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The coefficient of normal restitution in an oblique impact is theoretically studied. Using a two-
dimensional lattice model for an elastic disk and an elastic wall, we demonstrate that the coefficient of
normal restitution can exceed unity and has a peak against the incident angle in our simulation. We also
explain this behavior based upon a phenomenological theory.
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The coefficient of normal restitution e is introduced to
determine the normal component of the postcollisional
velocity in the collision of two materials. The coefficient
e is defined by

v ��c� � n � �ev�0� � n; (1)

where v��� is the relative velocity of the centers of mass of
two colliding materials at time � measured from the
initial contact, �c is the duration of a collision, and n is
the unit vector normal to the contact plane. Though some
text books of elementary physics state that e is a material
constant, many experiments and simulations show that e
decreases with increasing impact velocity [1]. The depen-
dence of e on the low impact velocity is theoretically
treated by the quasistatic theory [2–4]. We also recognize
that e can be less than unity for the normal impact
without the introduction of any explicit dissipation, be-
cause the macroscopic inelasticities originate in the trans-
fer of the energy from the translational mode to the
internal modes such as the vibrations [3,5,6].

While e has been believed to be less than unity in most
situations, it is recently reported that e can exceed unity
in oblique impacts [7–9]. In particular, Louge and Adams
[9] observed oblique impacts of a hard aluminum oxide
sphere on a thick elastoplastic polycarbonate plate and
found that e grows monotonically with the magnitude of
the tangent of the incident angle �. In their experiment,
Young’s modulus of the plate is 100 times smaller than
that of the aluminum oxide sphere. They also suggested
that e can exceed unity for the most oblique impacts.

In this Letter, we demonstrate that our two-
dimensional simulation of the oblique impact based on
Hamilton’s equation has yielded an increasing e with
tan� and e exceeds unity at the critical incident angle.
Finally, we explain our results by our phenomenological
theory.

Let us introduce our numerical model [10]. Our model
consists of an elastic disk and an elastic wall (Fig. 1). The
width and the height of the wall are 8R and 2R, respec-
tively, where R is the mean radius of the undeformed disk.
Both side ends and the bottom of the wall are fixed. We

place 800 mass points at random in a disk with the radius
R and 4000 mass points at random in a wall for the disk
and the wall, respectively. We connect each mass point
with its neighbor mass points by the Delaunay triangu-
lation algorithm [11], and undeformed nonlinear springs
are placed on all the connections.

Each mass point i on the lower half boundary of the
disk feels the force, F�l�i�s � � aV0 exp��al

�i�
s �n

�i�
s , where

l�i�s is the distance between the ith surface mass point of
the disk and the nearest surface spring of the wall, a �
300=R, V0 � amc2R=2, m is the mass of each mass point,
c is the one-dimensional velocity of sound, and n�i�

s is the
unit vector normal to the connection between two surface
mass points of the wall [10]. We should note that the
strong repulsion F�l�i�s � is introduced to inhibit the pene-
tration of the disk to the surface of the wall [5]. Thus, the
dynamical equation of motion for each mass point i of the
lower half boundary of the disk is described by

m
d2ri
d�2

�
XNi
j�1

f�kaxij � kbx3
ijg ��lth

� l�i�s �aV0 exp��al
�i�
s �n

�i�
s ; (2)

where ri is the position of ith mass point, Ni is the number
of mass points connected to the ith mass point, xij is the

γ

FIG. 1. The elastic disk and wall consisted of random lattice.
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relative deformation of the spring between ith and jth
connected mass points, and ka and kb � ka 	 10�3=R2

are the spring constants. Here we introduce the step
function �x�, i.e., �x� � 1 for x 
 0 and �x� � 0
for x < 0, and the threshold length lth which is the average
of the natural lengths of the springs of the disk. For
internal mass points, the last term of the right hand side
of Eq. (2) is omitted. In most of our simulations, we adopt
ka � k�d�a � 1:0	mc2=R2 for the disk and ka � k�w�a �
1:0	 10�2mc2=R2 for the wall. We do not introduce any
dissipative mechanism in this model. Thus, during a
collision, a part of the initial translational energy of the
disk is distributed into the vibrational energy of the disk
and the wall. It should be noted that the macroscopic
dissipation can be interpreted as the irreversible transfer
of the energy from the translational motion to the internal
vibration. When we introduce explicit dissipations in the
model and add the gravity to the disk, we have confirmed
that the compression of the disk can be described by two-
dimensional Hertzian contact theory [12].

In this model, the roughness of the surfaces is impor-
tant to make the disk rotate after a collision [10]. We
modify the positions of the surface mass points of the flat
wall and the smooth disk by using normal random num-
bers whose average and standard deviation are 0 and 3	
10�2R, respectively.

