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Polymer confinement in undulated membrane boxes and tubes

Tomonari Dotera
Saitama Study Center, the University of the Air, 682-2 Nishiki-cho, Omiya 331-0851, Japan

Yasuo Y. Suzuki
NTT Basic Research Laboratories, Atsugi 243-0198, Japan
(Received 30 May 2000

We consider quantum particle or Gaussian polymer confinement between two surfaces and in cylinders with
sinusoidal undulations. In terms of the variational method, we show that the quantum-mechanical wave equa-
tions have lower ground-state energy in these geometries under long wavelength undulations, where bulges are
formed and waves are localized in the bulges. It turns out correspondingly that Gaussian polymer chains in
undulated boxes or tubes acquire higher entropy than in exactly flat or straight ones. These phenomena are
explained by the uncertainty principle for quantum particles, and pglamer confinement rulr Gaussian
polymers. If membrane boxes or tubes are flexible, polymer-induced undulation instability is suggested. We
find that the wavelength of undulations at the threshold of instability for a membrane box is almost twice the
distance between two walls of the box. Surprisingly, we find that the instability for tubes begins with a shorter
wavelength compared to the “Rayleigh” area-minimizing instability.

PACS numbds): 61.25.Hq, 87.16.Dg, 47.20.Ma

[. INTRODUCTION are less confined in the transverse direction and localized in
the bulges, which may decrease the total energy because of
Recently, much attention has been paid to the structuréhe uncertainty principle. In the same way, according to the
and dynamics of polymer chains restricted by two surfacespolymer confinement rule, polymer chains may favor the un-
or restricted in cylindrical porelsl—4]. These conditions are dulations of tubes.
relevant to a broad class of applications and biological func- In Sec. II, we first describe the polymer confinement rule,
tions, such as filtration, gel permeation chromatography, hefn intuitive argument for why a polymer in a confined space
erogeneous catalysis, and oil recuperation. loses entropy. This approach is microscopic, which is differ-
When a polymer is confined to a smaller space, the en€nt from the well-known scaling argumeft]. Second, we
tropy loss of a chain is higher. Here we call this simple ruleProvide the calcul_atlon prpcedure _for Gaussian chains using
the polymer confinement ruldt has been employed casually duantum mechanics that is given in Rgf]. In Sec. Ill, we
in the literature, however, it has a close connection with thetlucidate the effect of undulations using the variational
uncertainty principle in quantum mechanics. Indeed, on dnethod. We show that the wave equations have lower energy
theoretical side, quantum-mechanical wave equations hawhder long wavelength undulations. Correspondingly, long
been applied to elucidate the behavior of the Gaussian chairfg@ussian chains acquire higher entropy with undulating con-
when the radius of gyration of a chain is much larger thans;ramts_than with exactly flat or straight ones. For the Fhree-
these structures. Therefore, the solutions of wave equatiorfimensional case, we compare the undulation effect with the
in some geometries are useful both for mesoscopic quantuf@ayleigh area-minimizing instability7,8]. In the final sec-
physics and polymer physics. tion, we discuss implications of polymer-mediated entropic
The most prominent recent example is the calculation foforce for membrane boxes and tubes.
curved geometries. Goldstone and Jafighave shown that
the bend of two-dimensional2D) and three-dimensional Il. CORRESPONDENCE TO QUANTUM MECHANICS
tubes with a constant cross section lowers the ground-state
energy of a quantum particle constrained in the tubes. Cor-
respondingly, the cylindrical bend of two parallel walED The entropy reduction of a confined random walkMof
tube with a constant width reduces the entropy Ig6$  steps between two parallel flat walldistanceAx) can be
Yaman et al. have shown in their series of works that en- derived intuitively through the following microscopic rea-
tropic interactions between curved membranes and macrsoning. The number of steps that span the distance between
molecules such as flexible chain molecules and rigid rod¢he walls is described bgx~IN’*2 and the gyration radius
may change the bare elastic constants of single membranésr the end-to-end distancé a free spac®y(>AXx) is ex-
and bilayerg7]. pressed aR,~INY2 wherel is a step length. Here; im-
In this paper, we focus on tubes in two and three dimenplies that the numerical factors have been ignored.
sions with sinusoidal undulations keeping tube volumes con- Steps touching the walls should return. This requirement
stant. This lowers the ground-state energy of quantum paiis the source of the entropy reductif®. The chain reflects
ticles, and thus raises the entropy of Gaussian polymeoff the walls aboutN/N’ times. Letz be the number of
chains. Corrugated walls induce additional kinetic energynearest positions on a lattice for a step. Then the nuiber
along the walls. However, if bulges are formed, the wavef total configurations of the confined chain is represented by

A. The polymer confinement rule
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W~ ZN NN (Z/2)NIN'— ZN(1/2) NN, (1) Ea

