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Replica-exchange molecular dynamics simulation for supercooled liquids
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We investigate to what extend the replica-exchange Monte Carlo method is able to equilibrate a simple
liquid in its supercooled state. We find that this method does indeed allow us to generate accurately the
canonical distribution function even at low temperatures and that its efficiency is about 10–100 times higher
than the usual canonical molecular dynamics simulation.

PACS number~s!: 65.20.1w, 61.43.Fs, 02.70.Lq, 02.70.Ns

If a liquid is cooled to a temperature close to its glass
transition temperature, its dynamical properties show a dras-
tic slowing down. At the same time, a crossover from highly
unharmonic liquidlike behavior to harmonic solidlike behav-
ior is expected in its static~thermodynamic! properties at a
certain temperatureTK , the Kauzmann temperature@1#.
Very recently the value ofTK of simple model liquids have
been determined analytically@2# and numerically@3,4# and
some possibilities of a thermodynamic glass transition atTK

have been discussed. Although the values ofTK obtained
with the different methods are consistent with each other, it
was necessary for the numerical calculations ofTK to ex-
trapolate high-temperature data (T*0.45) of the liquid and
disordered solid branches of the configurational entropy
S(T) down to significantly lower temperatures (TK.0.3).
With a guide of an analytic prediction for liquids,S(T)
;T20.4 @5#, and for harmonic solids,S(T); logT, a crossing
of the two branches has been found and used to calculate
TK . However, to make those observations more reliable,
very accurate calculations of thermodynamics properties are
necessary in the deeply supercooled regime, which is diffi-
cult since the typical relaxation times of the system are large.

In recent years, several efficient simulation algorithms
have been developed to generate canonical distributions also
for complex systems. Examples are the multicanonical@6,7#,
the simulated tempering@8,9#, and the replica-exchange
~RX! @10,11# methods. Although these methods were origi-
nally developed for Ising-type spin systems, their applica-
tions to any off-lattice model by use of Monte Carlo
or molecular dynamics~MD! simulations are rather straight-
forward @12–15#. However, it has been found that the appli-
cation of some of these algorithms to supercooled liquids or
structural glasses is of only limited use@16#. The main mo-
tivation of the present paper is to test the efficiency of the
RX method, which seems to be in many cases the most ef-
ficient algorithm, to the case of highly supercooled liquids
@17,18#.

The system we study is a two-component~A,B! Lennard-
Jones mixture, which is a well characterized model system
for supercooled simple liquids. The total number of particles
is N51000, and they interact via the~truncated and shifted!
potential fab(r i j )54eab@(sab /r i j )

122(sab /r i j )
6#, where

r i j is the distance between particlesi and j, and the interac-
tion parameters area,bPA,B,eAA51, eAB51.5, eBB
50.5, sAA51, sAB50.8, andsBB50.88. Other simulation

parameters and units are identical as in@19#. The time step
Dt for numerical integration is 0.0173.

The algorithm of our replica-exchange molecular dynam-
ics ~RXMD! simulation is essentially equivalent to that of
Ref. @15#, and therefore we summarize our simulation proce-
dure only briefly.~i! We construct a system consisting ofM
noninteracting subsystems~replicas!, each composed ofN
particles, with a set of arbitrary particle configurations
$q1 , . . . ,qM% and momenta$p1 , . . . ,pM%. The Hamiltonian
of the mth subsystem is given by

Hm~pm ,qm!5K~pm!1LmE~qm!, ~1!

whereK is the kinetic energy,E is the potential energy, and
LmP$l1 , . . . ,lM% is a parameter to scale the potential.~ii !
A MD simulation is done for the total system, whose Hamil-
tonian is given byH5(m51

M Hm , at a constant temper-
ature T5b0

21 using the constraint method@20#. Step ~ii !
generates a canonical distributionP(q1 , . . . ,qM ;b0)
5Pm51

