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We show that the pseudogap of the quark density of states is formed in hot quark matter as a
precursory phenomenon of the color superconductivity on the basis of a low-energy effective theory. We
clarify that the decaying process of quarks near Fermi surface to a hole and the diquark soft mode
�qq�soft is responsible for the formation of the pseudogap. Our result suggests that the pseudogap is a
universal phenomenon in strong coupling superconductors.

DOI: 10.1103/PhysRevD.70.056003 PACS numbers: 25.75.Nq, 11.15.Ex, 12.38.Aw

It is an intriguing problem to examine how rich is the
phase structure of the high-density (�) QCD matter at
vanishing or moderate temperature (T). It is now believed
that quark matter at an extremely high density undergoes
a Cooper instability leading to the color superconductiv-
ity (CS) [1–4]: As might be ensured by the asymptotic-
free nature of QCD, the quark matter at extremely high
densities is usually treated as a Fermi liquid, and the
mean-field (MF) theoretical approach à la BCS theory
is employed; see, for reviews on recent exciting develop-
ment, [5].

Various complications are, however, expected on the
nature of quark matter at intermediate baryon densities or
chemical potential � where the strong coupling nature of
QCD may show up and invalidate the MF approximation
[2]: The strong coupling may make the so-called
Ginzburg region so wide that precursory fluctuations of
the quark-pair field can have a prominent strength and
may give rise to physically significant effects above the
critical temperature (Tc) [6]. In this paper we will show
that the fluctuation effects of the CS can be so significant
that such quark matter may share some basic properties
with the cuprates of the high-Tc superconductivity
(HTSC), having a non-Fermi liquid nature above Tc.

One of the typical non-Fermi liquid properties of the
cuprates is the existence of the pseudogap, i.e., an anoma-
lous depression of density of states (DOS) N�!� as a
function of the Fermion energy ! around the Fermi
surface above Tc. Although the mechanism of the pseu-
dogap associated with the HTSC is still controversial,
precursory fluctuations of the pair field and the quasi-
two-dimensionality of the system seem to be basic ingre-
dients to realize the pseudogap [7,8]. In this work, we
shall show that the pseudogap of the quark density of
states exists as a precursory phenomenon of the CS in a
considerable range of T above Tc even in the three-
dimensional system. We calculate the quark self-energy
incorporating the preforming pair field of the CS for the
first time in the T-matrix approximation (T-approximation
[7,9,10]), where the amplitude fluctuations are assumed to

be dominant over the phase fluctuations of the pair field
[8,11]. Our result shows that the pseudogap may appear
also in a relativistic system solely owing to the amplitude
fluctuations, and suggests that the pseudogap phenomenon
is universal in strong coupling superconductors, irrespec-
tive of the dimensionality as suggested from the study of
nuclear matter [9]. Our results should also provide an
insight into the physics of proto-neutron stars and
heavy-ion collisions as well, where the � is relatively
low and the effect of finite T plays an important role.

To describe a system at relatively low T and �, it is
appropriate to adopt a low-energy effective theory of
QCD [3,12,13]. Here we employ a simplified version of
the instanton-induced interaction in the two-flavor case
known as the Nambu-Jona-Lasinio model [14,15] with
the scalar-diquark interaction in the chiral limit,

L � � i@6  �GC

X
A

� � i5�2�A 
C�� � Ci5�2�A �

�GS�� �  �
2 � � � i5 ~� �

2�; (1)

where C�x� � C � T�x�, withC � i20 being the charge
conjugation operator. Here, �2 and �A mean the antisym-
metric flavor SU(2) and color SU(3) matrices, respec-
tively. The coupling GS and the three-dimensional
momentum cutoff 
 � 650 MeV are determined so as
to reproduce the pion decay constant f� � 93 MeV and
the chiral condensate h �  i � ��250 MeV�3 in the chiral
limit [13]. We choose GC so as to reproduce the phase
structure calculated using the instanton-induced interac-
tion [12], i.e., GC � 3:11 GeV�2 [13]. We neglect the
gluon degrees of freedom, especially their fluctuation,
which is known to make the CS phase transition first
order in the weak coupling region [2,16]; notice that the
CS is a type I in this regime. However, as is emphasized in
Ref. [17], nothing definite is known on the characteristics
of the CS in the intermediate density region. In this work,
simply assuming that the fluctuations of the pair field
dominates that of the gluon field as is the case for type II
color superconductors, we examine the effects of the

PHYSICAL REVIEW D, VOLUME 70, 056003

0556-2821=2004=70(5)=056003(5)$22.50 70 056003-1  2004 The American Physical Society



precursory fluctuations of the diquark-pair field on the
quark sector in the T-approximation.