G(r,r’,N)f~v\If’1‘(r’)\P1(r)exr{— N ) (12

where the combination factor has been omitted. Then the

entropy loss due to the walls for the Gaussian chaid $ The partition function is a sum over all configurations:
=kgN/N'In 2~kgR3/(AX)?. We write

AX)2A S~kgR? 2 Z—ifdd’G "N 13
(X) S’\’Bga () _V rar (r,r, ) ( )

which corresponds to the uncertainty principle . . .
P yP P Integrating out all uninteresting degrees of freedom, we ob-

(AX)2AE~(AX)2(Ap)%/m~h2/m, (3) tain the main term in the associated entropy change,

whereE, x, p, andm are the energy, position, momentum and NI%E;
mass of a quantum particle, ahds the Planck constant. On S=kgInZ~—kg 6
this basis, one can say that a polymer tends to escape from

narrower spaces into wider or open spaces; in other words, For a Gaussian chain between two flat walls, the discrete
the polymer tends to localize in wider spaces of the confinegart of the eigenvalues of E(7) is

geometries, the same as with quantum particles.

(14)

B. Analytical theory for Gaussian chains E,= A2 n=123.... (15

For a random walk, we consider the total number of paths
that connect andr’ with N stepszNG(r’,r,N), wherezis  To obtain the main term, we ignore the continuous part of
the number of neighboring sites. The boundary condition isthe eigenvalues associated with two directions along walls.
Then Eq.(11) is fulfilled. Thus, we have

G(r',r,00=6; . (4)
2 2
It is easy to shows(r’,r,N) is the solution of the diffusion S~—k m Ry (16)
equation %6 (Ax)?’
|2 .. . .

—— —_V2|G(r',r,N)=0, 5) This is consistent with Eq2).

N 6
wherel is the lattice constant, or the step length. Il VARIATIONAL PROOFS

With the eigenfunction expansion Let C be a tube in two dimension®ox) or in three di-
NI2E mensions. We will consider the wave equation
’ —13 * (! _ n
then, the problem reduces to the wave equation in C subjected to the Dirichlet condition on wallg(dC)
) =0. The following calculations are applicable to both quan-
VAL (r) +EqWy(r)=0 (7)  tum particles and Gaussian polymers.
We define

with the boundary conditions. As is known, the eigenfunc-
tions satisfy the orthogonality and completeness conditions

-1
a[w]z( | dDrwvzw) ( | dDrwz) . as
C C
f drw (N Wa(r)= dmn, (tS)
whereD is the dimension of the system. Our aim is to show

; VR (r)Wa(r)=a(r—r’). €) Alyl=oly]-00>0, (19
whereo corresponds to the ground state for the exactly flat

Since the continuous limit is or straight case. Since perturbations are sinusoidal, the inte-

lims,,  /13=8(r—r"), (10) grals can be limited to a single wavelength, that of the per-
o turbations. We compute a critical wavelength, down to
which A[ ] is positive. Our evaluation gives an upper bound
Eq. (6) satisfies the boundary condition Ed). for the critical wavelength, because we employ a trial func-
For excited statesi1), when an equality tion for ¢ in Eq. (18).
2
Ry(Ei—Ey)>1 (11 A. In two dimensions

is satisfied, the situation is called ground-state dominance, As shown in Fig. 1, a box is defined between two parallel
which is our interest in this paper. Then we have lines described by
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y 1f Py wP+6 €a’cog ax Lt Sesina?
— —=— : + inax
vy 24 1+esmax( € sinax)
X
52 5e%a?
— ?+5 €?a’ si ax+ cos ax
5%€%a? _ 35%€%a?
FIG. 1. Undulated box in two dimensions:is the period of the + 2 cos axsinax— 4 sin® ax
undulation, andl is the mean distance between walls.
(ea’+258ea’)
— —— sinax. (28

4

y+(X)=*z(1l+esinax), 0<e<l (20

I\JIO_

Using formulas given in Appendix A, we obtain
with a width undulation functionw(x):

. 2( 1
w(x)=d(1+ esinax), (21 o __T —25A+ 5%A |, 29
yoyl ¥] e (29)
wherea=27/\, \ is the period of the undulation, artis
the mean distance. Note that the volume is kept constant. €2 €2
We will prove, with the variational method, that long-  yo,[¢]=—a?BD—25a? Z_CD) - &%a? - +CDJ,
wave undulation lowers the total energy. Choose a candidate (30)
function with a variational constarit
whereo| ¢]= o[ ]+ o,[ ], and where
P(X,y)= co{ )(1+ desinax), 0s=éd<lle. (22
A 1 1- € 3e* 5é° 31
5>0 implies localization at bulges. The denominator of Eq. T h-e 278 Tt (3)
(18) is
2 4 6
N2 wi2 R e S A
—\/2 —w/2
2 4 6
where € € €
i C_B_?_§+1_6+”" (33
=1+| 6+ —|€>>0. (24
7 2 m+6
D= 1 (34)
It is elementary to calculate
Fan 2 7y For e>0, we evaluate the deviation[ 4] for og=
2T (_) cos(— (1+ e sinax), (25)  —m?/d? To showA[y] is positive, we write it as
ay? w W
» y 2 A= T A~ T amp
W T W T Y = — A— —
— w—zysin( y) 27r—ysm< y) d2 a?
X w w

