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The diocotron instability in a low-density non-neutral electron plasma is examined via numerical
simulations. For the simulations, a current-vortex filament model and a special-purpose computer,
MDGRAPE-2 are used. In the previous work, a simulation method based on the current-vortex
filament model, which is called ‘‘current-vortex method,’’ is developed. It is assumed that electric
current and vorticity have discontinuous filamentary distributions, and both point electric current
and point vortex are confined in a filament, which is called ‘‘current-vortex filament.’’ In this paper,
the current-vortex method with no electric current is applied to simulations of the non-neutral
electron plasma. This is equivalent to the traditional point-vortex method. MDGRAPE-2 was
originally designed for molecular dynamics simulations. It accelerates calculations of the Coulomb
interactions, the van der Waals interactions and so on. It can also be used to accelerate calculations
of the Biot–Savart integral. The diocotron modes reproduced by the simulations agree with the
result predicted by linear theory. This indicates that the current-vortex method is applicable to
problems of the non-neutral plasma. The linear growth rates of the diocotron instability in the
simulations also agree with the theoretical ones. This implies that MDGRAPE-2 gives the
sufficiently accurate results for the calculations of the current-vortex method. A mechanism of
merging of electron clumps is demonstrated by the simulations. It is concluded that the electric field
induced by the conducting wall makes the nonlinear stage unstable and causes the clumps to
merge. © 2003 American Institute of Physics.@DOI: 10.1063/1.1592516#

I. INTRODUCTION

Many features of non-neutral electron plasmas have
been investigated both experimentally and theoretically.1–6

Above all, one of the most ubiquitous phenomena is the dio-
cotron instability observed in a low-density (vpe

2 !vce
2 ) non-

neutral electron plasma column confined radially by a uni-
form axial magnetic field. The diocotron instability was first
examined theoretically by MacFarlaneet al.7 and Levy
et al.,8–10 and observed experimentally by Webster,11 Kapet-
anakoset al.,12 and Peurrunget al.13 The linear theory for
the diocotron instability has been developed and well
understood.6,14 Thus we have chosen this phenomenon for
the qualitative and quantitative benchmark of our simulation
model ~current-vortex filament model! and simulation
method~a special-purpose computer, MDGRAPE-2!.

As a simulation model, we use a current-vortex filament
model. We have developed a two-dimensional ‘‘magnetohy-
drodynamic’’ vortex method.15 We call it the current-vortex
method. The concept is based on the current-vortex filament

model.16–18 We assume that electric current and vorticity
have discontinuous filamentary distributions. Both the point
electric current and the point vortex are confined in each
filament, which is called the current-vortex filament. By in-
tegrating the magnetic induction equation and the vorticity
equation around a filament, we obtain time development
equations of the current-vortex filaments. It is analytically
shown that the two-dimensional equations of motion of low-
density non-neutral electron plasmas with the guiding-center
approximation coincide with those of the two-dimensional
nonmagnetized fluids, i.e., the Euler equations. Thus, we ap-
ply the current-vortex method in the limit of no electric cur-
rent to the two-dimensional electron plasmas. In this limit,
the method is equivalent to the traditional point-vortex
method.19–21

As a simulation method, we use a special-purpose com-
puter, MDGRAPE-2. If no electric current is assumed, the
current-vortex method needs the Biot–Savart integral to de-
termine a flow velocity from~discretized! vorticities. Other-
wise, the method needs the additional Biot–Savart integral to
determine a magnetic field from electric currents. Unfortu-
nately, it takes a considerable time to calculate the Biot–a!Electronic mail: yyanagi@phys.h.kyoto-u.ac.jp
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Savart integral in simulations. To improve performance of
vortex simulations, one may needs special methods, such as
the vortex-in-cell code. However, we took a way to use a
special-purpose computer, MDGRAPE-2. It was originally
designed for molecular dynamics simulations, and acceler-
ates calculations of the Coulomb interactions, the van der
Waals interactions, and so on. We find that MDGRAPE-2
can accelerate calculations of the Biot–Savart integral. You
will see that MDGRAPE-2 is an ‘‘accelerator’’ not only for
molecular dynamics simulations but also for plasma simula-
tions.

The simulation results show that the model is valid for
the electron plasmas, because the diocotron modes observed
in the simulations are consistent with the theoretically pre-
dicted modes. The growth rates obtained by the simulations
agree with the growth rates of linear theory. This indicates
that MDGRAPE-2 gives sufficient precision for the simula-
tions.

