conducting wall is located &,,= (a) 1.1R,, (b) 1.6R,, and 160, and 200 is shown. Initial inner radius of the distribution of electrons is
(c) =, respectively. R;=0.9R,. Conducting wall is located &, =x.
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TABLE I. Unstable modes obtained by the linear theory in descending order

of the growth rate are shown. es
[
Ri /Ry Ry Unstable modes & e’
0.6 11 2 )
0.6 1.6 3,2 3 e
0.6 3 3 T;:; e'd
0.8 1.1 4,35 < g2
0.8 1.6 5,4,6 &t
0.8 ® 5,4,6 et
0.9 o 9,8,10 i
[

0 10 20 30 40 50 60 70 80 90 100

Time

theoretical results shown in Table I. It indicates that theF!G. 7. Time evolutions of the linearly most unstable Fourier coefficients
current-vortex method is qualitativel valid for problems of e shown that correspond to Fig. 4. The azimuthal mode numbers are 4 in
y (a) and 5 in(b) and(c).
the non-neutral electron plasmas.
It is interesting that the final stage after the linear growth

(33

stage strongly depends on the radius of the conducting wall

Ry. In Fig. 3, mode 1 appears i@), while the electron R;\2 R, \2¢ Ro | %¢

distributions exhibit center-peaked broad profilegbih and Cezg[l_( ) Hl_( ) }_{1_( ) }

(¢). In Fig. 4 also, the modes observed in the final stages are

2, 4, and 5, respectively. These results indicate that the con- Ry |2

ducting wall strongly affects the electron motions inside it. X11= R_o '

We discuss the merging properties of the electron clumps in .

Sec. Il C. For our case, there is no central conductor. Thus the terms
that arise from the charges on the central conductor are omit-
ted in Egs.(32) and(33). The solutions of Eq(31) are

B. Growth rate ) 5

To check if the simulation results are quantitatively = 2 0p(be* Vbi=4c). (34
valid, we compare the growth rates of the diocotron instabilif 4¢,>b?, the solutions are complex, which correspond to
ity obtained by the simulations to the analytical ones. instability. Using Eq.(34), detailed instability properties can

The growth rate of the diocotron instability has beenpe investigated for the specific electron distribution.

reported by Davidsogt al®*They assume the annular elec-  Time evolutions of the Fourier coefficients f, for Fig.
tron distribution, which is the same condition as the one we3 js shown in Fig. 6, for Fig. 4 in Fig. 7 and for Fig. 5 in Fig.

use in the simulations. A dispersion relation for complexg, respectively. The curved lines indicate the values of the

eigenfrequency» is given by coefficients obtained by the simulations, and straight lines
w |2 o indicate the growth rates obtained by linear theory. We can

(w—) _bgw_‘i‘C(:O, (31)  see that the slopes of the curves during the linear growth
D D stage are approximately the same as those of the straight
wherewp= wf)eIchez n.e/(2¢,B) and lines. The exact values are plotted in Fig. 9. The growth rates
R, |2 R, |21/ Ry | % thained by the.si.mu_lations agree with the grqwth rates of

bf:e[l_(R_o + 1_(R_O) (R_) , (32 linear theory. This indicates that MDGRAPE-2 gives the suf-

W

ficient precision for the simulations.

4

€
&t m R/R=0.6
& m —@R=11
-E o ---(b)R=16 &
o 0 + s (€) R = %5
o € L2
o [
2 e 3
g . &
< e E
e
e
e 1 3
0 10 20 30 40 50 60 70 80 90 100 e’ ! ! ! | ! ! ; ! ! ]
Time 0 10 20 30 40 50 60 70 80 90 100