Poisson’s ratio � and Young’s modulus E of this model
can be evaluated by adding the external force to stretch
the rectangle of random lattice numerically. We obtain
Poisson’s ratio � � �7:50� 0:11� 	 10�2 and Young’s
modulus E � �9:54� 0:231� 	 103mc2=R2, respectively
[10].

We solve the dynamical equation of motion (2) for each
mass point with the initial speed jv�0�j � 0:1c and the
incident angle �, and determine e for each � according to
Eq. (1). All the results in this Letter are obtained by
averaging the results of 100 disks with different configu-

rations of mass points. We use the fourth order symplectic
integrator with the time step �� � 10�3R=c.

Figure 2 is the relation between e and �1  ��v�0� �
t�=�v�0� � n� � tan�, where t is the unit vector vertical to
n. The cross point is the mean value and the error bar is
the standard deviation of 100 samples for each �. This
result shows that e increases with increasing �1 to exceed
unity, and has a peak around �1 � 6:0. The behavior of e
having the peak is in contrast to that in the experiment by
Louge and Adams [9].

Here, let us explain our results. Louge and Adams [9]
suggest that their results can be explained by the rotation
of the normal unit vector n arising from the local defor-
mation of the wall’s surface. Thus, we aim to determine
the angle of rotation of the unit vector � at each � from
the theory of elasticity.

Figure 3 is the schematic figure of a hard disk moving
from the left to the right on a wall, where l  jxb � xaj.
Assuming that l is small compared to R, the perimeter of
the contact is approximated by

f�x� � �x� xc�2=2R� yc; (3)

where �xc; yc� is the lowest position of the disk. To calcu-
late tan�  �f�xb� � f�xa��=l, we need to know the ratio
of jxc � xaj to l. From the theory of elasticity [13], this
ratio can be estimated as

xc � xa
l

� 1� � with � �
1

�
arctan

1� 2�
 �2� 2��

; (4)

where is the coefficient of the friction.We evaluate by
  jJ � tj=jJ � nj with J � M�v��� � v�0��, where M is
the mass of the disk. The cross points in Fig. 4 represent 
calculated from our simulation, where  has a peak
around �1 � 3:0. From Eqs. (3) and (4), tan� is given by

tan� �
2�� 1

2� 2�
jxc � xaj
R

; (5)
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FIG. 2. Numerical and theoretical results of the relation be-
tween �1 and e.
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FIG. 3. The schematic figure of a hard disk sliding on a soft
wall. x coordinates of both ends of the contact area AB are x �
xa and x � xb.
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where we evaluate jxc � xaj � 0:55R from the maximum
value of the compression of the disk. From Eqs. (4) and
(5), we obtain the relation between �1 and tan�.

Next, let us calculate e from the relation between �1

and tan�. We introduce the rotated unit vectors, n� and
t�, as n� � cos�n� sin�t and t� � sin�n� cos�t, re-
spectively. By introducing e�  ��v��c� � n��=�v�0� �
n��, we can express e in terms of e� as

e �
e� ���

2 tan�
1���

1 tan�
; (6)

where ��
1 � ��v�0� � t��=�v�0� � n�� and ��

2 � ��v��c� �
t��=�v�0� � n��. ��

1 also can be rewritten as

��
1 � ��1 � tan��=�1��1 tan��: (7)

On the other hand, in the oblique impact of slipping disks,
��

2 is given by

��
2 � ��

1 � 3�1� e�� � (8)

in the two-dimensional situation [14]. In Eq. (8),  �,
defined by  � � jJ � t�j=jJ � n�j, is given by

 � �
 � tan�
1� tan�

: (9)

To draw the solid line in Fig. 2, at first, we calculate and
tan� for each �1. By choosing a fitting parameter e� �
0:95 and substituting Eqs. (7)–(9) into Eq. (6) we obtain e
as a function of �,  , and �1. All points are interpolated
with the cubic spline interpolation method to draw the
solid curve. This theoretical description of e is qualita-
tively consistent with our numerical result, though the
theoretical value is a little smaller than the observed
value.