The angular velocities of the particles are influenced by
the radius of the conducting wall. In the simulations of time
evolution of two circular clumps, it is found that the direc-
tion of E3B force exerting the backward clump is outward,
while the one exerting the forward clump is inward. The
angular velocity of the backward clump, which is determined
by the distance from the conducting wall, becomes larger
than the forward one. Thus the backward clump catches up
with the forward one from outside~near the wall! and merges
with the forward one. It is concluded that the electric field
induced by the conducting wall makes the nonlinear stage
unstable and causes the clumps to merge.

In Sec. II, we present the simulation model, current-
vortex filament model, the simulation method and the initial
conditions. In Sec. III, we present simulation results. We
compare the results to linear theory. The merging properties
of the electron clumps produced by the diocotron instability
are discussed. In Sec. IV, we give conclusions.

II. SIMULATION MODEL AND METHOD

In Sec. II A, the basic equations for non-neutral plasmas
are given. In Sec. II B, the simulation model is discussed.
The two-dimensional equations of motion of non-neutral
plasmas with the guiding-center approximation coincide with
the two-dimensional Euler equations. Thus we use the previ-
ously developed simulation model, current-vortex method,
with no electric current. In this limit, our model reduces to
the traditional point-vortex method. In Sec. II C, a special-
purpose computer, MDGRAPE-2, is briefly reviewed, which
is used to accelerate the calculations of the Biot–Savart in-
tegral. In the last part of this section, we explain the initial
conditions of the simulations.

A. Basic equations

We use the following basic equations:

nemeS ]

]t
1~u•“ ! Du52“p2ene~E1u3B!, ~1!

]ne

]t
1“•~neu!50, ~2!

“•E5
ene

e0
, ~3!

vz5 ẑ•“3u, ~4!

B5B0ẑ, ~5!

wherene , me , e, p, andB0 are the number density of elec-
trons, the electron mass, the electron charge, the kinetic pres-
sure, and the uniform magnetic field in thez direction, re-
spectively. Notationvz is the z-component of the vorticity.
Notationsu, B, and E are the flow velocity, the magnetic
field, and the electric field on thex–y plane. A unit vector in
z direction is denoted byẑ. Equations~1!, ~2!, and~3! are the
equation of motion, the equation of continuity, and Gauss’
theorem, respectively.

In the present analysis, a cold-fluid guiding-center model
is adopted in which electron inertial effects are neglected.
The motion of a strongly magnetized electron fluid element
is determined from

ene~E1u3B!50. ~6!

In the electrostatic approximation, the electric field is deter-
mined by the scalar potentialf, namely,E52“f, and Eq.
~6! gives

u52
1

B0
“f3 ẑ, ~7!

“•u50. ~8!

By means of Eq.~4!, the vorticityvz reduces to

vz5
ene

e0B0
5

vpe
2

vce
52vD , ~9!

where vpe5(nee
2/(e0me))

1/2 and vce5eB0 /me . Notation
vD is the diocotron frequency. Equation~9! means that the
vorticity is proportional to the electron densityne or the
diocotron frequencyvD .

On the other hand, two-dimensional flow velocity is de-
termined by the Euler equation. Namely, the flow velocity is
obtained by the stream functionc,

u52“c3 ẑ. ~10!

It follows from Eq.~7! that the scalar potentialf is related to
the stream function,c5f/B0 .8,10 The electron fluid motion,
therefore, can be determined by the two-dimensional Euler
equations.

B. Simulation model

Here we explain the current-vortex method used in the
simulations. We use the two-dimensional ideal magnetohy-
drodynamic equations,

]vz

]t
52~u•“ !vz1~B•“ ! j z , ~11!

]Az

]t
52~u•“ !Az , ~12!

“•u50, ~13!
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E1u3B50, ~14!

B52 ẑ3“Az , ~15!

vz5 ẑ•“3u, ~16!

j z5
ẑ

m0
•“3B, ~17!

whereAz and j z are thez-components of the magnetic vector
potential and the electric current density, respectively. The
mass density is normalized to unity.

We assume that the electric current and the vorticity
have discontinuous filamentary distributions, and the point
electric current and the point vortex are confined in each
filament coaxially. In other words, the electric current and
the vorticity always align and form the current-vortex fila-
ments. It follows that the electric current densityj z(r,t) and
the vorticity vz(r,t) are denoted by

j z~r,t !5(
i

Ji~ t !d~r2r i~ t !!, ~18!

vz~r,t !5(
i

V i~ t !d~r2r i~ t !!, ~19!

where d(r) is Dirac’s two-dimensional delta function. The
notationr i(t) is the position vector of thei th current-vortex
filament,Ji(t) andV i(t) are the total electric current and the
circulation inside thei th filament. Equations~18! and ~19!
directly show that there is the current-vortex filament at
r i(t).

