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Polymer confinement in undulated membrane boxes and tubes

Tomonari Dotera
Saitama Study Center, the University of the Air, 682-2 Nishiki-cho, Omiya 331-0851, Japan

Yasuo Y. Suzuki
NTT Basic Research Laboratories, Atsugi 243-0198, Japan

~Received 30 May 2000!

We consider quantum particle or Gaussian polymer confinement between two surfaces and in cylinders with
sinusoidal undulations. In terms of the variational method, we show that the quantum-mechanical wave equa-
tions have lower ground-state energy in these geometries under long wavelength undulations, where bulges are
formed and waves are localized in the bulges. It turns out correspondingly that Gaussian polymer chains in
undulated boxes or tubes acquire higher entropy than in exactly flat or straight ones. These phenomena are
explained by the uncertainty principle for quantum particles, and by apolymer confinement rulefor Gaussian
polymers. If membrane boxes or tubes are flexible, polymer-induced undulation instability is suggested. We
find that the wavelength of undulations at the threshold of instability for a membrane box is almost twice the
distance between two walls of the box. Surprisingly, we find that the instability for tubes begins with a shorter
wavelength compared to the ‘‘Rayleigh’’ area-minimizing instability.

PACS number~s!: 61.25.Hq, 87.16.Dg, 47.20.Ma

I. INTRODUCTION

Recently, much attention has been paid to the structure
and dynamics of polymer chains restricted by two surfaces,
or restricted in cylindrical pores@1–4#. These conditions are
relevant to a broad class of applications and biological func-
tions, such as filtration, gel permeation chromatography, het-
erogeneous catalysis, and oil recuperation.

When a polymer is confined to a smaller space, the en-
tropy loss of a chain is higher. Here we call this simple rule
thepolymer confinement rule. It has been employed casually
in the literature, however, it has a close connection with the
uncertainty principle in quantum mechanics. Indeed, on a
theoretical side, quantum-mechanical wave equations have
been applied to elucidate the behavior of the Gaussian chains
when the radius of gyration of a chain is much larger than
these structures. Therefore, the solutions of wave equations
in some geometries are useful both for mesoscopic quantum
physics and polymer physics.

The most prominent recent example is the calculation for
curved geometries. Goldstone and Jaffe@5# have shown that
the bend of two-dimensional~2D! and three-dimensional
tubes with a constant cross section lowers the ground-state
energy of a quantum particle constrained in the tubes. Cor-
respondingly, the cylindrical bend of two parallel walls~2D
tube! with a constant width reduces the entropy loss@6#.
Yaman et al. have shown in their series of works that en-
tropic interactions between curved membranes and macro-
molecules such as flexible chain molecules and rigid rods
may change the bare elastic constants of single membranes
and bilayers@7#.

In this paper, we focus on tubes in two and three dimen-
sions with sinusoidal undulations keeping tube volumes con-
stant. This lowers the ground-state energy of quantum par-
ticles, and thus raises the entropy of Gaussian polymer
chains. Corrugated walls induce additional kinetic energy
along the walls. However, if bulges are formed, the waves

are less confined in the transverse direction and localized in
the bulges, which may decrease the total energy because of
the uncertainty principle. In the same way, according to the
polymer confinement rule, polymer chains may favor the un-
dulations of tubes.

In Sec. II, we first describe the polymer confinement rule,
an intuitive argument for why a polymer in a confined space
loses entropy. This approach is microscopic, which is differ-
ent from the well-known scaling argument@2#. Second, we
provide the calculation procedure for Gaussian chains using
quantum mechanics that is given in Ref.@1#. In Sec. III, we
elucidate the effect of undulations using the variational
method. We show that the wave equations have lower energy
under long wavelength undulations. Correspondingly, long
Gaussian chains acquire higher entropy with undulating con-
straints than with exactly flat or straight ones. For the three-
dimensional case, we compare the undulation effect with the
Rayleigh area-minimizing instability@7,8#. In the final sec-
tion, we discuss implications of polymer-mediated entropic
force for membrane boxes and tubes.

