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Dislocation formation in two-phase alloys

Akihiko Minami and Akira Onuki
Department of Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 25 June 2004; published 18 November 2004

A phase field model is presented to study dislocation formgtoherency logsin two-phase binary alloys.
In our model the elastic energy density is a periodic function of the shear and tetragonal strains, which allows
multiple formation of dislocations. The composition is coupled to the elastic field twofold via lattice misfit and
via composition dependence of the elastic moduli. By numerically integrating the dynamic equations in two
dimensions, we find that dislocations appear in pairs in the interface region and grow into slips. One end of
each slip glides preferentially into the softer region, while the other end remains trapped at the interface. Under
uniaxial stretching at deep quenching, slips appear in the softer region and do not penetrate into the harder
domains, giving rise to a gradual increase of the stress with increasing applied strain in plastic flow.

DOI: 10.1103/PhysRevB.70.184114 PACS nuni®er62.20.Fe, 64.70.Kb, 81.40.Cd

I. INTRODUCTION This paper is organized as follows. In Sec. Il we will

In crystalline solids many kinds of phase transformationg®résent the free energy functional for the composition and
are strongly influenced by the elastic fiétd.Since the work ~ the elastic field, in which the elastic energy density is a pe-
by Cahr?-6 most theoretical studies have been focused on th&odic function of the tetragonal and shear strains and the
coherent case in which the lattice planes are continuougomposition is coupled to the elastic field. In Sec. Ill, we
through the interfaces. In the incoherent case, on the othaill construct dynamical equations. In Sec. IV, numerical
hand, dislocations appear around the interfaces and the coresults will be given on the dislocation formation around
tinuity is lost partially or even completely. Such incoherentdomains and on the stress-strain relations under uniaxial
microstructures emerge in various alloys when the latticestretching.
constants or the crystalline structures of the two phases are
not close’~° Moreover, they are produced in plastic flow
because dislocations generated tend to be trapped at the in- Il. FREE ENERGY FUNCTIONAL
terfaces. In particular, coherency loss has been extensivesly , i L
studied in the presence of precipitates of thelLl, We con5|derla binary al]oy conslstlng .o.f two component_s
structure®10 A andB neglecting vacancies and interstitials. The composi-

Theory for the incoherent case is much more difficult thantions ca andcg of the two components satisfy, +cg=1. In
for the coherent case, obviously because the effects canntftal metallic alloys undergoing a phase transition, there can
be adequately described within the usual linear elasticityoe a change in the atomic configuration within unit cells as
theory!* The aim of this paper is hence to present a simplevell as in the overall composition, resulting in ordered do-
mathematical model reasonably describing the incoherent efrains with the so-callet1, or L1, structure?+2 However,
fects in binary alloys. Use will be made of a recent nonlinearin this paper, the composition difference is the sole order
elasticity theory of plastic flow by one of the presentparameter
authors'?

A number of authors have studied composition changes
around dislocations fixed in space and time, which lead to a
compositional Cottrell atmosphéfeor preferential nucle-
ation around a dislocatioff:15 As recent numerical work in for simplicity. The other variables representing the order-
two dimensions, phase separation has been studied Is§sorder phase transition are neglected. Theis in the
Léonard and Des#i and by Hu and Chén using a con- range -E=¢=1 and
tinuum Ginzburg-Landau or phase field model in the pres-
ence of fixed dislocations. In these papers, dislocations pre- _1 — 104 _
exist as singular objects before composition changes. We Ca=z(1+¢) Ca=3(1-9). 2.2
also mention atomistic simulations of dislocation motion in-  In our free energy-=/drf the order parametef and the
fluenced by diffusing soluté$or by precipitated domainé.  elastic displacement vector=(uy,u,) are coupled. The free

Mechanical properties of two-phase solids are very differenergy densityf is of the form
ent from those of one-phase solids?°In the presence of
precipitated domains, dislocations can be pinned at the inter- c
face regions and networks of high-density dislocations can f=faw(¥) + =| V 42+ aery+ fq. (2.3
be formed preferentially in softer regions after 2
deformations. These effects are very complex but important
in technology. Our simulations will give some insights on theThe first term is the Bragg-Williams free energy density ex-
behavior of dislocations in two-phase states. pressed ds

l/f:CA_CB, (21)
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wherev, is the volume of a unit cell representing the atomic
volume, Ty is the mean-field critical temperature in the ab- o
sence of the coupling to the elastic field|#f <1, we obtain
the Landau expansiomofgy/ksT=(1-To/ T)y?12+y*24
+---. However, we will not use this expansion form because
we are interested in the deeply quenched case. The secor 173
term in Eq.(2.3) is the gradient term wher€ is a positive
constant. The parameterrepresents the strength of the cou-
pling between the composition and the dilation strain ’ 08
=V -u. This coupling arises in the presence of a difference in

the atomic sizes of the two species and is consistent with the FIG. 1. Normalized shear deformation enedyye,,es)/ ug for
empirical fact that the lattice constant changes linearly as &he caseu,=u3=uo. The elastically stable regions are meshed with
function of the average composition in many one-phase alsolid lines on the surface.

