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We extend the work of Fuchs, Painleve´ and Manin on a Calogero-like expression of
the sixth Painleve´ equation~the ‘‘Painlevé–Calogero correspondence’’! to the other
five Painleve´ equations. The Calogero side of the sixth Painleve´ equation is known
to be a nonautonomous version of the~rank one! elliptic model of Inozemtsev’s
extended Calogero systems. The fifth and fourth Painleve´ equations correspond to
the hyperbolic and rational models in Inozemtsev’s classification. Those corre-
sponding to the third, second and first are not included therein. We further extend
the correspondence to the higher rank models, and obtain a ‘‘multi-component’’
version of the Painleve´ equations. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1348025#

I. INTRODUCTION

The so called Painleve´ equations are the following six equations discovered by Painleve´1 and
Gambier:2
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The third equation PIII is slightly modified; the original equation can be reproduced by the simple
change of variables (t,l)→(t2,tl). It is well known that these equations are characterized by the
absence of ‘‘movable singularities’’ other than poles.

Fuchs3 proposed two more approaches to the sixth equation PVI. One approach is the concept
of isomonodromic deformations. In this approach, PVI is interpreted as a differential equation
describing isomonodromic deformations of a linear ordinary differential equation on the Riemann
sphere. This is the origin of many subsequent researches. Another approach relates PVI to an
incomplete elliptic integral. Painleve´4 took the second approach, and derived a new expression of
PVI in term of the Weierstrass̀-function. This work of Painleve´ is briefly reviewed in Okamoto’s
work on affine Weyl group symmetries of PVI.

5

Manin6 revived the almost forgotten work of Fuchs and Painleve´ after nearly ninety years.
Manin’s remarkable idea is to use the elliptic modulust, rather thant, as an independent variable.
The outcome is a Hamiltonian system with a Hamiltonian of the normal formH5p2/21V(q),
where the potential is a linear combination of the Weierstrass`-function and its shift by three half
periods. This is a nonautonomous system, because the Hamiltonian depends on the ‘‘time’’t
through thet-dependence of thè-function.

Levin and Olshanetsky7 pointed out that Manin’s equation resembles the so called Calogero–
Moser systems, i.e., the various extensions8 of the integrable many-body systems first discovered
by Calogero.9 More precisely, the HamiltonianH is identical to a special case~the rank-one
elliptic model! of Inozemtsev’s extensions10,11 of the Calogero–Moser systems. Levin and Olsha-
netsky called this relation the ‘‘Painleve´–Calogero correspondence.’’

One will naturally ask if this correspondence can be extended to the other Painleve´ equations.
Manin himself raised this problem in his paper. Olshanetsky12 conjectured that a degenerate
version of Inozemtsev’s elliptic model will emerge therein.

In this paper we aim to answer this question affirmatively. A guiding principle is the degen-
eration relation of the six Painleve´ equations.13 This relation can be schematically expressed as
follows:

PVI → PV → PIV

↓ ↓
PIII → PII → PI

This diagram means, for instance, that PV can be derived from PVI by a degeneration process,
which amounts to confluence of singular points of the aforementioned linear ordinary differential
equation in the isomonodromic approach. We shall trace this process carefully on the ‘‘Calogero
side,’’ and find a PV-version of Manin’s equation. In principle, one can thus find an analog of
Manin’s equation for all the six Painleve´ equations~though, actually, one can resort to a more
direct approach that bypasses the complicated degeneration process!.

Remarkably~or rather naturally?!, all the six equations on the Calogero side turn out to
become a~nonautonomous! Hamiltonian system with a Hamiltonian of the normal formH
5p2/21V(q). Furthermore, the Hamiltonians on the Calogero side of PV and PIV coincide with
the Hamiltonians of the~rank one! hyperbolic and rational models in Inozemtsev’s classification10

~which were discovered by Levi and Wojciechowski14 before Inozemtsev’s work!. Those corre-
sponding to the other three Painleve´ equations are not included therein, but may be thought of as
a further degeneration of the hyperbolic and rational models.

One can further proceed to the higher rank models, and ask if there is still a Painleve´–
Calogero correspondence. We shall show that this is also the case. The Painleve´ side of the
correspondence is a kind of multi-dimensional extension of the Painleve´ equations. They are
obviously different from another multi-dimensional extension called the ‘‘Garnier systems.’’13

For this reason, we call our multi-dimensional extension amulti-componentversion of the Pain-
levé equations.

This paper is organized as follows. Section II is a brief review of the work of Fuchs, Painleve´
and Manin. In Sec. III we deal with PV, PIV and PIII . The degeneration process is discussed in
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detail for the case of PV. The direct approach is illustrated for the case of PIV and PIII . In Sec. IV
we show a reformulation of the foregoing calculations in the Hamiltonian formalism. The status of
PII and PI is also clarified therein. Section V is devoted to the higher rank Inozemtsev Hamilto-
nians and the multi-component Painleve´ equations. Section VI is for concluding remarks. Part of
the technical details are gathered in the Appendices.

II. PAINLEVÉ –CALOGERO CORRESPONDENCE FOR PVI

We here briefly review the work of Fuchs, Painleve´ and Manin.
Fuchs rewrites PVI into the following form:

t~12t !Lt Èl dz
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bt

l2 1
g~ t21!
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HereLt is the linear differential operator~Picard–Fuchs operator!
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d
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2

1

4
, ~2!

which also appears in the Picard–Fuchs equation of complete elliptic integrals. In this respect, PVI

may be thought of as an inhomogeneous~and nonlinear! analog of the Picard–Fuchs equation.
Painlevéand Manin make use of a parametrization of the elliptic curve,

y25z~z21!~z2t !, ~3!

by the Weierstrass̀ -function. Let`(u) be the`-function with primitive periods 1 andt :
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The parametrization is now given by

z5
`~u!2e1

e22e1
, y5

`8~u!

2~e22e1!3/2, ~5!

where en5`(vn), n51,2,3 are the values of̀ (u) at the three half period pointsv151/2,
v252(11t)/2, v35t/2.

Manin’s excellent idea is to do a simultaneous change of the dependent variablel→q by

l5
`~q!2e1

e22e1
, ~6!

and the independent variablet→t by

t5
e32e1

e22e1
. ~7!

Manin presents the beautiful formula

dt

dt
5

p i

t~ t21!~e22e1!
, ~8!
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for the Jacobian of the latter, which plays a key role in his calculations. PVI is thereby mapped to
the equation

~2p i !2
d2q

dt2 5 (
n50

3

an`8~q1vn!, ~9!

where the parameters on the right hand side are connected with the parameters of PVI as a0

5a, a152b, a25g, a352d11/2. This equation is equivalent to the Hamiltonian system,

2p i
dq

dt
5

]H
]p

, 2p i
dp

dt
52

]H
]q

, ~10!

with the Hamiltonian

H5
p2

2
2 (

n50

3

an`~q1vn!. ~11!

III. CORRESPONDENCE FOR PV, PIV AND PIII

A. Degeneration of P VI to PV

The degeneration of PVI to PV is achieved by rescaling the time variable and the parameters as

t511e t̃ , a5ã, b5b̃, g5
g̃

e
2

d̃

e2 , d5
d̃

e2 , ~12!

and lettinge→0 while leavingã,...,g̃ and t̃ finite.13

The building blocks of Fuchs’ equation~1! turn out to survive this scaling limit as follows.