We rewrite the vorticity Eq.~11! and the magnetic in-
duction Eq.~12! in terms of the filamentary representations
~18! and ~19!. By integrating the resulting equations over a
circle area whose center and radius arerk ande, respectively,
we obtain solutions concerning the specific filament, say the
kth filament. The solutions are given by

drk

dt
5u~rk ,t !2

Jk~ t !

Vk~ t !
B~rk ,t !, ~20!

dVk~ t !

dt
50, ~21!

dJk~ t !

dt
50, ~22!

where

u~rk ,t !5(
iÞk

V i~ t !“G~rk2r i !3 ẑ, ~23!

B~rk ,t !5(
iÞk

Ji~ t !“G~rk2r i !3 ẑ, ~24!

andG(r) is the two-dimensional Green function that obeys

“

2G~r!52d~r!. ~25!

Equations~20!, ~21!, and~22! give the equation of motion of
thekth filament, the conservation laws of the circulation and
the total electric current inside thekth filament, respectively.

The equations determine the time evolutions of the current-
vortex filaments. In the limit ofJi(t)50, Eqs.~20!–~24! re-
duce to the following normalized equations:

drk

dt
5u~rk ,t !, ~26!

dVk~ t !

dt
50, ~27!

u~rk ,t !5(
iÞk

2pV i~ t !“G~rk2r i !3 ẑ. ~28!

The factor 2p in the Biot–Savart integral~28! is introduced
to cancel out the factor 1/(2p) in the Green function. We use
these normalized equations in the simulations, because the
equations to determine the time evolution of two-
dimensional non-neutral electron plasmas with guiding-
center approximation have the same form as the two-
dimensional Euler equations for nonmagnetized fluids. To
incorporate the effect of the conducting wall around the elec-
trons, we use the method of images.22

C. Simulation method

Equation~28! is the Biot–Savart integral. One must no-
tice that it takes a considerable time to calculate the Biot–
Savart integral in simulations. Usually the calculation time is
proportional toN2, whereN is the number of mesh points. In
this work, we use a special-purpose computer,
MDGRAPE-2, to accelerate the calculations of the Biot–
Savart integral. A photograph of MDGRAPE-2 is shown in
Fig. 1. MDGRAPE-2 is a standard PCI board that can be
installed even on Pentium III based PCs. It was originally
designed for molecular dynamics simulations, and acceler-
ates the calculations of the Coulomb interactions, the van der
Waals interactions, and so on.23 The calculation speed of
MDGRAPE-2 depends on the number of particles that inter-
act with each other and the number of boards installed on a
PC. This is due to the communication time between the host
CPU and PCI board. If the number of particles exceeds 105,
the communication time is not negligible. In such a case, it is
possible to implement the well known fast algorithms, such
as the vortex-in-cell method and the pseudoparticle multipole
method, on MDGRAPE-2 to reduce the communication

FIG. 1. A photograph of MDGRAPE-2 is shown.
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time.21,24For our case, however, the maximum number of the
particles is 104 and there is not enough merit to implement
the fast algorithm. Thus we simply use MDGRAPE-2 to ac-
celerate the calculation of Biot–Savart integral in the tradi-
tional point-vortex method. In this case, the maximum cal-
culation speed still reaches 120 GFlops, if the number of
particles is 105 and the number of MDGRAPE-2 boards is 4.
It is about 8 times faster than the fastest vector-type super-
computer with one processor. The method how to calculate
the Biot–Savart integral on MDGRAPE-2 is given in Ref. 15.

D. Initial conditions

An initial configuration of the electrons is shown in Fig.
2. A perfectly conducting wall is located atRw . Outer and
inner radii of the distribution of electrons are denoted byR0

andR1 , respectively. The electron distribution is represented
by the sum of point vortices in the simulations. The maxi-
mum number of point vortices is 104. Each point vortex has
circulation 0.15Gs . The outer radius of the electron distribu-
tion is R0550Ls . Here the notationsGs and Ls are intro-
duced for normalization. The average vorticityv̄z is obtained
by

v̄z5
0.15Gs3104

p~50Ls!
2 51.9131021

Gs

Ls
2 . ~29!