II. CORRESPONDENCE TO QUANTUM MECHANICS

A. The polymer confinement rule

The entropy reduction of a confined random walk ofN
steps between two parallel flat walls~distanceDx) can be
derived intuitively through the following microscopic rea-
soning. The number of steps that span the distance between
the walls is described byDx; lN81/2, and the gyration radius
~or the end-to-end distance! in a free spaceRg(@Dx) is ex-
pressed asRg; lN1/2, wherel is a step length. Here,; im-
plies that the numerical factors have been ignored.

Steps touching the walls should return. This requirement
is the source of the entropy reduction@9#. The chain reflects
off the walls aboutN/N8 times. Let z be the number of
nearest positions on a lattice for a step. Then the numberW
of total configurations of the confined chain is represented by
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W;zN2N/N8~z/2!N/N85zN~1/2!N/N8, ~1!

where the combination factor has been omitted. Then the
entropy loss due to the walls for the Gaussian chain isDS
5kBN/N8ln 2;kBRg

2/(Dx)2. We write

~Dx!2DS;kBRg
2, ~2!

which corresponds to the uncertainty principle

~Dx!2DE;~Dx!2~Dp!2/m;h2/m, ~3!

whereE, x, p, andm are the energy, position, momentum and
mass of a quantum particle, andh is the Planck constant. On
this basis, one can say that a polymer tends to escape from
narrower spaces into wider or open spaces; in other words,
the polymer tends to localize in wider spaces of the confined
geometries, the same as with quantum particles.

B. Analytical theory for Gaussian chains

For a random walk, we consider the total number of paths
that connectr and r 8 with N stepszNG(r 8,r ,N), wherez is
the number of neighboring sites. The boundary condition is

G~r 8,r ,0!5d r8,r . ~4!

It is easy to showG(r 8,r ,N) is the solution of the diffusion
equation

S ]

]N
2

l 2

6
¹ r

2DG~r 8,r ,N!50, ~5!

wherel is the lattice constant, or the step length.
With the eigenfunction expansion

G~r 8,r ,N!5 l 3(
n

Cn* ~r 8!Cn~r !expS 2
Nl2En

6 D , ~6!

then, the problem reduces to the wave equation

¹2Cn~r !1EnCn~r !50 ~7!

with the boundary conditions. As is known, the eigenfunc-
tions satisfy the orthogonality and completeness conditions

E drCm* ~r !Cn~r !5dmn , ~8!

(
n

Cn* ~r 8!Cn~r !5d~r2r 8!. ~9!

Since the continuous limit is

lim
l→0

d r8,r / l 35d~r2r 8!, ~10!

Eq. ~6! satisfies the boundary condition Eq.~4!.
For excited states (i .1), when an equality

Rg
2~Ei2E1!@1 ~11!

is satisfied, the situation is called ground-state dominance,
which is our interest in this paper. Then we have

G~r ,r 8,N!'C1* ~r 8!C1~r !expS 2
Nl2E1

6 D . ~12!

The partition function is a sum over all configurations:

Z5
1

VE drdr 8G~r ,r 8,N!. ~13!

Integrating out all uninteresting degrees of freedom, we ob-
tain the main term in the associated entropy change,

S5kB ln Z'2kB

Nl2E1

6
. ~14!

For a Gaussian chain between two flat walls, the discrete
part of the eigenvalues of Eq.~7! is

En5
n2p2

~Dx!2
, n51,2,3, . . . . ~15!

To obtain the main term, we ignore the continuous part of
the eigenvalues associated with two directions along walls.
Then Eq.~11! is fulfilled. Thus, we have

S'2kB

p2

6

Rg
2

~Dx!2
. ~16!

This is consistent with Eq.~2!.

III. VARIATIONAL PROOFS

Let C be a tube in two dimensions~box! or in three di-
mensions. We will consider the wave equation

~¹21E!c~r !50 ~17!

in C subjected to the Dirichlet condition on walls:c(]C)
50. The following calculations are applicable to both quan-
tum particles and Gaussian polymers.