~1! The Picard–Fuchs operator:
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~3! The square root on the right hand side:

Al~l21!~l2t !→Al~l21!.

~4! The incomplete elliptic integral:

Èl dz

Az~z21!~z2t !
→ Èl dz

Az~z21!
.

In particular, the degeneration of PVI to PV is associated with the degeneration of the elliptic curve
to a rational curve,

y25z~z21!~z2t !→y25z~z21!2, ~13!

or, equivalently, the degeneration of the torusC/(Z1tZ) to the cylinderC/Z.
Thus, rewritingã, b̃, g̃, d̃ and t̃ to a, b, g, d and t, we obtain the following equation as a

PV-version of Fuchs’ equation:
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B. Analog of Manin’s equation for P V

As a counterpart of theq-variable for PVI, we now consider

q5 Èl dz

Az~z21!
. ~15!

If one prefers to be more faithful to Manin’s parametrization, one should rather defineq as

q5
1

2p i È
l dz

Az~z21!
,

because 2(e22e1)1/2→2p i as Imt→1` ~see Appendix B!. Since there is no substantial differ-
ence, let us take the first definition that is slightly simpler for calculations.

Let us rewrite~14! in terms ofq. The integral can be readily calculated as

q5 logS Al21

Al11
D , ~16!

so that the inverse relation can be written as

Al52coth~q/2!. ~17!

Terms on the right hand side of~14! can be calculated as follows:
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The differential equation forq eventually takes the form

S t
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2
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2

b
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1
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2
cosh~q!1
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8
cosh~2q!. ~19!

This gives a PV-version of Manin’s equation. Note that this equation can be readily converted to
a Hamiltonian system with the HamiltonianH5p2/21V(q).
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Remark:A very similar change of dependent variable for PV is discussed in the book of
Iwasakiet al.15

C. Idea of direct approach

Although the degeneration process can be continued to the other Painleve´ equations, we now
present a more direct approach. Note that the integrand is connected with the coefficient of
(dl/dt)2 in the original Painleve´ equation by the following very simple relation:

1

Az~z21!~z2t !
5expF2E 1

2 S 1

z
1

1

z21
1

1

z2t DdzG ,
1

Az~z21!
5expF2E S 1

2z
1

1

z21DdzG .
If this is a correct prescription, one will be able to define theq-variable for PIII and PII directly
without the cumbersome degeneration process. This is indeed the case, as we shall show below.

D. q -variable for P IV

Since the expected integrand is given by

expS 2E dz

2z D5
1
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, ~20!

we define
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This can be solved forl as
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2D 2
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Honest calculations show that all derivative terms of PIV can be absorbed by the second derivative
of q:
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E. q -variable for P III

The integrand is expected to be given by

expS 2E dz

z D5
1

z
. ~26!

We consider

q5El dz

z
5 logl, ~27!

and its inversion

l5eq. ~28!

All derivatives terms of PIII are now absorbed by the second derivative ofq with respect to logt:
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Substitutingl5eq gives the second order equation,
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with the potential

V~q!52
a

4
eq1

bt

4
e2q2

g

8
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8
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F. Summary

Let us summarize the results of this section.
Theorem 1: The foregoing change of variablel→q mapsPV, PIV andPIII to a second order

differential equation for the new dependent variable q. These equations are equivalent to a
non-autonomous Hamiltonian system with a Hamiltonian of the normal formH5p2/21V(q).
(PV) The Hamiltonian system takes the form

t
dq

dt
5

]H
]p

, t
dp

dt
52
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]q

, ~32!

with the Hamiltonian
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8
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(PIV) The Hamiltonian system takes the form

dq

dt
5
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,
dp

dt
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, ~34!

with the Hamiltonian

1449J. Math. Phys., Vol. 42, No. 3, March 2001 Painlevé–Calogero correspondence revisited
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(PIII ) The Hamiltonian system takes the form

t
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, t
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with the Hamiltonian
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Remark:

~1! The Hamiltonians for PV and PIV coincide with those of the hyperbolic and rational models of
Inozemtsev,10 Levi and Wojciechowski.14 The Hamiltonian for PIII has no counterpart in their
work, but nowadays can be found in the literature.16

~2! The foregoing construction of theq-variable does not literally work for PII and PI, because
there is no (dl/dt)2 term. The status of these equations will be clarified in the next section
from a different point of view.

IV. HAMILTONIAN FORMALISM OF CORRESPONDENCE

A. Hamiltonians of Painleve ´ equations

All the six Painleve´ equations are known to be expressed in the Hamiltonian form

dl

dt
5

]H

]m
,

dl

dt
52

]H

]l
,

with a suitable choice of the canonical conjugate variablem and the HamiltonianH.17 This
expression is by no means unique; we here consider the following Hamiltonians.13 These Hamil-
tonians are referred to as the ‘‘polynomial Hamiltonians’’ because they are polynomials inl and
m:
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Herek0 ,k1 ,u, etc. are constants that are connected with the parametersa, b, g, d of the Painleve´
equations by simple algebraic relations:

~PVI ! a5
~k01k11u21!2

2
22k, b52

k0
2

2
, g5

k1
2

2
, d5

12u2

2
;

~PV! a5
~k01u1!2

2
22k, b52

k0
2

2
, g5h1~u111!, d52

h1
2

2
;

~PIV ! a52u`2k011, b522k0
2 ;

~PIII ! a524h`u` , b54h0~u011!, g54h`
2 , d524h0

2 .

B. How to find canonical transformations

The goal of this section is to show that the Painleve´–Calogero correspondence is, in fact, a
~time-dependent! canonical transformation of two Hamiltonian systems. By this, we mean that the
functional relation betweenl and q can be extended to~l,m! and (q,p) so as to satisfy the
equation

m dl2Hdt5constant•~p dq2H dT!1exact form, ~38!

with a suitably redefined time variableT ~such as the logarithmic time logt in PV and PIII ). The
constant factor on the right hand side is inserted simply for convenience; if necessary, one can
normalize the constant to 1 by suitably rescalingp, q, H andT. For this reason, we call this type
of coordinate transformation a ‘‘canonical’’ transformation even if the constant factor is not equal
to 1.

Let us illustrate, in the case of PVI, how to find such a canonical transformation. Suppose that
l and m be a solution of PVI in the aforementioned Hamiltonian formalism, and thatq be a
corresponding solution of Manin’s equation. The canonical equation forl takes the form

dl

dt
5

l~l21!~l2t !

t~ t21! S 2m2
k0

l
2

k1

l21
2

u21

l2t D .

This equation can be solved form:

m5
t~ t21!

2l~l21!~l2t !

dl

dt
1

1

2 S k0

l
1

k1

l21
1

u21

l2t D .

Our task is to rewrite the right hand side in terms ofp andq. We first considerdl/dt. Differ-
entiating~6! againstt gives

dl

dt
5S `8~q!

e22e1

dq

dt
1 f t~q! D dt

dt
,

where we have introduced the functions

f ~u!5
`~u!2e1

e22e1
, f t~u!5

] f ~u!