Time
FIG. 6. Time evolutions of the linearly most unstable Fourier coefficients
are shown that correspond to Fig. 3. The azimuthal mode numbers are 2 IRIG. 8. Time evolution of the linearly most unstable Fourier coefficient is
(a) and 3 in(b) and(c). shown that corresponds to Fig. 5. The azimuthal mode number is 9.
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s
o Fig. 6 0 ° 4
@ Fig. 6 theoretical value o8 oo A
0.05 5 Fig.7 (a)as * e \§ \_\.} - 3
] v Fig. 7 theoretical value e -
< Fig. 8 "-:.51 50506051015
0.04 1 <1. Fig.8 the.oretical vall.Je ;: ° .o . PY ° °
- | | () o * . . *
0.03- ; i 49
‘g % 1S 5195506057615 -
£ : : = 16 20
g 002 c% . | | &% =04 5 1
o 1 FIG. 11. Time evolutions of two circular clumps are plotted. The two
0.01 @ clumps are located at(y)=(0.7R,,0) and (0,0.Rp). The initial radii of
| the clumps are OR, each. The conducting walls are located atR, in (a)
0.00 Syt : : : : andr = in (b).
02 0.0 0.2 0.4 0.6 0.8 10
1R, stable and clumps rotate in the nearly constant angular ve-

FIG. 9. Both arowth rates obtained by the simulati di " locity. On the other hand, the slopes of the lines in Figal0
. 9. Both growth rates obtained by the simulations and linear theory ar . . . . L
plotted. The leftmost three data correspond to the growth ratefRge=1. are siill varying in the nonlinear stage, that indicates the

To prevent the data from overlapping with each other, we plot them in thenon_Iinear stage is U_nStable- This _is due to the smaller wall
different positions. radius compared with those in Figs. (hp and 1@c). Al-

though the details are omitted here, we have carried out the
other simulations, where we use the electron distributions at
T=160 in Figs. 4b) and 4c) with the conducting wall relo-
Here we discuss the boundary effect on the electrorcated atR,=R, as initial conditions. In these simulations,
clumps. We focus on the results shown in Fig. 4. The figurehe clumps no longer keep their initial shapes and merge with
shows that the merging of the clumps is strongly influencedeach other. The final distributions become broad ones. Thus
by the radius of the conducting wall. More mergers occur ifwe conclude that the electric field induced by the conducting
the wall radius is smaller. To see the merging propertiesvall makes the nonlinear stage unstable and causes the
guantitatively, we plot time evolutions of angular positions clumps to merge.
of particles in Fig. 10. Next, we consider a mechanism by which two clumps
In Fig. 10(@), initial particles are selected from the elec- merge. In Fig. 11, we show time evolution of two circular
tron distribution in Fig. 4a), T=0 at §=n=/10,r=0.93R, clumps. The number of particles in each clump is 1000,
wheren=0,1,..,19. In thesame manner, initial particles in which is the approximate number of particles in each clump
Figs. 1@b) and 1@c) are selected from Figs.(4) and 4c), in Fig. 4(c) at T=200. The centers of the two clumps are
respectively. A bundle of lines indicates a clump. Note thatinitially located at &,y) =(0.7R,,0) and (0,0.Ry). The ini-
the ordinate has the period ofr2Slope of a line indicates tial radii of the clumps are OR, each. The conducting walls
angular velocity of a particle. Durations of the linear growth are located at =R, in (a) andr= in (b). Note that the
stages are obtained from Fig. 7. They 8re40-80 in(a)  time interval between the snapshots is 4 in Fig. 11, while the
and T=35-60 in(b) and(c). In these durations, the slopes ones of the other figures are 40. In Fig(d1we can see that
of the lines in Fig. 9, which are initially the same, gradually the two clumps merge rapidly near the wall. As is shown in
change, depending on the wall radius. Thus it is found thaFig. 11(b), the circular two clumps without the conducting
the transition from the linear growth stage to the nonlineamwall move like binary stars if the motion of the clumps is
stage yields the change of the slopes. In Figgbjl@nd restricted in a two-dimensional plane. In addition, we have
10(c), the slopes of the lines are approximately constant durehecked by the simulations that only one clump surrounded
ing the nonlinear stage. It indicates that the nonlinear stage isy the conducting wall survives stably. Its shape remains

C. Boundary effect

(a) (b) (c)

12x 12x 12x
10% 10% 10%
% Z Z
. 8n / 8n //%ié 8n !
? 6n = 6n 2 ///// 6n Z
2 = v
2 A =
4an 4n 4n
2 2 %, ';:l : 2r
0 £

7+ 1 Or T Or T
0 25 50 75 100 125 150 175200 0 25 50 75 100 125 150 175200 0 25 50 75 100 125 150 175 200