We define

s@c#[S E
C
dDrc¹2c D •S E

C
dDrc2D 21

, ~18!

whereD is the dimension of the system. Our aim is to show

D@c#[s@c#2s0.0, ~19!

wheres0 corresponds to the ground state for the exactly flat
or straight case. Since perturbations are sinusoidal, the inte-
grals can be limited to a single wavelength, that of the per-
turbations. We compute a critical wavelength, down to
whichD@c# is positive. Our evaluation gives an upper bound
for the critical wavelength, because we employ a trial func-
tion for c in Eq. ~18!.

A. In two dimensions

As shown in Fig. 1, a box is defined between two parallel
lines described by
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y6~x!56
d

2
~11e sinax!, 0,e,1 ~20!

with a width undulation functionw(x):

w~x!5d~11e sinax!, ~21!

wherea52p/l, l is the period of the undulation, andd is
the mean distance. Note that the volume is kept constant.

We will prove, with the variational method, that long-
wave undulation lowers the total energy. Choose a candidate
function with a variational constantd:

c~x,y!5cosS py

w D ~11de sinax!, 0<d<1/e. ~22!

d.0 implies localization at bulges. The denominator of Eq.
~18! is

1

dE2l/2

l/2

dxE
2w/2

w/2

dyc25
lg

2
, ~23!

where

g511S d1
d2

2 D e2.0. ~24!

It is elementary to calculate

]2c

]y2
52S p

wD 2

cosS py

w D ~11de sinax!, ~25!

]2c

]x2
5Fp

w9

w2
y sinS py

w D22p
w82

w3
y sinS py

w D
2S p

w8

w2D 2

y2 cosS py

w D G ~11de sinax!

12deap
w8

w2
y sinS py

w D cosax

2dea2 cosS py

w D sinax. ~26!

Then, a brief calculation yields

1

dE dyc
]2c

]y2
52

p2

2d2

~11de sinax!2

11e sinax
, ~27!

1

dE dyc
]2c

]x2
52

p216

24

e2a2 cos2 ax

11e sinax
~11de sinax!2

2S d2

2
1d D e2a2 sin2 ax1

de2a2

2
cos2 ax

1
d2e3a2

2
cos2 ax sinax2

3d2e3a2

4
sin3 ax

2
~ea212dea2!

4
sinax. ~28!

Using formulas given in Appendix A, we obtain

gsy@c#52
p2

d2 S 1

A12e2
22dA1d2AD , ~29!

gsx@c#52a2BD22da2S e2

4
2CDD2d2a2S e2

2
1CDD ,

~30!

wheres@c#5sy@c#1sx@c#, and where

A5
1

A12e2
215

e2

2
1

3e4

8
1

5e6

16
1•••, ~31!

B512A12e25
e2

2
1

e4

8
1

e6

16
1•••, ~32!

C5B2
e2

2
5

e4

8
1

e6

16
1•••, ~33!

D5
p216

12
. ~34!

For e.0, we evaluate the deviationD@c# for s05
2p2/d2. To showD@c# is positive, we write it as

gD@c#52
p2

d2
A2

p2

l2
4BD

12dFp2

d2 S A1
e2

2 D2
p2

l2
~24CD1e2!G

2d2Fp2

d2 S A2
e2

2 D1
p2

l2
~4CD12e2!G . ~35!

From this, it easy to show that there existsd that makes
D@c# positive in the long-wave undulation limit:l→`; d
51 for instance. Therefore, the ground-state energy should
be lower than that in the flat plane case. Notice that as is seen
in Eq. ~29!, the decrease in energy 2dA appears in the trans-
verse direction.

In order to estimate the critical wavelengthl0, an ap-
proximation up to ordere2 is

FIG. 1. Undulated box in two dimensions:l is the period of the
undulation, andd is the mean distance between walls.
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~g/e2!D@c#'22d2S p2

l2 D 12dS p2

d2
2

p2

l2 D
2

p2

2d2
22D

p2

l2
. ~36!

Maximizing D@c# by changing the variational constantd,
we compute the critical wavelength fromD@c#50. Thus,

l0

d
5S 31A4p2

3
113

2
D 1/2

52.014. ~37!