]t
. ~39!

The derivativedq/dt can be read off from the canonical equation forq:

dq

dt
5

1

2p i

]H
]p

5
p

2p i
.
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As for the Jacobiandt/dt, Manin’s formula~8! is available. One can thus expressdl/dt as a
function ofp, q andt. The other part of the foregoing expression ofm containsl only, which can
be readily converted to a function ofq andt by ~6!. We thus obtain the following expression of
m:

m5
e22e1

`8~q!
p1

2p i ~e22e1!2

`8~q!2 f t~q!

1
e22e1

2 S k0

`~q!2e1
1

k1

`~q!2e2
1

u21

`~q!2e3
D . ~40!

We now move the point of view, and think of~6! and~40! as defining a coordinate transfor-
mation (l,m)→(q,p). This gives a canonical transformation that we have sought for the follow-
ing.

Theorem 2: (6) and (40) define a canonical transformation that connects the Hamiltonian
form ofPVI and Manin’s Hamiltonian system. The canonical coordinates and the Hamiltonians of
the two systems obey the equation

m dl2Hdt5p dq2H dt

2p i
1exact form. ~41!

C. Proof of Theorem 2

The total differential of~6! gives

dl5
`8~q!

e22e1
dq1 f t~q!dt,

so thatm dl can be expressed as

m dl5S e22e1

`8~q!
p1

2p i ~e22e1!2

`8~q!2 f t~q! D S `8~q!

e22e1
dq1 f t~q!dt D

1
1

2 S k0

l
1

k1

l21
1

u21

l2t Ddl

5p dq1~A!1~B!1~C!,

where

~A!5
2p i ~e22e1!

`8~q!
f t~q!dq,

~B!5S e22e1

`8~q!
p1

2p i ~e22e1!2

`8~q!2 f t~q! D f t~q!dt,

~C!5
1

2 S k0

l
1

k1

l21
1

u21

l2t Ddl.

As we shall prove in Appendix A,~A! can be further rewritten as

~A!5F`~q1v3!

4p i
2pS f t~q!

f 8~q! D
2Gdt1exact form, ~42!

where f 8(u) denotes theu-derivative of f (u):
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f 8~u!5
] f ~u!

]u
5

`8~u!

e22e1
. ~43!

For ~B! and ~C!, we have

~B!5F f t~q!

f 8~q!
p12p i S f t~q!

f 8~q! D
2Gdt,

~C!5
u21

2~l2t !
dt1

1

2
„k0 logl1k1 log~l21!1~u21!log~l2t !…

5
u21

2~l2t !
dt1exact form.

Thus we find that

m dl2Hdt5p dq2H̃ dt

2p i
1exact form, ~44!

where

H̃52p i
dt

dt S H2
u21

2~l2t ! D22p i F`~q1v3!

4p i
1

f t~q!

f 8~q!
p1p i S f t~q!

f 8~q! D
2G . ~45!

Our task is to prove that the transformed HamiltonianH̃ coincides, modulo irrelevant terms, with
the Hamiltonian of Manin’s equation. Here ‘‘irrelevant’’ means that the term is a function oft
only. Such a ‘‘nondynamical’’ term can be absorbed by the ‘‘exact form’’ part of the foregoing
relation of 1-forms, thereby being negligible.

Let us evaluate the contribution of 2p i (dt/dt)H. By Manin’s formula~8! of dt/dt, and also
by the identity

l~l21!~l2t !5
`8~q!2

4~e22e1!3 ,

we can rewrite 2p i (dt/dt)H as follows:

2p i
dt

dt
H5

`8~q!2

2~e22e1!2 Fm22S k0

l
1

k1

l21
1

u21

l2t Dm1
k

l~l21!G
5

`8~q!2

2~e22e1!2 Fm2
1

2 S k0

l
1

k1

l21
1

u21

l2t D G
2

1
`8~q!2

2~e22e1!2 F2
1

4 S k0

l
1

k1

l21
1

u21

l2t D
2

1
k

l~l21!G .
The first term on the right hand side is equal to

1

2 S p12p i
f t~q!

f 8~q! D
2

5
p2

2
12p i

f t~q!

f 8~q!
p1S 2p i

f t~q!

f 8~q! D
2

,

by which the terms proportional tof t(q)/ f 8(q) and its square in the definition ofH̃ are cancelled
out. The transformed HamiltonianH̃ can now be expressed as
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H̃5
p2

2
2

`8~q!2

2~e22e1!2 2
~u21!t~ t21!~e22e1!

l2t

1
`8~q!

2~e22e1!2 F2
1

4 S k0

l
1

k1

l21
1

u21

l2t D
2

1
k

l~l21!G . ~46!

Note that this is already of the normal formp2/21Ṽ(q) with the potential

Ṽ~q!52
`8~q!2

2~e22e1!2 2
~u21!t~ t21!~e22e1!

l2t

1
`8~q!

2~e22e1!2 F2
1

4 S k0

l
1

k1

l21
1

u21

l2t D
2

1
k

l~l21!G . ~47!

What remains is to expressṼ(q) as an explicit function ofq. To this end, we substitute the
factor `8(q)2/2(e22e1)2 by 2(e22e1)l(l21)(l2t), and rewrite the main part ofṼ(q) as a
linear combination ofl, 1/l, 1/(l21) and 1/(l2t). This leads to the following expression of
Ṽ(q):

Ṽ~q!52
~k01k11u21!224k

2
~e22e1!l

2
k0

2

2
•

~e22e1!t

l
2

k1
2

2
•

~e22e1!~12t !

l21
2

~u21!211

2
•

~e22e1!t~ t21!

l2t

2
1

2
`~q1v3!1function of t only.

The final piece of the ring is the general formula

`~u1v j !5ej1
~ej2ek!~ej2el !

`~u!2ej
, ~48!

where (j ,k,l ) is a cyclic permutation of~1,2,3!. This implies that

~e22e1!t

l
5`~q1v1!2e1 ,

~e22e1!~12t !

l21
5`~q1v2!2e2 ,

~e22e1!t~ t21!

l2t
5`~q1v3!2e3 ,

so that

Ṽ~q!52
~k01k11u21!224k

2
`~q!2

k0
2

2
`~q1v1!

2
k1

2

2
`~q1v2!2

u2

2
`~q1v3!1function of t only. ~49!
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Apart from the last term which is negligible, this potential is indeed the same as Manin’s potential
V(q) ~recall the algebraic relations connecting the constantsk0 , etc. and the parameters of PVI).
This completes the proof of the theorem. Q.E.D.

D. Canonical transformation for P V

This heuristic method for constructing a canonical transformation can be applied to the other
Painlevéequations. Here we consider the case of PV.

Let l be a solution of PV, m the canonical conjugate variable, andq the corresponding
solution of ~18!. The canonical equation forl can be written as

dl

dt
5

l~l21!2

t S 2m2
k0

l
2

u1

l21
1

h1t

~l21!2D .

This equation can be solved form as

m5
1

2l~l21!2 t
dl

dt
1

1

2 S k0

l
1

u1

l21
2

h1t

~l21!2D .