+26 >

7T2 62 772
—3<A+-—)——3(—4CD+6%
(1+ desinax) d \

w'\? my
ww— y2co W

71_2 2 71_2
wo -6 2(A——J+——MCD+2¥) (35
+28eam—;y sin —|cosax d 2] \?
w? w
wy From this, it easy to show that there exisisthat makes
— Sea? cos(W sinax. (26)  A[ 4] positive in the long-wave undulation limik—o; &
=1 for instance. Therefore, the ground-state energy should
. . . be lower than that in the flat plane case. Notice that as is seen
Then, a brief calculation yields in Eq. (29), the decrease in energyA appears in the trans-
2 2 . 2 verse direction.
y¢3_lﬂ:_ W_M, 27) In order to estimate the critical wavelengiy, an ap-

2d? 1l+esinax proximation up to ordeg? is
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Now, we will prove that a long-wave undulation lowers
the total energy with the variational method. Choose a trial
function with a variational constard:

ar
P(r,z)=1J, R (1+ Sesinaz), 0sd6<lle, (42
FIG. 2. Undulated tube in three dimensionsis the period of
the undulation. whereJy(r) is the zeroth Bessel function:
5 > 772 772 772 5 ar al
(yle?)A[ p]l=—26 F +20 g—F d<Jg R 1 dJy R o\2 [ ar
dr? r dr R R
™ T 36
242 A\ (38 and wherea=2.40483 is the smallest zero 3f(x). The

denominator of Eq(18) is
Maximizing A[ ] by changing the variational constaat

e _ A2 R
we compute the critical wavelength frof ¢s]=0. Thus, f dzf dr2mr y2= IRy, (44
\/471-27 12 —\/2 0
\o 3tNz 13 where 8=J3(a) and
—_—=| —F =2.014. (37)
d 2
L . . , y=1+ E(52+45+1)62+ §5254 (45)
The critical wavelength is about two times the width of the 2 8 '

box, implying that the bulge is at least the size of the width
between walls. It is a quite reasonable value, because, in It is elementary to calculate
terms of quantum mechanics, if the undulation is shorter than

Ao, then the kinetic energy along walls will be higher than Py 1y a\? [ar )
the confinement energy. 2 +t oo =R Jo| g|(1+desinaz), (46
B. In three dimensions 72 R (ar R'2 o
It was shown by Plateau, later pursued by Rayleigh, then —— = —aQFJo R +a¥r\]0 R

known as the Rayleigh instability, that the undulation of a

tube with wavelength exceeding its circumferences reduces R'\? r

the surface area. Therefore, it is interesting to compare the _( ) r2J0<—

polymer-mediated instability and the Rayleigh instability. R
Consider a tube of unperturbed radiRg and an undula-

‘R

(1+ desinaz)

. . . . R’ ar
tion function (Fig. 2): —2a55a—2rJ6(ﬁ cosaz— deady| = | sinaz,
R(z)=R.(1+e€sinaz), 0<e<l1, (39
(47)
wherea=2mx/\, andR, is determined by the constant vol-
ume condition of the tube. Thus, where, Jy(x)=dJo(x)/dx, R’'=dR(z)/dz, and R’
=d?R(z)/dZ.
RZ=Rj(1+€/2) L. (39 Using the calculation in Appendix B, we then obtain
In order to remind readers of the Rayleigh instability, we a?(2+ 52€?)
calculate the surface area of the tube given by yol]=— T
C
o dR)? 2 2 2 2
N — et 4+ 5°€” 13+
A(e,)\) 27TJO R 1+ dZ) dz (40) _az @ 24 52+ + @ 5264
6 2 24
We expand the square root for small perturbations and use (48

Eq. (39. The area is
For e>0, we evaluate\[ /] for op=— a?/R5=—b?.

(27Ro)?
%—1)1- (41 yAL]

E2

62

1+ —

A(€;\)~27Ro| 1+

2

—b?e? 2(1 13+ a2 )
+ €

+ 2
8 2" g

Therefore, if the wavelength is greater than the circumfer-
ence of thg tube, the area is less than that of the unperturbed +(2b%—a?)6—a?
perfect cylinder.