M P(qm ;Lmb0)} exp@2b0(m51
M LmE(qm)# in configu-

ration space@21#. ~iii ! At each time intervalDtRX , the ex-
change of the potential scaling parameter of themth andnth
subsystem are considered, while$q1 , . . . ,qM% and
$p1 , . . . ,pM% are unchanged. The acceptance of the ex-
change is decided in such a way that it takes care of the
condition of detailed balance. Here we use the Metropolis
scheme, and thus the acceptance ratio is given by

wm,n5H 1, Dm,n<0

exp~2Dm,n!, Dm,n.0,
~2!

where Dm,n5b0(Ln2Lm)@E(qm)2E(qn)#. ~iv! Repeat
steps~ii ! and ~iii ! for a sufficiently long time. This scheme
leads to canonical distribution functionsP(E;b i) at a set of
inverse temperaturesb i5l ib0. To make a measurement at
an inverse temperatureb l one has to average over all those
subsystems (i P1, . . . ,M ) for which we have~temporarily!
b l5l ib0. Usual canonical molecular dynamics~CMD!
simulations are realized if we skip step~iii !.

In the present simulation, we takeM516, b050.4521,
l i5120.0367(i 21), and thus cover a temperature range
0.45<T<1. Exchange events are examined only between
subsystems that have scaling parametersl i andl i 11 that are
nearest neighbors; the events withi 51,3,5, . . . or i
52,4,6, . . . arerepeated alternatively everyDtRX intervals.
We find that the highest average acceptance ratio for this
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type of move is 0.186 for the exchange ofl1 andl2, and the
lowest is 0.027 forl15 andl16. Although these values can
be made more similar by optimizing the different gaps be-
tweenl i and l i 11 for a fixed choice ofl1 and lM , only
small improvements were obtained by such a simple optimi-
zation in our case. We also note that the choice ofDtRX
strongly affects the efficiency of the RX method;DtRX
should be neither too small or too large@22#. We used
DtRX5103Dt, a time which is a bit larger than the one
needed for a particle to do one oscillation in its cage, and
data are accumulated for 0<t<53106Dt after having
equilibrated the system for the same amount of time. At the
beginning of the production run, the subsystems were renum-
bered so that att50 we hadLm5lm for all m.

In Fig. 1~a! we show the time evolution of the subsystems
in temperature space. One can see that the subsystems start-
ing from the lowest (m51) and the highest (m516) tem-
perature explore both the whole temperature space fromi
51 to 16. Figure 1~b! presents the mean squared displace-
ments~MSD!

DR2~ t !5uqm~ t !2qm~0!u2/N ~3!

for the RXMD ~with m51) and for the CMD performed at
T5(l1b0)2150.45. From this figure we recognize that, due
to the temperature variation in the RXMD method, the sys-
tem moves very efficiently in configuration space, while in
the CMD the system is trapped in a single metastable con-
figuration for a very long time. If one uses the MSD to cal-
culate an effective diffusion constant, one finds that this
quantity is around 100 times larger in the case of the RXMD
than in the CMD case, thus demonstrating the efficiency of
the former method.

Figure 2 shows the canonical distribution function of the
total potential energy at the different temperatures,

Pi~E![P~E;l ib0!, ~4!

obtained by a single RXMD simulation. For adjacent tem-
peratures the corresponding distribution functions should
have enough overlap to obtain reasonable exchange prob-
abilities and hence can be used to optimize the efficiency of
the algorithm. Further use of these distribution functions can
be made by using them to check whether or not one has
indeed equilibrated the system. Using the reweighting proce-
dure@23#, it is in principle possible to calculate the canonical
distribution functions

Pi~E;l jb0!5
Pi~E!exp@~l i2l j !b0E#

E dE8Pi~E8!exp@~l i2l j !b0E8#

~5!

at a new temperatureTj5(l jb0)21 from any Pi(E). Note
that in equilibrium the left-hand side should beindependent
of i to within the accuracy of the data.