Time Time Time

FIG. 10. Time evolutions of angular positions of particles are plotted. The initial positions of the traced parti@gsin and(c) are atd=n=/10, T
=0, (n=0,1,2,..,19) in Figs. 4a), 4(b), and 4c), respectively.
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almost circular. In this case, however, the two clumps merge 1 _ e llaal g ollawlla

by the electric field induced by the conducting wall. Thus we (a) w { Y ||, 27 “2 € . feo | %e ®e
: : W\ _J |\Fyg | dell %y 8| e

conclude that the merging of the two clumps are driven by s “e® % e T s

BT
S1510060.0051.015

the electric field induced by each other. The direction of the . : — :
EXB force exerted on the forward clump in the counter- b v AN | L e e e ] e ':'; -
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clockwise rotation is inward, while the force on the back- * " »s U R SR P aw ¥ ,*:1
ward clump is outward. Here we use the terms “forward” S EToummoTETTs - - :
and “backward” in regard to the direction of orbital rotation. T=0 40 80 120 160 200
The angular velocity of the backward clump, which is deter- .12, T i  the electron distributionsTat 0. 40. 80. 120

. . . . . . . lime evolutions O € electron distributions y y y ,
mined by the radlal elecmc, field that depends on the dIStanCEGO, and 200 are shown. Initial inner radii of the distributions of the elec-
from the conducting wall, is larger than that of the forwardons arer, = (a) 0., and(b) 0.9R,, respectively. Initial arrangements of
clump, because the distance from the backward clump to thiae particles used here are shown in Figal3
conducting wall is smaller than that from the forward clump.
Thus the backward clump catches up with the forward one

from outside(near the wall and merges with the forward which are the same as Fig(ch Those in(b) are = and

°

one. 0.9R,, respectively, which are the same as Fig. 5. Note that
the linearly most unstable mode is 5 in Fig.(&2and 9 in
IV. CONCLUSIONS Fig. 12b), while the obtained mode is 4 and 8, respectively.

In thi h h he simulati | This is due to the initial perturbations. The particles inside
n this paper we have shown the simulation results ofy,o 5nnjar electron distributions in Figs. 3-5 are arranged

non-neutral electron plasmas. The simulation model we USEs in Fig. 18b). On the other hand, the particles in Fig. 12
is the current-vortex method. In the simulations we use ' ' ’ '

MDGRAPE-2 to accelerate calculations of the Biot—Savart

integral.

In the limit of no electric current, the current-vortex (a)
method coincides with the traditional point-vortex method,

and is qualitatively valid for the non-neutral plasma simula-
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tions, because the most unstable modes are reproduced cor- ~~ T s i “ """""
rectly by the simulations. The growth rates observed in the — =====""--" R R R 0000
simulations also agree with the theoretical ones, which indi- ~ ---------- et ok M 2 X I ¥ EELEELEEES
cates that MDGRAPE-2 gives sufficient precision for the = ---------- -+ 9900000 Q-
simulatons. P VvYYYYYW W ammmmm
It is concluded that the electric field induced by the con-  _______.__ ‘:::::::: __________
ducting wall makes the nonlinear stage unstable and causes 4 YT VYV
the clumps to merge. In the simulations of time evolution of 0060600060060
two circular clumps, it is found that the direction B&xB 000000060060 -
force exerting the backward clump is outward, while the one 77777777 “““““ """""
exerting the forward clump is inward. The angular velocity =~ ~==="=" ..‘..".‘. """""
of the backward clump, which is determined by the distance A
from the conducting wall, becomes larger than the forward A
one. Thus the backward clump catches up with the forward A
one from outsidénear the wa)l and merges with the forward
one. (b)
In the present analysis of the merging properties, we
limit ourselves to the two-clump system. However, the merg- .,-. Y s
ing properties olN-clump system is still unclear. The stabil- , /. @ ..—.
ity analysis of vortex arrays has been presented by . o o "
CampbelP® The result may give us a clue to study the non- 99 ‘..'.
linear behavior of the electron clumps. ‘ ,’ ,.' “".
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APPENDIX: INITIAL PERTURBATIONS INCLUDED IN £ ’
INITIAL CONDITIONS OF SIMULATIONS ! ; !
First, we show two simulation results in Fig. 12. The g
values ofR,, andR; in (a) arec and 0.&,, respectively, FIG. 13. Initial arrangements of the particles are shown.
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