Now, let us consider how  depends on �1 based on a
phenomenological argument. For simplicity, we replace
the roughness on the surface of the wall by a periodic
array of asperities. When the disk hits one asperity, a

fraction of the energy is absorbed in the wall. We assume
that the tangential velocity v�i�1�

t changes to v�i�t � �1�

%�v�i�1�
t when the disk hits the ith asperity. Thus, if the

disk contacts N asperities during the impact, the tangen-
tial speed at the release point becomes vt��c� � v�N�t �
�1� %�Nvt�0�. Here we estimate the number of contacted
asperities during the collision as N � &lsl, where & is the
number of the asperities in a unit length on the surface
and lsl is the length of sliding which can be evaluated as
lsl � vt�0��c with �c � ��R=c�

��������������������������
ln�4c=vn�0��

p
[6]. Thus,

the tangential impulse Jt  J � t is approximated by

Jt � Mf�1� %�&lsl � 1gvt�0� ’ �%M&lslvt�0�; (10)

where we assume small %. Now, we should answer the
question how to determine %.When the impact velocity is
large enough, % becomes smaller because the asperities
are broken down when the disk hits them. Therefore we
may assume the form % � %0=�1� )v

2
t �0�=v

2
n�0�� �

%0=�1� )�
2
1� with the introduction of the dimensionless

parameters %0 and ). Taking into account Jn  J � n �
�M�1� e�vn�0� and the definition of  � Jt=Jn, we
obtain

 �
�%0&R
1� e

�1

1� )�2
1

�������������������������������������������������
�2

1

1��2
1

ln�40
����������������
1��2

1

q
�

s
jv�0�j
c
:

(11)

Here we use cos� �
������������������������
1=�1��2

1�
q

, sin� �����������������������������
�2

1=�1��2
1�

q
. We adopt the numerical results for the

value of e at each �1 (Fig. 2) and jv�0�j=c � 0:1. The
solid curve in Fig. 4 is Eq. (11) with fitting parameters
) � 0:21 and %0&R � 0:18, which reproduces our nu-
merical result. We do not claim that our simple argument
explains the experimental result because of two fitting
parameters. However, we emphasize that our picture cap-
tures the essence of the behavior of  in the oblique
impact.

Let us discuss our result. First, we emphasize that the
novel phenomena of e exceeding unity are obtained from
the local deformation of the soft wall for the oblique
impacts of a hard disk. When we simulate the impact
between a disk and a hard wall, for k�w�a � 10	 k�d�a , e
fluctuates around a constant to exceed unity abruptly
around �1 � 4:5 [12]. This tendency resembles the ex-
perimental results by Calsamiglia et al. [8]. Thus, for a
smooth increase of e to exceed unity, the wall should be
softer than the disk. In addition, it is important to fix the
initial kinetic energy of the disk. So far, we have con-
firmed that e does not exceed unity when �1 is controlled
by changing vt with fixed vn [10].

Second, the initial velocity of the disk and the local
deformation of the wall are much larger than those in the
experimental ones in Ref. [9]. They cause the most sig-
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FIG. 4. Numerical and theoretical results of the relation be-
tween �1 and  .
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nificant difference between our result and their result [9].
Because of the high speed impact in our case, there is a
peak of e for small �. In fact, our simulation with jv�0�j �
0:01c shows the shift of the peak for larger �. Therefore,
we expect that our model reproduces the result of Ref. [9]
for the low impact speed. In addition, we have carried out
simulations with a disk of 400 mass points and a wall of
2000 mass points to check the effect of the system size.
Although there is a slight difference between the results,
the data are also well reproducible by our phenomeno-
logical theory.

Third, the local deformation of the wall also affects the
relation between  and �1. In early studies, it has been
shown that  depends on the impact velocity [9,15]. In
our simulation,  has a peak around �1 � 3:0. This
behavior is interpreted as that the asperities are flattened
for large vt. Equation (11) indicates that  can increase
with increasing � as in Ref. [9] if we choose a suitable set
of ) and %0&. The difference between the results of their
experiment and our simulation may be explained by the
choice of these parameters.

Fourth, we adopt the static theory of elasticity to ex-
plain our numerical results in this Letter. However, it is
important to solve the time-dependent equation of the
deformation of the wall’s surface to analyze the dynamics
of impact phenomena. The dynamical analysis will be our
future task.

Finally, we indicate that the friction coefficient is de-
rived from our Hamiltonian model. This friction comes
from the irreversible energy transfer of the macroscopic
translational motion to the internal vibration. The irre-
versibility is indeed related to the second law of thermo-
dynamics if the number of the internal degrees of
freedom is infinite. However, the irreversibility in our
system which includes only 103 mass points in a disk is
incomplete as we can see that the Hertzian contact theory
cannot be recovered without introduction of the explicit
dissipation. We believe that the complete treatment of the
inelastic collision of macroscopic materials without in-
troduction of dissipations will be a fundamental subject
of nonequilibrium statistical mechanics.

In summary, we have carried out the two-dimensional
simulation of the oblique impact of an elastic disk on an
elastic wall. We have found that e can exceed unity in the
oblique impact, which is attributed to the local deforma-
tion of the wall. We have estimated the magnitude of the
local deformation � based on the static theory of elastic-
ity and derived the relation between e and �1 by taking

into account the rotation of the normal unit vector of the
wall’s surface. The relation between  and �1 is also
related to the local deformation and is explained by the
simple argument.
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