By differentiating~17! againstt and using the canonical equationt dq/dt5]H/]p5p, we obtain
the identity

t
dl

dt
5Al~l21!p,

which can be used to rewrite the expression ofm as

m5
p

2Al~l21!
1

1

2 S k0

l
1

u1

l21
2

h1t

~l21!2D . ~50!

We now reinterpret~17! and~50! as defining a coordinate transformation (l,m)→(q,p). This
indeed turns out to give a canonical transformation that we have sought for the following.

Theorem 3: (17) and (50) define a canonical transformation that connectsPV and the
PV-version of Manin’s Hamiltonian system. The canonical coordinates and the Hamiltonians of
the two systems obey the equation

m dl2H dt5
1

2 S p dq2H dt

t D1exact form. ~51!

Proof: Sincedl anddq are connected by the relation

dl5Al~l21!dq,

m dl can be expressed as

m dl5
1

2
pdq1

1

2 S k0

l
1

u1

l21
2

h1t

~l21!2Ddl

5
1

2
p dq2

h1

2~l21!
dt1

1

2
dS k0 logl1u1 log~l21!1

h1t

l21D ,

so that
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Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



m dl2H dt5
1

2 S p dq2H̃ dt

t D1exact form, ~52!

where

H̃52Ht1
h1t

l21
. ~53!

We can rewriteH̃ to a normal form as

H̃52l~l21!2Fm2
1

2 S k0

l
1

u1

l21
2

u1t

~l21!2D G2

12l~l21!2F2
1

4 S k0

l
1

u1

l21
2

h1t

~l21!2D 2

1
k

l~l21!G1
h1t

l21

5
p2

2
1Ṽ~q!, ~54!

where

Ṽ~q!52
l~l21!2

2 S k0

l
1

u1

l21
2

h1t

~l21!2D 2

12k~l21!1
h1t

l21
.

52S k0

2
1

u1
2

2
1k1u122k D 1

sinh2~q/2!
1

k0
2

2

1

cosh2~q/2!

1
h1~u111!t

2
cosh~q!2

h1
2t2

2
cosh~2q!1function of t only. ~55!

Apart from the last negligible term, this coincides with the potentialV(q) in the statement of the
theorem. Q.E.D.

E. Canonical transformation for P IV

We now consider the case of PIV.
Let l be a solution of PIV, m the canonical conjugate variable, andq the corresponding

solution of ~24!. The canonical equation forl can be written as

dl

dt
54lm2~l212tl12k0!,

which can be solved form as

m5
1

4l

dl

dt
1

1

4 S l12t1
2k0

l D .

By ~22! and the canonical equationdq/dt5]H/]p5p, we have the identity

dl

dt
5Al

dq

dt
5Alp,

so that
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m5
p

4Al
1

1

4 S l12t1
2k0

l D . ~56!

Theorem 4: (22) and (55) define a canonical transformation that connectsPIV and the
PIV-version of Manin’s Hamiltonian system. The canonical coordinates and Hamiltonians of the
two systems obey the equation

m dl2H dt5 1
4 ~p dq2H dt!1exact form. ~57!

Proof: Sincedl anddq are connected by the relation

dl5Aldq,

m dl can be expressed as

m dl5
1

4
p dq1

1

4 S l12t1
2k0

l Ddl

5
1

4
p dq2

1

2
l dt1

1

4
dS l2

2
12tl12k0 logl D ,

so that

m dl2H dt5 1
4 ~p dq2H̃ dt!1exact form, ~58!

where

H̃54H12l. ~59!

We can rewrite the transformed HamiltonianH̃ to a normal form as

H̃58lFm2
1

2 S l

2
1t1

k0

l D G2

18lF2
1

4 S l

2
1t1

k0

l D 2

1
u`

2 G12l

5
p2

2
1Ṽ~q!, ~60!

where

Ṽ~q!522lS l

2
1t1

k0

l D 2

14u`l12l

52
1

2
l322tl222~ t21k022u`21!l22k0

2l21

1function of t only. ~61!

Substitutingl5(q/2)2 gives the potentialV(q) modulo an irrelevant term. Q.E.D.

F. Canonical transformations for P III

The situation of PIII is somewhat similar to PV.
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Let l, again, be a solution of PIII , l the canonical conjuage variable, andq be the correspond-
ing solution of~30!. The canonical equation forl takes the form

dl

dt
5

l2

t S 2m2h`2
u0

l
1

h0t

l2 D ,

which can be solved form as

m5
t

2l2

dl

dt
1

1

2 S h`1
u0

l
2

h0t

l2 D .

By differentiating~28! and using the canonical equationt dq/dt5]H/]p5p, the t-derivative of
l can be written as

t
dl

dt
5lp,

so that we obtain

m5
p

2l
1

1

2 S h`1
u0

l
2

h0t

l2 D . ~62!

This relation, again, can be used to define a canonical transformation.
Theorem 5: (28) and (62) define a canonical transformation that connectsPIII and the

PIII -version of Manin’s Hamiltonian system. The canonical coordinates and the Hamiltonians of
the two systems obey the equation

m dl2Hdt5
1

2 S p dq2H dt

t D1exact form. ~63!

Proof: Sincedl anddq are connected by the relation

dl5l dq,

m dl can be written as

m dl5
1

2
p dq1

1

2 S h`1
u0

l
2

h0t

l2 Ddl

5
1

2
p dq2

h0

2l
dt1

1

2
dS h`l1u0 logl1

h0t

l D ,

so that

m dl2H dt5
1

2 S p dq2H̃ dt

t D1exact form, ~64!

where

H̃52Ht1
h0t

l
. ~65!

We can convert the transformed HamiltonianH̃ to a normal form as
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H̃52l2Fm2
1

2 S h`1
h0

l
2

h0t

l2 D G2

12l2F2
1

2 S h`1
h0

l
2

h0t

l2 D 2

1
h`~u01u`!

2l G1
h0t

l

5
p2

2
1Ṽ~q!, ~66!

where

Ṽ~q!52
l2

2 S h`1
u0

l
2

h0t

l2 D 2

1h`~u01u`!l1
h0t

l

5h`u`eq1h0~u011!te2q2
h`

2

2
e2q2

h0
2t2

2
e22q

1function of t only. ~67!

Thus, apart from the last irrelevant term,Ṽ(q) coincides with the potentialV(q) in the statement
of the theorem. Q.E.D.

G. Status of P II and PI

Let us turn to PII and PI. The Hamiltonian of PI is already of the normal formH5 p2/2
1V(q) with l5q, m5p andH5H. Although this is not the case for PII, one can directly find a
canonical transformation that converts the HamiltonianH to a normal form.

Theorem 6: A PII-version of Manin’s Hamiltonian system is defined by the Hamiltonian

H5
p2

2
2

1

2 S q21
t

2D 2

2aq. ~68!

This system is connected withPII by the canonical transformation,

l5q, m5p1l21
t

2
. ~69!

The canonical coordinates and the Hamiltonians of the two systems obey the equation

m dl2H dt5p dq2H dt1exact form. ~70!