loys (Vegard law. It gives rise to a difference in the lattice

constants of the two phases in phase separdladtice mis-  stant u,=u3; was assumed. Subsequent theories treated the
fit). It also explains a composition inhomogenei@ottrell  case of the cubic linear elasticity with constam$ and
atmosphere in one-phase states or precipitate in two-phagg, 2-4622|n the present paper, whil¢ is a constantu, and

state$ around a dislocation. s depend on the composition as
In two dimensiond depends on the following strains

0

= + ) = + . 2.10
€=Vl + VU, M2 = poot porth, pa= pao el (2.10

If up1>0 andus,>0, the regions with largeismalle ¢ are

e=V,u,-Vu, harder(soften than those with smallgtargel . It is known
that thiselastic inhomogeneitgives rise to asymmetric elas-
e3=Vyu+ V,uy, (2.50  tic deformations in two-phase structures and eventual pin-

ning of the domain growtf?23-24

In our theory®(i,e,,e;3) in Eq. (2.7) is the simplest pe-
"Modic function of e, and e; with period 1. The periodicity
arises from the fact that the square lattice is invariant with
1ibéspect to a slip of the crystal structure by a unit lattice
constant along a line parallel to thxeor y axis. Notice that,
fo= %Keﬁﬂb(w,ez,eg). (2.6)  under rotation of the reference frame Iy e, and e; are

, _ . changed tce, andej}, respectively, with?
The first term represents the elastic energy due to dilation

with K being the bulk modulus. The second term arises from €,=6,C0S X+ e; sin 20,
anisotropic shear deformations defined for arbitrary values of
e, ande;. Assuming a square lattice structdfeye set

whereV,=d/9x andV,=d/ dy. The elastic displacementis
measured in a reference one-phase state at the critical co
position. We calle, the tetragonal strain ane; the shear
strain. In this paper we use a nonlinear elastic energy densi
of the form

e;=—e,sin20+e;cos X. (2.11

®= %22[1 - cog2mey)] + 5732[1 —cog2mey)]. (2.7)  For g=m/2 we havee,=—e, ande;=—e,, sofq in Eq.(2.7)
remains invariant. Fop=m/4 we havee,=e; and e;=—¢,
The principal crystal axes are along or make anglesmf4 and recognize that the roles of tetragonal and shear strains
with respect to thex or y axis. In Fig. 1 we plotd as a are exchanged. Fqi,=pug, the linear elasticity in Eq(2.8)
function ofe, ande; for the casgu,=u3= g in units of u,. ~ becomes isotropic, but the nonlinear elasticity is still aniso-
If the system is homogeneous, elastic stability is attained fotropic [from the fourth-order terms in the expansiondfin
#d/9e5>0 and PP/ de5>0 or in the regionse,—n|<1/4  EQ.(2.7) in powers ofe, ande;].

and|e;—m| < 1/4 with n andm being integer value¥. The elastic stress tenséi={oy;} is expressed as
For small strainge,| <1 and|e;| <1, it follows the usual _
standard forrit ow=Ke, + a+ u, sin(2me,) /21,
1 2.1 2
=3 +3 . .
D = 765+ 5 uges, (2.8 0yy= Key + a1, Sin (2me)/ 27,
in the linear elasticity theory. Therefore,
M2 = %(Cll —C12), m3=Cuy, (2.9 Ty = Oyx = pig SIN(27eg)/ 2. (212

in terms of the usual elastic modull;;, C;,, andC,, 1t In  In the linear elasticity, si2e,)/2 and si2me;)/ 27 are
the original theory the isotropic linear elasticity with con- replaced bye, ande;, respectively. Notice the relation
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In the incoherent case the mechanical equilibrium does
not hold around dislocation cores when dislocations are cre- FIG. 2. Displacement vector for a sligislocation pair making
ated and when they are movif§We thus need to set up the an angle_of 34 (u_pp_er platg and O(lower platg with respect to
dynamic equation for the elastic displacemantn this pa- thex (horizonta) axis in a one-phase steady statd AT;=2.5. The

per the lattice velocityp=du/dt obeys the momentum arrows are from the initial position in a perfect crystal to the de-
formed position. The degree of darkness represents the

equatiort! ]
composition.
v
—=nV+V -G 3.1
P =M o (3.9) F k[T (149 i
—=—|=1In _Tolﬂ -CV ¢+ael

The mass density and the shear viscosity, are constants. o vol2 \1-¢
We neglect the bulk viscosity terifxV -v) in Eq. (3.1) for U Ua1
simplicity.22 In our model the sound waves relax owing to + P[l — cog2me,)] + ﬁ[l — cog2me;)].

this viscous damping and the mechanical equilibriting
=0 is rapidly attained unlessy, is very small. Note that the (3.9

nonlinear terms in Eq(3.1) are only those inoy in EA.  he |ast two terms arise from the elastic inhomogeneity. If