The DOSN�!� is calculated from the spectral function
A�k; !� of a single quark, which is defined through the
spectral representation of the retarded Green function of
the quark field:

GR�k; !� �
Z
d!0 A�k; !0�

!�!0 � i�
; (2)

and accordingly, A�k; !� � �1=�  ImGR�k; !� �
�1=�  �GR � 0GRy0�=2i. From the rotational and par-
ity invariances, the spectral function has the following
matrix structure: A�k; !� � �0�k; !�0 � �v�k; !�k̂ 

�� �s�k; !�, where k̂ � k=jkj and �� (� � 0; v; s) still
have color and flavor indices. Since the quark number is
given by N �

R
d3xh � 0 i, the DOS is solely given by

�0�k; !�,

N�!� � 4
Z d3k

�2��3
Trc;f��0�k; !��; (3)

with Trc;f denoting the trace over color and flavor indices.
The GR in Eq. (2) is given by the analytic continuation

of the imaginary-time (Matsubara) Green function G,
which obeys the following Dyson-Schwinger equation:

G �k; !n� � G0�k; !n�f1�
~��k; !n�G�k; !n�g; (4)

where G0�k; !n� and ~��k; !n� denote the free Green
function and the self-energy in the imaginary time, re-
spectively. In the normal phase, G0 is reduced to
G0�k; !n� � ��i!n ���0 � k  ���1 with the Mat-
subara frequency !n � �2n� 1��T for fermions.

As was shown in [6], the fluctuating diquark-pair field
develops a collective mode (the soft mode of the CS) at T
above but in the vicinity of Tc, in accordance with the
Thouless criterion [18]. Our point in this work is that
the soft mode in turn contributes to the self-energy of the
quark field, thereby it can modify the DOS so much to
give rise to a pseudogap. The quark self-energy ~� owing
to the soft mode may be obtained by the infinite series of
the ring diagrams shown in Fig. 1:

~��k; !n� � T
X
n1

Z d3k1
�2��3

~��k� k1; !n �!n1�

�G0�k1; !n1�; (5)

~��k; �n� � �8GC�1�GCQ�k; �n���1; (6)

with the lowest particle-particle correlation function
Q�k; �n� [6] and �n � 2n�T being the Matsubara fre-
quency for bosons. Notice that the thin quark lines in
Fig. 1 are the free Green function, so we have taken the
so-called non-self-consistent approximation, on which
we shall make a comment later.

Inserting Eqs. (5) and (6) into Eq. (4) and performing
the analytic continuation to the upper half of the complex
energy plane, we obtain the retarded Green function,
GR�k; !� � �G�1

0 �k; !� i�� ��R�k; !���1, with

�R�p; p0� �
Z d3q

�2��3
Z d!

2�
�Im�R�p� q; !�

!� p0 � Eq ��� i�

�
Eq

0 � q  �
2Eq

�
tanh

Eq ��

2T
� coth

!
2T

�

��Eq ! �Eq�; (7)

where Eq � jqj, �R�k; !� � ~��k; !n�ji!n�!�i�, and

�R�k; !� � ~��k; �n�ji�n�!�i�. The matrix structure
of the self-energy is the same as the spectral fun-
ction, �R�k; !� � �0�k; !�0 ��v�k; !�k̂  ��
�s�k; !� � 0���
� � ��
��, where 
� � �1�
0�  k̂�=2 denotes the projection operators onto the posi-
tive and negative energy states, and accordingly �� �
�0 � �v represents the self-energies of the particles and
antiparticles, respectively; notice that �s�k; !� � 0 in the
chirally restored phase in the chiral limit. Then it can be
shown that �0 is expressed as a sum of the positive- and
negative-energy parts: �0�k; !� � �1=2� 

P
���Im��=

fR��k; !�2 � �Im���
2g, where R��k; !� � !� jkj �

�� Re���k; !�.
A remark is in order here: The Thouless criterion

mentioned above tells us that the denominator of �R, 1�
GCQ�0; 0�, vanishes at T � Tc because of the self-
consistency condition for the diquark condensate at T �
Tc [6], where Q�k; !� � Q�k; �n�ji�n�!�i�.

For the numerical calculation, we employ the following
cutoff scheme [14,19]: First we notice that the imaginary
part of Q is free from ultraviolet divergences. Therefore
we first evaluate the imaginary part exactly without in-
troducing a cutoff, and then use the dispersion relation
with the imaginary part just obtained to calculate the real
part introducing a three-dimensional cutoff 
. The
imaginary part is nicely found to have the following
compact form:

FIG. 1. The Feynman diagrams representing the quark Green function. The thin lines represent the free propagator G0, while the
bold ones represent the full propagator G.
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ImQ�k; !� � �Nf�Nc � 1�T
�!� 2��2 � k2

2�k

�

�
!�j!� 2�j � k� ln

cosh�!� k�=4T
cosh�!� k�=4T

�!��j!� 2�j � k� ln
1� e��!�k�=2T

1� e���!�k�=2T

�
: (8)

We remark that each term has the respective interpreta-
tion in terms of the kinetic processes [6]. We emphasize
that the compact expression of ImQ�k; !� above ex-
tremely improves the efficiency of the numerical calcu-
lations. Nevertheless, the calculations still involve
multiple integrations for obtaining �R and hence �0.