Proof: The foregoing relation between (l,m) and (q,p) implies that

m dl5p dq1S l21
t

2Ddl5p dq2
l

2
dt1dS l3

3
1

tl

2 D ,

so that

m dl2H dt5p dq2H̃ dt1exact form, ~71!

where

1459J. Math. Phys., Vol. 42, No. 3, March 2001 Painlevé–Calogero correspondence revisited
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H̃5H1
l

2

5
1

2 Fm2S l21
t

2D G2

2
1

2 S l21
t

2D 2

2S a1
1

2Dl1
l

2

5
p2

2
2

1

2 S q21
t

2D 2

2aq. ~72!

This is nothing but the Hamiltonian in the statement of the theorem. Q.E.D.

V. MULTI-COMPONENT PAINLEVÉ EQUATIONS

A. Inozemtsev Hamiltonians of higher rank

The rankl version of Inozemtsev’s Hamiltonians havel coordinatesq1 ,...,ql and canonical
conjugate momentap1 ,...,pl . The Hamiltonians of the elliptic, hyperbolic and rational models
take the following form:10,11,14

• Elliptic model:

H5(
j 51

l S pj
2

2
1 (

n50

3

gn
2`~qj1vn!D 1g4

2(
j Þk

„`~qj2qk!1`~qj1qk!….

• Hyperbolic model:

H5(
j 51

l S pj
2

2
1

g0
2

sinh2~qj/2!
1

g1
2

cosh2~qj/2!
1g2

2 cosh~qj!1g3
2 cosh~2qj!D

1g4
2(

jÞk
S 1

sinh2
„~qj2qk!/2…

1
1

sinh2
„~qj1qk!/2…

D .

• Rational model:

H5(
j 51

l S pj
2

2
1g0

2qj
61g1

2qj
41g2

2qj
21g3

2qj
22D 1g4

2(
j Þk

S 1

~qj2qk!
2 1

1

~qj1qk!
2D .

Hereg0 , g1 , g2 , g3 andg4 are coupling constants. The Painleve´–Calogero correspondence for
PIII , PII and PI suggests the existence of further degeneration of these models.

Our goal in this section is to extend the Painleve´–Calogero correspondence to these higher
rank models. Since a complete exposition will become inevitably lengthy, we shall illustrate the
elliptic and hyperbolic models in detail, leaving the other cases rather sketchy. The strategy is as
follows: The point of departure is the Hamiltonian of Inozemtsev’s rankl elliptic model. This
gives rise to a rankl version of Manin’s equation. Starting with this nonautonomous Hamiltonian
system, we seek an analog of the degeneration process for the Painleve´ equations. We can thus
obtain six types of nonautonomous Hamiltonian systems. At each stage of the degeneration pro-
cess, we confirm that the nonautonomous Hamiltonian system on the Calogero side can be
mapped, by a canonical transformation, to a multicomponent analog of the Painleve´ equation of
the corresponding type.

B. Elliptic model and multi-component P VI

We now consider the nonautonomous Hamiltonian system,

2p i
dqj

dt
5

]H
]pj

, 2p i
dpj

dt
52

]H
]qj

, ~73!
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defined by the Hamiltonian of Inozemtsev’s elliptic model. This is a rankl version of Manin’s
equation. This nonautonomous system is known to describe a family of isomonodromic deforma-
tions on the torus.18

An honest generalization of the canonical transformation for the case ofl 51 leads to a
multi-component version of PVI as follows.

Theorem 7: The time-dependent canonical transformation defined by

l j5
`~qj !2e1

e22e1
,

m j5
e22e1

`8~q!
pj1

2p i ~e22e1!2

`8~qj !
2 f t~qj !

1
e22e1

2 S k0

`~qj !2e1
1

k1

`~qj !2e2
1

u21

`~qj !2e3
D , ~74!

and

t5
e32e1

e22e1
. ~75!

maps (73) to the Hamiltonian system,

dl j

dt
5

]H

]m j
,

dm j

dt
52

]H

]l j
, ~76!

with the Hamiltonian

H5(
j 51

l
l j~l j21!~l j2t !

t~ t21! Fm j
22S k0

l j
1

k1

l j21
1

u21

l j2t Dm j1
k

l j~l j21!G
1

g4
2

2t~ t21! (j Þk
Fl j~l j21!~l j2t !1lk~lk21!~lk2t !

8~l j2lk!
2 22~l j1lk!G . ~77!

Proof: The method of proof for the case ofl 51 can be applied to the present case as well,
yielding the equality

(
j 51

l

pj dqj2H dt

2p i
5(

j 51

l

m j dl j2H̃ dt1exact form, ~78!

where

H̃5(
j 51

l
l j~l j21!~l j2t !

t~ t21! Fm j
22S k0

l j
1

k1

l j21
1

u21

l j2t Dm j1
k

l j~l j21!G
1

g4
2

2t~ t21!~e22e1! (j Þk
„`~qj2qk!1`~qj1qk!…. ~79!

What remains is to express the ‘‘two-body potential’’ part in terms ofl j . To this end, let us recall
the addition formula,

`~u2v !1`~u1v !522`~u!22`~v !1
`8~u!21`8~v !2

2„`~u!2`~v !…2
, ~80!
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of the `-function. Applying it to the case where (u,v)5(l j ,lk), and substituting

`~qj !5e11~e22e1!l j ,

`~qk!5e11~e22e1!lk ,

`8~qj !
25

~e22e1!3

4
l j~l j21!~l j2t !,

`8~qk!
25

~e22e1!3

4
lk~lk21!~lk2t !,

we can rewrite the two-body potential terms as

`~qj2qk!1`~qj1qk!522„e11~e22e1!l j…22„e11~e22e1!lk…

1
~e22e1!3

8
•

l j~l j21!~l j2t !1lk~lk21!~lk2t !

„e11~e22e1!l j2e12~e22e1!lk…
2

524e122~e22e1!~l j1lk!

1
e22e1

8
•

l j~l j21!~l j2t !1lk~lk21!~lk2t !

~l j2lk!
2 . ~81!

The first term24e1 is nondynamical, thereby negligible~i.e., can be absorbed by the ‘‘exact
form’’ part!. Removing these terms fromH̃, we obtain the HamiltonianH. Q.E.D.

C. Degeneration of elliptic model to hyperbolic model

The degeneration of the elliptic model is achieved by letting Imt→1`. Like the degeneration
process from PVI to PV, this is a kind of scaling limit, namely, the coupling constantsgn and the
elliptic modulust have to be suitably rescaled. To this end, we have to understand the asymptotic
behavior of the constantse1 , e2 , e3 and the`-function in the limit as Imt→1`. All necessary
data are collected in Appendix B. For instance, the asymptotic expression ofe1 , e2 ande3 imply
that

t511
e32e2

e22e1
51116p2ep i t1O~e2p i t!. ~82!

This is indeed consistent with the scaling rulet511e t̃ in the degeneration process of PVI to PV.
Having these data, we now rescale the coupling constants and the elliptic modulus as

g0
25g̃0

2 , g1
25g̃1

2 , g2
25

g̃2
2

e
1

g̃3
2

e2 , g3
35

g̃3
2

e2 , g4
25g̃4

2, ~83!

and

16ep i t5e t̃ , ~84!

and consider the limit ase→0 while leavingg̃n and t̃ finite. Note that lettinge→0 amounts to
letting Imt→1`.