In this case, the diocotron frequencyvD5vpe
2 /(2vce) is de-

termined by the average vorticity asvD5v̄z/2. The value of
the diocotron frequency becomes

vD5
ene

2e0B0
5

1

2
v̄z59.5531022

Gs

Ls
2 . ~30!

Thus the vorticity is proportional to the electron number den-
sity. In the simulations, we setT5Ls

2/Gs51 for normaliza-
tion, whereT means the time in the simulation. Time step is
DT51024. All the length scales in the simulations are nor-
malized byR0 from now on.

III. SIMULATION RESULTS OF DIOCOTRON
INSTABILITY

A. Time evolution of annular electron distribution

In Figs. 3–5 time evolutions of the electron distributions
at T50, 40, 80, 120, 160, and 200 are shown. There are two
main parameters in these simulations. One is a ratio of inner
to outer radii of the electron distributionR1 /R0 , which is
chosen as 0.6 in Fig. 3, 0.8 in Fig. 4, and 0.9 in Fig. 5. The
other is a radius of the conducting wallRw , which is chosen
as 1.1R0 in ~a!, 1.6R0 in ~b!, and` in ~c! in Figs. 3 and 4,
and` in Fig. 5.

The simulation results show that the linearly most un-
stable modes are 2 atT5120 in ~a!, 3 at T580 in ~b!, 3 at
T580 in ~c! in Fig. 3, 4 atT580 in ~a!, 5 atT580 in ~b!, 5
at T580 in ~c! in Fig. 4, and 9 atT580 in Fig. 5. The
unstable modes obtained by the simulations agree with the

FIG. 3. Time evolutions of the electron distributions atT50, 40, 80, 120,
160, and 200 are shown. Initial inner radius of the distribution of electrons
is R150.6R0 . Conducting wall is located atRw5 ~a! 1.1R0 , ~b! 1.6R0 , and
~c! `, respectively.

FIG. 2. An initial condition of the simulations is shown. A perfectly con-
ducting wall is located atRw . Outer and inner radii of the distribution of
electrons are denoted byR0 andR1 , respectively.

FIG. 4. Time evolutions of the electron distributions atT50, 40, 80, 120,
160, and 200 are shown. Initial inner radius of the distribution of electrons
is R150.8R0 . Conducting wall is located atRw5 ~a! 1.1R0 , ~b! 1.6R0 , and
~c! `, respectively.

FIG. 5. Time evolution of the electron distribution atT50, 40, 80, 120,
160, and 200 is shown. Initial inner radius of the distribution of electrons is
R150.9R0 . Conducting wall is located atRw5`.
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theoretical results shown in Table I. It indicates that the
current-vortex method is qualitatively valid for problems of
the non-neutral electron plasmas.

It is interesting that the final stage after the linear growth
stage strongly depends on the radius of the conducting wall
Rw . In Fig. 3, mode 1 appears in~a!, while the electron
distributions exhibit center-peaked broad profiles in~b! and
~c!. In Fig. 4 also, the modes observed in the final stages are
2, 4, and 5, respectively. These results indicate that the con-
ducting wall strongly affects the electron motions inside it.
We discuss the merging properties of the electron clumps in
Sec. III C.

B. Growth rate

To check if the simulation results are quantitatively
valid, we compare the growth rates of the diocotron instabil-
ity obtained by the simulations to the analytical ones.

The growth rate of the diocotron instability has been
reported by Davidsonet al.6,14They assume the annular elec-
tron distribution, which is the same condition as the one we
use in the simulations. A dispersion relation for complex
eigenfrequencyv is given by

S v

vD
D 2

2b,

v

vD
1c,50, ~31!

wherevD5vpe
2 /2vce5nee/(2e0B) and

b,5,F12S R1

R0
D 2G1F12S R1

R0
D 2,G S R0

Rw
D 2,

, ~32!

c,5,F12S R1

R0
D 2GF12S R1

Rw
D 2,G2F12S R0

Rw
D 2,G

3F12S R1

R0
D 2,G . ~33!

For our case, there is no central conductor. Thus the terms
that arise from the charges on the central conductor are omit-
ted in Eqs.~32! and ~33!. The solutions of Eq.~31! are

v5 1
2 vD~b,6Ab,

224c,!. ~34!

If 4c,.b,
2 , the solutions are complex, which correspond to

instability. Using Eq.~34!, detailed instability properties can
be investigated for the specific electron distribution.