The critical wavelength is about two times the width of the
box, implying that the bulge is at least the size of the width
between walls. It is a quite reasonable value, because, in
terms of quantum mechanics, if the undulation is shorter than
l0, then the kinetic energy along walls will be higher than
the confinement energy.

B. In three dimensions

It was shown by Plateau, later pursued by Rayleigh, then
known as the Rayleigh instability, that the undulation of a
tube with wavelength exceeding its circumferences reduces
the surface area. Therefore, it is interesting to compare the
polymer-mediated instability and the Rayleigh instability.

Consider a tube of unperturbed radiusR0 and an undula-
tion function ~Fig. 2!:

R~z!5Rc~11e sinaz!, 0,e,1, ~38!

wherea52p/l, andRc is determined by the constant vol-
ume condition of the tube. Thus,

Rc
25R0

2~11e2/2!21. ~39!

In order to remind readers of the Rayleigh instability, we
calculate the surface area of the tube given by

A~e;l!52pE
0

l

RA11S dR

dzD 2

dz. ~40!

We expand the square root for small perturbations and use
Eq. ~39!. The area is

A~e;l!'2pR0lF11
e2

4 S ~2pR0!2

l2
21D G . ~41!

Therefore, if the wavelength is greater than the circumfer-
ence of the tube, the area is less than that of the unperturbed
perfect cylinder.

Now, we will prove that a long-wave undulation lowers
the total energy with the variational method. Choose a trial
function with a variational constantd:

c~r ,z!5J0S ar

R D ~11de sinaz!, 0<d<1/e, ~42!

whereJ0(r ) is the zeroth Bessel function:

d2J0S ar

R D
dr2

1
1

r

dJ0S ar

R D
dr

1S a

RD 2

J0S ar

R D50, ~43!

and wherea52.404 83 is the smallest zero ofJ0(x). The
denominator of Eq.~18! is

E
2l/2

l/2

dzE
0

R

dr2prc25plRc
2bg, ~44!

whereb5J1
2(a) and

g511
1

2
~d214d11!e21

3

8
d2e4. ~45!

It is elementary to calculate

]2c

]r 2
1

1

r

]c

]r
52S a

RD 2

J0S ar

R D ~11de sinaz!, ~46!

]2c

]z2
5F2a

R9

R2
rJ08S ar

R D1a
R82

R3
rJ08S ar

R D
2S a

R8

R2D 2

r 2J0S ar

R D G ~11de sinaz!

22adea
R8

R2
rJ08S ar

R D cosaz2dea2J0S ar

R D sinaz,

~47!

where, J08(x)5dJ0(x)/dx, R85dR(z)/dz, and R9
5d2R(z)/dz2.

Using the calculation in Appendix B, we then obtain

gs@c#52
a2~21d2e2!

2Rc
2

2a2S 41a2

6
e21de21

d2e2

2
1

131a2

24
d2e4D .

~48!

For e.0, we evaluateD@c# for s052a2/R0
252b2.

gD@c#

e2
52F2b2e2

8
1a2S 1

2
1

131a2

24
e2D Gd2

1~2b22a2!d2a2
41a2

6
. ~49!

FIG. 2. Undulated tube in three dimensions:l is the period of
the undulation.
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An approximation up toe2 is

gD@c#

e2
'2

a2

2
d21~2b22a2!d2a2

41a2

6
. ~50!

Maximizing D@c# by varying d, we calculate the critical
wavelength fromD@c#50. Thus, we have

4a4x424a2x22
11a2

3
50, ~51!

where

x[
l

2pR0
5

b

aa
~52!

is the ratio of the critical wavelength to that of the Rayleigh
instability. Then the minimumx0.0 is

x05S 11A41a2

3

2a2
D 1/2

50.493. ~53!

The critical wavelength is shorter than that of the Rayleigh
instability.