The asymptotic expression of̀(u) and `(u1vn) in Appendix B shows that the potential
V(q) of the elliptic model behaves as
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V~q!5(
j 51

l S g̃0
2p2

sin2~pqj !
1

g̃1
2p2

cos2~pqj !
1

g̃2
2p2 t̃

2
cos~2pqj !2

g̃3
2p2 t̃ 2

8
cos~4pqj ! D

1g̃4
2(

j Þk
S 1

sin2
„p~qj2qk!…

1
1

sin2
„p~qj1qk!…

D
1function of e and t̃ only1O~e!.

Thus, removing negligible terms, we obtain the following Hamiltonian in the limit

H̃5(
j 51

l S pj
2

2
1

g̃0
2p2

sin2~pqj !
1

g̃1
2p2

cos2~pqj !
1

g̃2
2p2 t̃

2
cos~2pqj !2

g̃3
2p2 t̃ 2

8
cos~4pqj ! D

1g̃4
2(

j Þk
S 1

sin2
„p~qj2qk!…

1
1

sin2
„p~qj1qk!…

D . ~85!

The asymptotic expression oft determines the equation of motion in the limit. In fact, since

dt

dt
5

p

t~ t21!~e22e1!
5

p i

~11e t̃ !~2e t̃ !„2p21O~e!…

and

2p i
d

dt
52p i

dt

dt

d t̃

dt

d

dt
5„2p2 t̃ 1O~e2!…

d

dt
,

we find that the equations of motion take the following form:

2p2 t̃
dqj

d t̃
5

]H̃
]pj

, 2p2 t̃
dpj

d t̃
52

]H̃
]qj

. ~86!

The final step is to rescale the variables and the Hamiltonian as

qj→
qj

2p i
, pj→p iq j , H̃→2p2H̃, ~87!

and to renamet̃ andH̃ to t andH. Let us also define the new constants

a52
g̃0

2

2
, b5

g̃1
2

2
, g52

g̃2
2

2
, d5

g̃3
2

2
, ~88!

which are to be identified with the four parameters of PV. The outcome is the nonautonomous
Hamiltonian system

t
dqj

dt
5

]H
]pj

, t
dpj

dt
52

]H
]qj

, ~89!

with the Hamiltonian
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H5(
j 51

l S pj
2

2
2

a

sinh2~qj /2!
2

b

cosh2~qj /2!
1

gt

2
cosh~qj !1

dt2

8
cosh~2qj ! D

1g4
2(

j Þk
S 1

sinh2
„~qj2qk!/2…

1
1

sinh2
„~qj1qk!/2…

D . ~90!

This gives a rankl version of the nonautonomous Hamiltonian system on the Calogero side of PV.
Note that the Hamiltonian is essentially the same as the Hamiltonian of Inozemtsev’s hyperbolic
model, except that the effective coupling constants are now time-dependent.

Remark:The foregoing prescription of scaling limit of the coupling constants and the elliptic
modulus is reminiscent of ‘‘renormalization’’ in quantum field theories. In this analogy, one can
interpret the equations of motion of the Hamiltonian system as ‘‘renormalization group equa-
tions,’’ in which t̃ plays the role of a ‘‘mass scale’’ parameter.

D. Canonical transformation to multi-component P V

Again, an honest generalization of the canonical transformation for the case ofl 51 leads to
a multi-component version of PV.

Theorem 8: The time-dependent canonical transformation defined by

Al j52coth~qj /2!,
~91!

m j5
pj

2Al j~l j21!
1

1

2 S k0

l j
1

u1

l j21
2

h1t

~l j21!2D ,

maps (89) to the Hamiltonian system,

dl j

dt
5

]H

]m j
,

dm j

dt
52

]H

]l j
, ~92!

with the Hamiltonian

H5(
j 51

l
l j~l j21!2

t Fm j
22S k0

l j
1

u1

l j21
2

h1t

~l j21!2Dm j1
k

l j~l j21!G
1

g4
2

2t (j Þk

2~l j21!~lk21!~l j1lk!

~l j2lk!
2 . ~93!

Proof: The method of proof for the case ofl 51 can be used as it is. The outcome is the
equality

(
j 51

l

pj dqj2H dt

t
52S (

j 51

l

m j dl j2H dtD 1exact form, ~94!

where

H5(
j 51

l
l j~l j21!2

t Fm j
22S k0

l j
1

u1

l j21
2

h1t

~l j21!2Dm j1
k

l j~l j21!G
1

g4
2

2t (j Þk
S 1

sinh2
„~qj2qk!/2…

1
1

sinh2
„~qj1qk!/2…

D . ~95!

The two-body potential part can be rewritten by use of the identity
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1

sinh2~u2v !
1

1

sinh2~u1v !
54

cosh~2u!cosh~2v !21

„cosh~2u!2cosh~2v !…2
. ~96!

Substitutingu5qj /2, v5qk/2, and also using the equality cosh(qj)5(lj11)/(lj21), we find that

1

sinh2
„~qj2qk!/2…

1
1

sinh2
„~qj1qk!/2…

5
2~l j21!~lk21!~l j1lk!

~l j2lk!
2 , ~97!

which gives the two-body potential term inH. Q.E.D.

E. Other models

The degeneration process can be further continued, and leads to four more models that cor-
respond to a multi-component version of PIV, PIII , PII and PI. Since the details of derivation are
more or less parallel, we show the final results only. The Hamiltonian of each model, like those in
the foregoing cases, becomes a sum ofl copies of the one-component Hamiltonian and Calogero-
like two-body potential terms.

1. Rational model and multi-component PIV

This model can be derived from the hyperbolic model by degeneration. The degeneration
process consists of putting the variables and the parameters as

t5112e t̃ , qj5p i 1e1/2qj̃ , pj5
pj̃

2e1/2, ~98!

and

a5
1

8e4 , b5
b̃

4
, g5

1

4e4 , d52
1

8e4 1
ã

2e2 , ~99!

and lettinge→0 while leaving the ‘‘renormalized’’ quantitiest̃ , etc. finite.
The equations of motion of this model takes the canonical form

dqj

dt
5

]H
]pj

,
dpj

dt
52

]H
]qj

, ~100!

with the Hamiltonian

H5(
j 51

l Fpj
2

2
2

1

2 S qj

2 D 6

22tS qj

2 D 4

22~ t22a!S qj

2 D 2

1bS qj

2 D 22G
1g4

2(
j Þk

S 1

~qj2qk!
2 1

1

~qj1qk!
2D . ~101!

The canonical transformation defined by

l j5S qj

2 D 2

, m j5
pj

4Al j

1
1

4 S l j12t1
2k0

l j
D , ~102!

maps the foregoing nonautonomous system to the Hamiltonian system,

dl j

dt
5

]H

]m j
,

dm j

dt
52

]H

]l j
, ~103!
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Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



with the Hamiltonian

H5(
j 51

l

2l j
2Fm j

22S l j

2
1t1

k0

l Dm j1
u0

2 G1
g4

2

4 (
j Þk

2~l j1lk!

~l j2lk!
2 . ~104!