4+a?
5

(49
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An approximation up tae? is polymers. It is quite remarkable that the discrimination point
of softening or hardeningnstabilizing or stabilizingis de-
vA[ ] a® 4+ a? termined by the distance between membranes.

LA 2 2_ .2y s_ A2
2 25+(2b a“)é—a

6 (50) One should be careful when interpreting our results. First,
because of the volume preserving condition, the undulation

Maximizing A[ ] by varying 8, we calculate the critical is not a simple expansion of membrane boxes or tubes by the

wavelength fromA[]=0. Thus, we have therm_al motion of polymers. Second, the calculation of wave
equations does not correspond to the case when the wave-

s , , 1t a? length of undulations is longer than confined polymer sizes

4a’X" = 4a’x = —5—=0, (51)  in boxes or tubes.
The polymer-mediated entropic force without undulations
where is proportional tad 3, whered is the distance between walls,

which decays slower than Van der Waals attractive interac-

N b tions. This force is something like the excluded volume in-

X= 27R, T aa (52 teractions of multimembranes systems known as the Helflich

repulsive interaction. Finally, the polymer confinement rule
is the ratio of the critical wavelength to that of the Rayleighfor excluded volume chains is modified as\x)*°AS
instability. Then the minimunxy,>0 is ~kBRS’3. We expect that the same entropic effect will exist
for excluded volume chains.

4+ a?\ V2
1+
3 APPENDIX A

Xo=\ ———F— =0.493. (53
2a To tackle the integration of Eq$27) and(28), we define

. . . anintegral:
The critical wavelength is shorter than that of the Rayleigh

instability.

mla  f(x)dx

_mal+esinax’ (A1)

f —
< (X)> 2
IV. DISCUSSION

We have shown that quantum-mechanical particles con'Z:"y using a formula

fined in undulated boxes or tubes have lower energy, when X
the wavelength is greater than certain values, comparable to tani +e
the width between walls or the radius of tubes. We have dx - 2 tan 1
explained that the effect can easily be interpreted by the un- l1+esinx (1—¢2 J1-—¢€®
certainty principle. Quantum-mechanical calculations imme-
diately imply that long Gaussian chains in undulated boxegve have
or tubes acquire higher entropy than in exactly flat or straight
ones. Furthermore, it can be explained by the polymer con-
finement rule established in this paper, which is quite analo- (1= Ji-é&
gous to the uncertainty principle.

This polymer-mediated entropic force may play an impor-yence, it yields
tant role in a number of systems: polymers in cell mem-
branes, vesicles, microemulsions, and polymers confined in (sinax)=—Ale, (A4)
lamellar or cylindrical phases of surfactant and homopoly-
mers blending into those of block copolymer systems. For (sin2 ax>=A/52, (AB)
instance, deformable flat membrane boxes with constant
width d containing the Gaussian chairR£d) are unstable (cog ax)=B/€?, (A6)
against the undulations. In the same way, cylindrical tubes
with radiusR containing the Gaussian chainB$R) are (cog axsinax)=—C/ €, (A7)
unstable against the undulations. From E&$) and (50), it
is easy to see that the entropy gain increases with increasing (cog axsirf ax)=C/e*, (A8)
undulation amplitude. Therefore, the undulation amplitude
will grow until it is balanced by the elastic restoring force of whereA, B, andC are defined in Eq9.31)—(33).
the membrane, or until the membrane ruptures. In addition,
the critical wavelength is shorter than that of the Rayleigh APPENDIX B
area-minimizing instability; the polymer-mediated interac- ) . ) .
tion may trigger the undulation instability. In this appendix, we provide some integrals of the Bessel

When the bare elastic modulus of a membrane is nofunctions. By usingly(x) = —J1(x) and[xJy(x)]" =xJo(X),
small, for long wavelength undulations, the effect softens thét is easy to verify the following integrals:
surface tension of the membrane box. On the other hand, for 2
short wavelength undulations, the effect hardens the surface 2 |12 2
tension because of the reduction of the entropy of confined f drrJO(cr)—[ 2 [Jg(er)+Ja(en]), (B1)

t

(A2)

(A3)
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) N L R ar\ R’

J drr<Jg(cr)Ji(er)= _Z_CJl(Cr) , (B2) fo drrdg RI- 32 (B4)

342 _ 1 4492 4 2 2| 92 3
f drr Jo(cr)—g redolcr)+{r —;r Ji(cr) JRdrrZJ (a_r)Jr(a_r>:_R_'8 @9

0 O\ R/JOI R 2a
2 3
+Er Jo(cr)Jdq(cr)|. (B3)

ar\ R*B 2
_ f drr%é(—)-— 1——). (B6)

Then, we obtain R 6 o?
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