Time evolutions of the Fourier coefficients ofvz for Fig.
3 is shown in Fig. 6, for Fig. 4 in Fig. 7 and for Fig. 5 in Fig.
8, respectively. The curved lines indicate the values of the
coefficients obtained by the simulations, and straight lines
indicate the growth rates obtained by linear theory. We can
see that the slopes of the curves during the linear growth
stage are approximately the same as those of the straight
lines. The exact values are plotted in Fig. 9. The growth rates
obtained by the simulations agree with the growth rates of
linear theory. This indicates that MDGRAPE-2 gives the suf-
ficient precision for the simulations.

FIG. 6. Time evolutions of the linearly most unstable Fourier coefficients
are shown that correspond to Fig. 3. The azimuthal mode numbers are 2 in
~a! and 3 in~b! and ~c!.

TABLE I. Unstable modes obtained by the linear theory in descending order
of the growth rate are shown.

R1 /R0 Rw Unstable modes

0.6 1.1 2
0.6 1.6 3,2
0.6 ` 3
0.8 1.1 4,3,5
0.8 1.6 5,4,6
0.8 ` 5,4,6
0.9 ` 9,8,10

FIG. 7. Time evolutions of the linearly most unstable Fourier coefficients
are shown that correspond to Fig. 4. The azimuthal mode numbers are 4 in
~a! and 5 in~b! and ~c!.

FIG. 8. Time evolution of the linearly most unstable Fourier coefficient is
shown that corresponds to Fig. 5. The azimuthal mode number is 9.
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C. Boundary effect

Here we discuss the boundary effect on the electron
clumps. We focus on the results shown in Fig. 4. The figure
shows that the merging of the clumps is strongly influenced
by the radius of the conducting wall. More mergers occur if
the wall radius is smaller. To see the merging properties
quantitatively, we plot time evolutions of angular positions
of particles in Fig. 10.

In Fig. 10~a!, initial particles are selected from the elec-
tron distribution in Fig. 4~a!, T50 at u5np/10, r 50.93R0

wheren50,1,...,19. In thesame manner, initial particles in
Figs. 10~b! and 10~c! are selected from Figs. 4~b! and 4~c!,
respectively. A bundle of lines indicates a clump. Note that
the ordinate has the period of 2p. Slope of a line indicates
angular velocity of a particle. Durations of the linear growth
stages are obtained from Fig. 7. They areT540– 80 in~a!
andT535– 60 in~b! and ~c!. In these durations, the slopes
of the lines in Fig. 9, which are initially the same, gradually
change, depending on the wall radius. Thus it is found that
the transition from the linear growth stage to the nonlinear
stage yields the change of the slopes. In Figs. 10~b! and
10~c!, the slopes of the lines are approximately constant dur-
ing the nonlinear stage. It indicates that the nonlinear stage is

stable and clumps rotate in the nearly constant angular ve-
locity. On the other hand, the slopes of the lines in Fig. 10~a!
are still varying in the nonlinear stage, that indicates the
nonlinear stage is unstable. This is due to the smaller wall
radius compared with those in Figs. 10~b! and 10~c!. Al-
though the details are omitted here, we have carried out the
other simulations, where we use the electron distributions at
T5160 in Figs. 4~b! and 4~c! with the conducting wall relo-
cated atRw5R0 as initial conditions. In these simulations,
the clumps no longer keep their initial shapes and merge with
each other. The final distributions become broad ones. Thus
we conclude that the electric field induced by the conducting
wall makes the nonlinear stage unstable and causes the
clumps to merge.

Next, we consider a mechanism by which two clumps
merge. In Fig. 11, we show time evolution of two circular
clumps. The number of particles in each clump is 1000,
which is the approximate number of particles in each clump
in Fig. 4~c! at T5200. The centers of the two clumps are
initially located at (x,y)5(0.7R0 ,0) and (0,0.7R0). The ini-
tial radii of the clumps are 0.2R0 each. The conducting walls
are located atr 5R0 in ~a! and r 5` in ~b!. Note that the
time interval between the snapshots is 4 in Fig. 11, while the
ones of the other figures are 40. In Fig. 11~a!, we can see that
the two clumps merge rapidly near the wall. As is shown in
Fig. 11~b!, the circular two clumps without the conducting
wall move like binary stars if the motion of the clumps is
restricted in a two-dimensional plane. In addition, we have
checked by the simulations that only one clump surrounded
by the conducting wall survives stably. Its shape remains

FIG. 9. Both growth rates obtained by the simulations and linear theory are
plotted. The leftmost three data correspond to the growth rates at 1/Rw50.
To prevent the data from overlapping with each other, we plot them in the
different positions.