2. Exponential-hyperbolic model and multi-component PIII

This model, too, can be derived from the hyperbolic model by degeneration. This degenera-
tion is achieved by the putting the variables and the parameters as

qj52q̃ j2 log
e

4
, pj52 p̃ j , ~105!

and

a5
ã

4e
1

g̃

8e2 , b52
g̃

8e2 , g5
b̃e

4
, d5

d̃e2

8
, ~106!

and lettinge→0.
The equations of motion of this model takes the canonical form

t
dqj

dt
5

]H
]pj

, t
dpj

dt
52

]H
]qj

, ~107!

with the Hamiltonian

H5(
j 51

l S pj
2

2
2

a

4
eqj1

bt

4
e2qj2

g

8
e2qj1

dt2

8
e22qj D

1g4
2(

j Þk

1

sinh2
„~qj2qk!/2…

. ~108!

The canonical transformation defined by

l j5eqj , m j5
pj

2l j
1

1

2 S h`1
u0

l j
2

h0t

l j
2 D , ~109!

maps the foregoing nonautonomous system to the Hamiltonian system,

dl j

dt
5

]H

]m j
,

dm j

dt
52

]H

]l j
, ~110!

with the Hamiltonian

H5(
j 51

l
l j

2

t Fm j
22S h`1

u0

l j
2

h0t

l j
2 Dm j1

h`~u01u`!

2l j
G1

g4
2

2t (j Þk

4l jlk

~l j2lk!
2 . ~111!

3. Second rational model and multi-component PII

This model can be derived fromboth the rational model and the exponential-hyperbolic model
by degeneration. For the degeneration from the rational model, we write the variables and the
parameters as
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t5
211421/3e4 t̃

e
,

qj

2
5

11221/3e2q̃ j

e3/2 , pj5
42/3p̃ j

e1/2 , ~112!

and

a522ã2
1

2e6 , b52
1

2e12, ~113!

and lete→0. The degeneration from the exponential-hyperbolic model is similarly achieved by
putting

t5112e2 t̃ , qj52eq̃ j , pj5
p̃ j

e
, ~114!

and

a52
1

2e6 , b5
114e3ã

2e6 , g5
1

4e6 , d52
1

4e6 , ~115!

and again lettinge→0.
The equations of motion of this model takes the canonical form

dqj

dt
5

]H
]pj

,
dpj

dt
52

]H
]qj

, ~116!

with the Hamiltonian

H5(
j 51

l Fpj
2

2
2

1

2 S qj
21

t

2D 2

2aqj G1g4
2(

j Þk

1

~qj2qk!
2 . ~117!

The canonical transformation defined by

l j5qj , m j5pj1l j
21

t

2
, ~118!

maps the foregoing nonautonomous system to the Hamiltonian system,

dl j

dt
5

]H

]m j
,

dm j

dt
52

]H

]l j
, ~119!

with the Hamiltonian

H5(
j 51

l Fm j
2

2
2S l j

21
t

2Dm j2S a1
1

2Dl j G1g4
2(

j Þk

1

~l j2lk!
2 . ~120!

4. Multi-component PI

This model can be derived from the second rational model, and takes thesameform on both
the Painleve´ and Calogero sides. The degeneration process is achieved by putting

t5
261e12t̃

e10 , qj5
11e6q̃ j

e5 , pj5
p̃ j

e
, a54e15, ~121!

and lettinge→0. The equations of motion takes the canonical form
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dqj

dt
5

]H

]pj
,

dpj

dt
52

]H

]qj
, ~122!

with the Hamiltonian

H5(
j 51

l S pj
2

2
22qj

32tqj D 1g4
2(

j Þk

1

~qj2qk!
2 . ~123!

VI. CONCLUDING REMARKS

We have shown that the Painleve´–Calogero correspondence persists for all the six Painleve´
equations and their multi-component generalizations. The Calogero side of this correspondence is
a nonautonomous version of Inozemtsev’s elliptic model and its various degenerations. Those for
PV and PIV are a nonautonomous version of Inozemtsev’s hyperbolic and rational models. The
others corresponding to PIII , PII and PI are further degenerations of the hyperbolic and rational
models. The pattern of degeneration on the Calogero side repeats the degeneration diagram,

PVI → PV → PIV

↓ ↓
PIII → PII → PI

of the Painleve´ equations.
This picture applies to the autonomous systems as well. Actually, such degeneration relations

in the autonomous case have been more or less well known to experts of Calogero–Moser systems
~see the Introduction of van Diejen’s paper16!. The autonomous systems are defined by a Hamil-
tonian of the same form with the time-dependent coupling constants being replaced by absolute
constants~except for the elliptic model, in which case an independent time variable is introduced!.
Those in the position of the first row of the degeneration diagram are, of course, Inozemtsev’s
elliptic, hyperbolic and rational models~see Sec. V!. Those in the position of PIII and PII are
defined by the following Hamiltonians:

• Exponential-hyperbolic model:

H5(
j 51

l S pj
2

2
1g0

2eqj1g1
2e2qj1g2

2e2qj1g3
2e22qj D 1g4

2(
j Þk

1

sinh2
„~qj2qk!/2…

.

• Second rational model:

H5(
j 51

l S pj
2

2
1g0

2qj
41g1

2qj
31g2

2qj
21g3

2qj D 1g4
2(

j Þk

1

~qj2qk!
2 .

The Hamiltonian in the position of PI is redundant in the automonous case, because it is a
specialization, rather than a degeneration, of the last Hamiltonian.

Note that the Hamiltonian of the second rational model is aquartic perturbation of the usual
(Al type! rational Calogero Hamiltonian. According to the recent work of Caseiro, Franc¸oise and
Sasaki,19 such a quartic~integrable! perturbation always exists for any rational Calogero–Moser
system. Inozemtsev’s rational model, which is asextic perturbation of theDl type rational
Calogero–Moser system, might admit a similar interpretation.

Back to the Painleve´ equations, the extended Painleve´–Calogero correspondence raises many
interesting problems. A central issue will be to find an isomonodromic description of the multi-
component Painleve´ equations. If such an isomonodromic description does exist, it should be
related to a new geometric structure.
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APPENDIX A: PROOF OF „42…

Let us introduce the two auxiliary functions:

g~u!5
f t~u!

f 8~u!
, h~u!5

q8~u1v1!

q~u1v1!
, ~A1!

associated with the function

f ~u!5
`~u!2e1

e22e1
~A2!

and the standard elliptic theta function,

q~u!5 (
n52`

`

exp~p i tn212p inu!. ~A3!

Lemma 1: g(u) is a meromorphic function on the u-plane with additive quasi-periodicity,

g~u11!5g~u!, g~u1t!5g~u!21. ~A4!

All poles are of the first order and contained in the latticev31Z1tZ. Furthermore, g(u) has
zeros at u50 and u5v1 .

Proof: Since f (u) is a doubly periodic function with primitive periods 1 andt, f 8(u) and
f t(u) transform as

f 8~u11!5 f 8~u!, f 8~u1t!5 f 8~u!,

f t~u11!5 f t~u!, f t~u1t!5 f t~u!2 f 8~u!,

under the shift by 1 andt. This implies the additive quasi-periodicity ofg(u). Furthermore, by the
construction,g(u) is a meromorphic function on theu-plane, and all possible poles are of the first
order and located at the points ofvk1Z1tZ. Let us examine the behavior ofg(u) at the
representative pointsu5v0 ,v1 ,2v2 ,v3 :

• As u→v050,

f~u!5
1

~e22e1!u
21O~1!,

thereby

f8~u!52
2

~e22e1!u
31O~1!, ft~u!52

e2,t2e1,t

~e22e1!2u2 1O~1!,

so thatg(u) has rather a zero atu50:
g~u!5O~u!. ~A5!