IV. DISCUSSION

We have shown that quantum-mechanical particles con-
fined in undulated boxes or tubes have lower energy, when
the wavelength is greater than certain values, comparable to
the width between walls or the radius of tubes. We have
explained that the effect can easily be interpreted by the un-
certainty principle. Quantum-mechanical calculations imme-
diately imply that long Gaussian chains in undulated boxes
or tubes acquire higher entropy than in exactly flat or straight
ones. Furthermore, it can be explained by the polymer con-
finement rule established in this paper, which is quite analo-
gous to the uncertainty principle.

This polymer-mediated entropic force may play an impor-
tant role in a number of systems: polymers in cell mem-
branes, vesicles, microemulsions, and polymers confined in
lamellar or cylindrical phases of surfactant and homopoly-
mers blending into those of block copolymer systems. For
instance, deformable flat membrane boxes with constant
width d containing the Gaussian chains (Rg@d) are unstable
against the undulations. In the same way, cylindrical tubes
with radius R containing the Gaussian chains (Rg@R) are
unstable against the undulations. From Eqs.~36! and~50!, it
is easy to see that the entropy gain increases with increasing
undulation amplitude. Therefore, the undulation amplitude
will grow until it is balanced by the elastic restoring force of
the membrane, or until the membrane ruptures. In addition,
the critical wavelength is shorter than that of the Rayleigh
area-minimizing instability; the polymer-mediated interac-
tion may trigger the undulation instability.

When the bare elastic modulus of a membrane is not
small, for long wavelength undulations, the effect softens the
surface tension of the membrane box. On the other hand, for
short wavelength undulations, the effect hardens the surface
tension because of the reduction of the entropy of confined

polymers. It is quite remarkable that the discrimination point
of softening or hardening~instabilizing or stabilizing! is de-
termined by the distance between membranes.

One should be careful when interpreting our results. First,
because of the volume preserving condition, the undulation
is not a simple expansion of membrane boxes or tubes by the
thermal motion of polymers. Second, the calculation of wave
equations does not correspond to the case when the wave-
length of undulations is longer than confined polymer sizes
in boxes or tubes.

The polymer-mediated entropic force without undulations
is proportional tod23, whered is the distance between walls,
which decays slower than Van der Waals attractive interac-
tions. This force is something like the excluded volume in-
teractions of multimembranes systems known as the Helflich
repulsive interaction. Finally, the polymer confinement rule
for excluded volume chains is modified as (Dx)5/3DS
;kBRg

5/3. We expect that the same entropic effect will exist
for excluded volume chains.

APPENDIX A

To tackle the integration of Eqs.~27! and~28!, we define
an integral:

^ f ~x!&5
a

2pE2p/a

p/a f ~x!dx

11e sinax
. ~A1!

By using a formula

E dx

11e sinx
5

2

A12e2
tan21S tan

x

2
1e

A12e2
D ~A2!

we have

^1&5
1

A12e2
. ~A3!

Hence, it yields

^sinax&52A/e, ~A4!

^sin2 ax&5A/e2, ~A5!

^cos2 ax&5B/e2, ~A6!

^cos2 ax sinax&52C/e3, ~A7!

^cos2 ax sin2 ax&5C/e4, ~A8!

whereA, B, andC are defined in Eqs.~31!–~33!.

APPENDIX B

In this appendix, we provide some integrals of the Bessel
functions. By usingJ08(x)52J1(x) and@xJ1(x)#85xJ0(x),
it is easy to verify the following integrals:

E drrJ0
2~cr !5F r 2

2
@J0

2~cr !1J1
2~cr !#G , ~B1!
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E drr 2J0~cr !J08~cr !5F2
r 2

2c
J1

2~cr !G , ~B2!

E drr 3J0
2~cr !5

1

6 F r 4J0
2~cr !1S r 42

2

c2
r 2D J1

2~cr !

1
2

c
r 3J0~cr !J1~cr !G . ~B3!

Then, we obtain

E
0

R

drrJ0
2S ar

R D5
R2b

2
, ~B4!

E
0

R

drr 2J0S ar

R D J08S ar

R D52
R3b

2a
, ~B5!

E
0

R

drr 3J0
2S ar

R D5
R4b

6 S 12
2

a2D . ~B6!
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