FIG. 10. Time evolutions of angular positions of particles are plotted. The initial positions of the traced particles in~a!, ~b!, and ~c! are atu5np/10, T
50, (n50,1,2,...,19) in Figs. 4~a!, 4~b!, and 4~c!, respectively.

FIG. 11. Time evolutions of two circular clumps are plotted. The two
clumps are located at (x,y)5(0.7R0 ,0) and (0,0.7R0). The initial radii of
the clumps are 0.2R0 each. The conducting walls are located atr 5R0 in ~a!
and r 5` in ~b!.
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almost circular. In this case, however, the two clumps merge
by the electric field induced by the conducting wall. Thus we
conclude that the merging of the two clumps are driven by
the electric field induced by each other. The direction of the
E3B force exerted on the forward clump in the counter-
clockwise rotation is inward, while the force on the back-
ward clump is outward. Here we use the terms ‘‘forward’’
and ‘‘backward’’ in regard to the direction of orbital rotation.
The angular velocity of the backward clump, which is deter-
mined by the radial electric field that depends on the distance
from the conducting wall, is larger than that of the forward
clump, because the distance from the backward clump to the
conducting wall is smaller than that from the forward clump.
Thus the backward clump catches up with the forward one
from outside~near the wall! and merges with the forward
one.

IV. CONCLUSIONS

In this paper we have shown the simulation results of
non-neutral electron plasmas. The simulation model we use
is the current-vortex method. In the simulations we use
MDGRAPE-2 to accelerate calculations of the Biot–Savart
integral.

In the limit of no electric current, the current-vortex
method coincides with the traditional point-vortex method,
and is qualitatively valid for the non-neutral plasma simula-
tions, because the most unstable modes are reproduced cor-
rectly by the simulations. The growth rates observed in the
simulations also agree with the theoretical ones, which indi-
cates that MDGRAPE-2 gives sufficient precision for the
simulations.

It is concluded that the electric field induced by the con-
ducting wall makes the nonlinear stage unstable and causes
the clumps to merge. In the simulations of time evolution of
two circular clumps, it is found that the direction ofE3B
force exerting the backward clump is outward, while the one
exerting the forward clump is inward. The angular velocity
of the backward clump, which is determined by the distance
from the conducting wall, becomes larger than the forward
one. Thus the backward clump catches up with the forward
one from outside~near the wall! and merges with the forward
one.

In the present analysis of the merging properties, we
limit ourselves to the two-clump system. However, the merg-
ing properties ofN-clump system is still unclear. The stabil-
ity analysis of vortex arrays has been presented by
Campbell.25 The result may give us a clue to study the non-
linear behavior of the electron clumps.
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APPENDIX: INITIAL PERTURBATIONS INCLUDED IN
INITIAL CONDITIONS OF SIMULATIONS

First, we show two simulation results in Fig. 12. The
values ofRw and R1 in ~a! are ` and 0.8R0 , respectively,

which are the same as Fig. 4~c!. Those in ~b! are ` and
0.9R0 , respectively, which are the same as Fig. 5. Note that
the linearly most unstable mode is 5 in Fig. 12~a! and 9 in
Fig. 12~b!, while the obtained mode is 4 and 8, respectively.
This is due to the initial perturbations. The particles inside
the annular electron distributions in Figs. 3–5 are arranged
as in Fig. 13~b!. On the other hand, the particles in Fig. 12

FIG. 12. Time evolutions of the electron distributions atT50, 40, 80, 120,
160, and 200 are shown. Initial inner radii of the distributions of the elec-
trons areR15(a) 0.8R0 and~b! 0.9R0 , respectively. Initial arrangements of
the particles used here are shown in Fig. 13~a!.

FIG. 13. Initial arrangements of the particles are shown.
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are arranged as in Fig. 13~a!. For the cases shown in Fig. 12,
mode 4 and its higher harmonic modes gain more initial
energy than the other modes, such as 3, 5, and so on. The
values of the initial energy in some mode numbers are shown
in Fig. 14. In this figure, the values are normalized by the
initial energy of mode 4 in the case of Fig. 13~a!. It is found
that the initial energy of modes 4 and 8 in the case of Fig.
13~a! is much larger than the other ones. Thus, modes 4 and
8 dominate because they are initialized with much greater
amplitude. We conclude that the unstable modes are very
sensitive to the initial energy included in the initial condition.
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FIG. 14. The values of the initial energy in several modes are plotted.
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