In Fig. 3 we plot differentPi(E;l4b0), using as input the
distributionsP(E;l ib0) for 1< i<8, obtained from RXMD
~a! and CMD ~b! simulations.~Both simulations extended
over 8.73104 time units.! We see that in the case of the
RXMD the different distributionsPi fall nicely on top of
each other in the whole energy range, thus giving evidence
that the system is indeed in equilibrium. In contrast to this,

FIG. 1. ~a! Typical walks of the subsystems in temperature
space.~b! Time dependence of the mean squared displacement. The
solid line showsDR2(t) for A component from RXMD for a sub-
system which att50 was atT50.45(m51), and the dashed line is
DR2(t) from CMD at T50.45. The two curves have been calcu-
lated by starting from the same initial configuration.

FIG. 2. The canonical distribution functionPi(E) at various
temperaturesTi(1< i<16) obtained by a single RXMD simulation.
HereT150.45 andT1651.0.
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the different distributions of the CMD, Fig. 3~b!, do not su-
perimpose at low energies~or at low temperatures!, thus
demonstrating the lack of equilibration. This can be seen
more clealy by comparing Figs. 3~c! and 3~d!, where
Pi(E;l1b0) is plotted.

Figure 4 shows the temperature dependence of the poten-
tial energyE(T) obtained from RXMD simulations via

E~Tj !5E dE8P~E8;l jb0!E8. ~6!

For the sake of comparison we have also included in this plot
data from CMD with the same length of the production run
as well as data from CMD simulations which were signifi-
cantly longer~about one order of magnitude! @3#. The solid
line is a fit to the RXMD results with the functionE(T)
5E01AT0.6, a functional form suggested by analytical cal-
culations @5#. One can see that RXMD and CMD results
coincide at higher temperatures, but deviations become sig-
nificant at low temperatures~see the Inset in Fig. 4!. Further-
more, we see that the present RXMD results agree well with
the CMD data of the longer simulations.

As a final check to see whether the RXMD is indeed able
to equilibrate the system also at low temperatures, we have

FIG. 3. The canonical distribution function atT5(l4b0)2150.506 by reweightingPi(E) for 1< i<8 obtained by RXMD~a! and
standard CMD~b! simulations. The numbers in parentheses present temperatures at which simulations were done. The same function at
T5(l1b0)2150.45 obtained by RXMD~c! and CMD~d!. Note that in both simulations the length of the runs is the same (8.73104 time
units!.

FIG. 4. Temperature dependence of the potential energyE(T)
obtained via RXMD (s) and CMD (1) of runs with the same
length. * presents values from much longer CMD runs. The solid
line is the best fit to the RXMD data with a fit functionE5E0

1AT0.6, whereE0528.656 andA52.639 are fit parameters.
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calculated the temperature dependence of the~constant vol-
ume! heat capacityCv(T) via the two routes

Cv~T!5]E~T!/]T ~7!

5~^E2&2^E&2!/T2, ~8!

and plot the results in Fig. 5. Again we see that within the
accuracy of our data the two expressions give the same an-
swer, thus giving evidence that the system is indeed in equi-
librium.

Summary. We have done replica-exchange molecular dy-
namics and canonical molecular dynamics simulations for a
binary Lennard-Jones mixture in order to check the effi-
ciency of the replica-exchange method for a structural glass
former in the strongly supercooled regime. We find that at
low temperatures the RXMD is indeed significantly more
efficient than the CMD, in that the effective diffusion con-
stant of the particles is around 100 times larger in the
RXMD. However, accurate simulations are still difficult for
T,0.45 even with RXMD. Finding an optimal choice ofM,
$l1 , . . . ,lM%, andDtRX may be important in order to allow
simulations also forT,0.45 within reasonable computation
times. Furthermore, it might be that the efficiency of RXMD
improves even more if one uses it below the critical tempera-
ture of mode-coupling theory@24#, since there is evidence
that below this temperature the nature of the energy land-
scape is not changing anymore@25#.
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FIG. 5. Temperature dependence of the heat capacityCv(T)
obtained via RXMD.h presents data fromCv5]E(T)/]T, andj

presents data fromCv5(^E2&2^E&2)/T2. The solid line is the re-
sult of a fit Cv50.6AT20.4, with the same value ofA as in Fig. 4.
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