• As u→v15 1
2,

f~u!5
1

e22e1
~`~v1!2e11`8~v1!~u2v1!1O„~u2v1!2

…!
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5O„~u2v1!2
…,

thereby
f 8~u!5O~u2v1!, f t~u!5O„~u2v1!2

…,
so thatg(u) has another zero atu5v1 :

g~u!5O~u2v1!. ~A6!

• As u→2v25 1
21 t/2,

f~u!5
1

e22e1
~`~2v2!2e11`8~2v2!~u1v2!1O„~u1v2!2

…!

5O„~u1v2!2
…,

thereby
f 8~u!5O~u1v2!, f t~u!5O~u1v2!,

so thatg(u) behaves as
g~u!5O~1!. ~A7!

• As u→v35t/2,

f~u!5
1

e22e1
~`~v3!2e11`8~v3!~u2v3!1O„~u2v3!2

…!

5t1O„~u2v3!2
…,

thereby

f 8~u!5O~u2v3!, f t~u!5O~1!,

so thatg(u) turns out to have a pole of the first order atu5v3 :

g~u!50„~u2v3!21
…. ~A8!

The behavior ofg(u) at the other points ofvn1Z1tZ can be deduced from these results by the
additive quasi-periodicity ofg(u). Q.E.D.

Lemma 2: h(u) is a meromorphic function on the u-plane with additive quasi-periodicity,

h~u11!5h~u!, h~u1t!5h~u!22p i . ~A9!

All poles are of the first order and contained in the latticev31Z1tZ. Furthermore, h(u) has
zeros at u50 and u5v1 .

Proof: Let us recall the fundamental properties ofq(u):

• q(u) is an entire function on theu-plane with zeros of the first order at the lattice points
v21m1nt (m,nPZ).

• q(u) is quasi-periodic,
q~u11!5q~u!, q~u1t!5e2pit22piuq~u!.

• u(u) andq(u11/2) are even under the reflectionu→2u.

All the properties ofh(u) in the statement of the lemma are an immediate consequence of
these properties ofq(u). Q.E.D.

Lemma 3: The function f(u) satisfies the equation

2p i
f t~u!

f 8~u!
5

q8~u1v1!

q~u1v1!
, ~A10!

where the prime stands for]/]u.
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Proof: The foregoing properties ofg(u) andh(u) imply the following:

• 2p ig(u)2h(u) is a doubly periodic meromorphic function with primitive period 1 andt.

• All poles of 2p ig(u)2h(u) are of the first order and contained in the latticev31Z1tZ.

• 2p ig(u)2h(u) has zeros atu50 andu5v1 .

The first two properties imply that 2p ig(u)2h(u) is a constant. By the last one, this constant
has to be zero. We thus find that 2p ig(u)2h(u)50. Q.E.D.

Lemma 4:q(u) satisfies the equation

„logq~u1v1!…952`~u1v3!1function of t only. ~A11!

Proof: The aforementioned complex analytic properties ofq(u) imply the following:

• „logq(u1v1)…9 is a doubly periodic meromorphic function with primitive period 1 andt.

• All poles of this meromorphic function are contained in the latticev31Z1tZ.

• As u→2v3 , this function behaves as

„logq~u1v1!…952
1

~u1v3!2 1O~1!.

The function2`(u1v3), too, has these properties. Accordingly, their difference is a constant
function on theu-plane, namely, a function oft only. Q.E.D.

We now return to the proof of~42!. By the third lemma, we have the identity

2p i
f t~u!

f 8~u!
du5

q8~u1v1!

q~u1v1!
du5

dq~u1v1!

q~u1v1!
2

]q~u1v1!/]t

q~u1v1!
dt. ~A12!

On the other hand, the well known ‘‘heat equation,’’

4p i
]q~u!

]t
5q~u!9, ~A13!

implies that

]q~u1v1!/]t

q~u1v1!
5

1

4p

q~u1v1!9

q~u1v2!
5

1

4p i F „logq~u1v1!…91S q8~u1v1!

q~u1v1! D 2G .
By the third and fourth lemmas, the last line can be rewritten as

1

4p i F2`~u1v3!1S 2p i
f t~u!

f 8~u! D
2G1function of t only,

so that

2p i
f t~u!

f 8~u!
du5

1

4p i F`~u1v3!2S 2p i
f t~u!

f 8~u! D
2Gdt1exact form. ~A14!

Substitutingu5q gives ~42!.

APPENDIX B: ASYMPTOTICS OF ELLIPTIC FUNCTIONS

The asymptotic behavior of thè-function `(u), the shifted`-functions`(u1vk) and the
constantsek5`(vk), in the limit as Imt→1`, can be deduced from the well known formula
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`~u!5 (
n52`

`
p2

sin2
„p~u1nt!…

2
p2

3
2 (

n51

`
2p2

sin2~pnt!
. ~B1!

Let us first consider the asymptotic behavior of`(u) itself. The constant (n50) term in the
first sum is of order 1 and then-th term is of ordere2np i t. Similarly, then-th term in the second
sum is of ordere2np i t. Therefore

`~u!5
p2

sin2~pu!
2

p2

3
1O~e2p i t!. ~B2!

A similar estimate leads to the following asymptotic expression for the shifted`-functions:

`~u1v1!5
p2

cos2~pu!
2

p2

3
1O~e2p i t!,

`~u1v2!52
p2

3
18p2 cos~2pu!ep i t1O~e2p i t!, ~B3!

`~u1v3!52
p2

3
28p2 cos~2pu!e2p i t1O~e2p i t!.

In fact, the degeneration process of the elliptic model requires us to know the asymptotic expres-
sion of `(u1v2)1`(u1v3) to the ordere2p i t. This can be achieved by the following calcula-
tions:

`~u1v2!1`~u1v3!5 (
n52`

`
p2

cos2S u1
t

2
1nt D sin2S u1

t

2
1nt D 2

2p2

3
2 (

n51

`
4p2

sin2~pnt!

52
2p2

3
232p2 cos~2pu!e2p i t116p2e2p i t1O~e3p i t!. ~B4!

We now consider the constantsek . For instance,e1 can be written as

e15 (
n52`

`
p2

cos2~pnt!
2

p2

3
2 (

n51

`
2p2

sin2~pnt!

5
2

3
p21 (

n51

`
2p2

cos2~pnt!
2 (

n51

`
2p2

sin2~pnt!
. ~B5!

The constant 2p2/3 becomes the leading term; the leading (n51) terms of the last two series give
the next-leading term of the ordere2p i t. e2 ande3 can be similarly analyzed. Thus the following
asymptotic formulas are obtained:

e15
2p2

3
116p2e2p i t1O~e4p i t!,

e252
p2

3
18p2ep i t1O~e2p i t!, ~B6!

e352
p2

3
28p2ep i t1O~e2p i t!.

In particular,e22e1→2p2, as expected.
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