Since �0�k; !� for!>�� is well approximated solely
by the positive-energy part, we first see the characteristic
properties of ��. Figure 2 shows a typical behavior of the
real and imaginary parts of �� with k � kF at � �
400 MeV and the reduced temperature " � �T �
Tc�=Tc � 0:01; we remark that Tc � 40:04 MeV in the
present case [6]. From the figure, one can see that Re��

shows a rapid increase around the Fermi energy ! � 0.
The quark dispersion relation ! � !��k� therefore also
shows a similar behavior around the Fermi surface;!��k�
is the solution of R��k; !� � 0. Hence the density of
states proportional to �@!�=@k�

�1 becomes smaller
near the Fermi surface, which suggests the existence of
a pseudogap, provided that the imaginary part Im�� is
neglected, which will be discussed shortly. One can also
see that !��k � kF� ’ k�� since Re�� at ! � 0 is
vanishingly small, which will be found important for
the pseudogap formation around the Fermi surface.

A numerical calculation shows that as the momentum k
is varied from kF, the peak of jIm��j at ! � 0 seen in
Fig. 2 moves along ! � �k�� [20]. This means that
the quasiparticles with this energy are dumped modes.
Figure 1 tells us that Im�� describes a decay process of a
quark to a hole and a diquark, q ! h� �qq�, where the
hole is on shell with a free dispersion relation !h � ��
jkhj. The essential point for the pseudogap formation is
that the above process is enhanced when the diquark (qq)

makes a collective mode, which we have emphasized is
the case; the diquark soft mode �qq�soft has a prominent
strength at vanishingly small energy !s and momentum
ks near Tc. Owing to the energy-momentum conserva-
tion, the energy momentum of the decaying particle
�!p;kp� should satisfy !p �!h � !s ’ 0 and kp �
kh � ks ’ 0. It means that when the decaying particle
has almost the same energy as the free quark,
jIm���k; !�j has the largest value.

The spectral function �0�k; !� is shown in Fig. 3, at the
same � and " as those in Fig. 2. One can see two families
of peaks around ! � !��k� � k�� and ! � �k��,
which correspond to the quasiparticle peaks of the quarks
and antiquarks, respectively. A notable point is that the
quasiparticle peak has a clear depression around ! � 0,
i.e., the Fermi energy. The mechanism for the depression
is easily understood in terms of the characteristic prop-
erties of the self-energy mentioned above: In fact,
R��kF;! ’ �� kF� ’ 0 and jIm���k; !�j becomes large
when ! � �k��. Thus �0�k ’ kF;! ’ 0� ’
�1=�2�Im���kF;! ’ 0��, which is found to be
suppressed.

Integrating �0, one obtains the DOSN�!�: Fig. 4 shows
the DOS at � � 400 MeV and various values of the
reduced temperature " together with that of the free
quark system, N0�!�. As anticipated, one can see a re-
markable depression of N�!�, i.e., the pseudogap, around
the Fermi energy ! � 0; N�!�=N0�!�j!�0 ’ 0:64 at " �
0:01. One sees that the smaller ", the more remarkable the
rate of depression. The clear pseudogap structure survives
even at " � 0:05. One may thus conclude that there is a
pseudogap region within the normal phase above Tc up to
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FIG. 2. The self-energy �� with k � kF at � � 400 MeV
and " � �T � Tc�=Tc � 0:01. One observes a peak in Im�� at
! � 0 and a rapid increase of Re�� at the same !.
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FIG. 3. The spectral function �0 at � � 400 MeV and " �
0:01. The upper figure is an enlargement of the one near the
Fermi surface. The peaks at ! � k�� and ! � �k��
correspond to the quark and antiquark quasiparticles, respec-
tively. Notice that there is a depression around ! � 0, which is
responsible for the pseudogap formation.
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T � �1:05–1:1�Tc at � � 400 MeV, for instance. A
numerical calculation shows that " dependence of the
width of the pseudogap region hardly changes for
320<�< 500 MeV.

We notice that the pseudogap region obtained in the
present work is more than 1 order of magnitude wider in
the unit of " than in the nuclear matter [9] where the clear
pseudogap is seen up to " � 0:0025. This is just a reflec-
tion of the strong coupling nature of the QCD at inter-
mediate density region. Our result obtained for a three-
dimensional system tells us that a considerable pseudogap

can be formed without the help of the low dimensionality
as in the HTSC and that the pseudogap phenomena in
general may be universal in any strong coupling
superconductivity.

In this paper we have found that the pseudogap can be
formed as a precursory phenomenon of the CS in a rather
wide region of T above Tc. This may imply that quark
matter shares some basic properties with the cuprates of
the HTSC. It should be noted that our work is the first
calculation to show the formation of the pseudogap in the
relativistic framework.

In the present work, we have employed the non-self-
consistent T-approximation, while the self-consistent ap-
proximation apparently seems better. However, it may not
be the case [22]; higher-order terms with the vertex
corrections, which are usually discarded in the self-
consistent approximation, cancel with each other, which
means that the lowest-order calculation such as ours is
more reliable than the self-consistent one [22].

As a future problem, one should consider how to ob-
serve the pseudogap in heavy-ion collisions or proto-
neutron stars. It is also interesting to see what would
happen if the phase transition of the CS is strong first
order.
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