(2.12. N) is of the form of E iffusi i
. e . g.(3.3), the diffusion equation
The composition obeys the diffusive equation dcal t=DyV?ca(dcg/ t=DyVcg) follows in the dilute limit
o ps ca— 0(cg— 0) with
Ty v, (3.2 .
a oY Do = AokgTvg?, (3.5
The kinetic coefficient depends ghas™?° where the coupling to the elastic field becomes negligible. In

M) = Ag(L = ¢2) = ANoCaCa, 33 usual solid mixtures the diffusion is very slow and vacancies
(#)=Aol1 =) = AhcCaca @3 rein many cases crucial for a microscopic description of

where\q is a constant. Hera is fixed in the chemical po- diffusion?® Effects of such point defects are not treated in
tential differencesF/ 6y, so the present theory.
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FIG. 4. Hard domain in a steady stateTdfTy=2. The displace-
ment in the square region will be displayed in Fig. 5.

treating Eq.(3.2) as the equation in the Euler description. If
its presence is assumed, another term of the form
-V 6F/ 5y becomes also needed on the right-hand side of

NRRANNNIANRNUANNMNAG VLGP A A A A A Eg. (3.1). With these two terms we again hau&/dt=0.
VAVANAN S s~ These two terms are well known in critical dynamics of
o : : : : .= fluids* However, in our solid case, the magnitude of the
: : : : : VA NSNS —”/Z‘ displacementiu=[{dt'v(r,t’) remains small and these two
[ U A NN NN N :::/’) : terms give rise to no essential differences in our results at not
bV VNN~ A/, large applied strain¥.

| CUARBRNNNEENS Also note that the dynamic Eqé3.2) and (3.3) may be

- AN R treated as Langevin equations with addition of the random
= - -~ : : : : : : { noise terms related to the kinetic coefficientg) and 7, via
~ e N : : R the fluctuation-dissipation relatioddn this paper, however,
::,_._.. N L U U W W} we neglect the random noise, because the thermal energy
pUpRER SN T T TR TR T keT will be assumed to be much smaller than the typical

energy of elastic deformations.
FIG. 3. Displacement vector for a sli@lislocation paiy in a

_two-_phase steady sta_te'E»ATO:lJ obtained from th(_a <_:c_>nf|gur_a_t|on_ IV. NUMERICAL RESULTS
in Fig. 2 after quenching. The arrows are from the initial position in
a perfect crystal to the deformed position. The dislocation cores are A. Method

trapped at the interface regions. We integrated Eqg3.1) and(3.2) in two dimensions on a

) ) . 256X 256 square lattice. The mesh sixg was set equal to
The total free energf=F+[drpv?/2 including the ki-  the Jattice constana in the reference state with=0, so the
netic energy then changes in time as system length is,=256a. The vectorss andv are defined at
) the lattice pointgn,m), while the strains, the tensors, and the
Eptmz-fdrlz ﬂo(Vivj)2+7\(¢)‘ v — ] composition are defined on the middle poirfts+1/2,m
dt ij +1/2). These are needed to realize well-defined microscopic
(3.6) slips in our numerical schenté The periodic boundary con-
dition was imposed except the simulation of applying
Here the surface integrals have been omitted, which vanish iniaxial deformation(Figs. 13 and 1} Because the time
the boundaries are fixed and there is no flux of the atom§cale ofu is shorter than that of, we integrated Eq(3.1)
from outside(and also if the periodic boundary condition is using an implicit Crank-Nicolson method. Space and time
imposed in simulations The above time-derivative is Will be measured in units od and
nonpositive-definite. As a result, the equilibrium is attained _ 12
whenv=V -5=0 and 6F/ 5yy=const. 70= (P08, 4.
If the lattice is deformed significantly, we should add therespectively, whereu,y is defined by Eg.(2.10 and
convective term ¥ (yv) on the right-hand side of Eq3.2),  (up/p)Y? is the transverse sound velocity propagating in
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FIG. 5. Upper plate: Coherent elastic displacemegt just be-
fore birth of dislocations at deep quenching BtTo=1. Lower
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FIG. 6. Snapshot o€ in Eq. (4.4) after dislocation formation,
which is zero within the hard domain and nonvanishing outside.
The slip lines end at dislocations.

elastic energy to create a single dlipu,qvo) is much larger
thankgT in our simulations. Furthermore, we assume weak
cubic elastic anisotropy withuso/ moo=1.1 and moderate
elastic inhomogeneity with,,= t31=0.6u50.

The dimensionless kinetic coefficients are given by

No = NoTor208 % 7= 70/ Toktzo- (4.2)
We seth\,=10"* and 7,=0.1. Then,
Nol o = Dopl g ~ 1073, 4.3

Since the relaxation rate of a sound with wave-nunipées
nok?/ p, the time scale ofy becomes longer than that of the
elastic field by three orders of magnitude. In real solid alloys,
these two time scales are much more distinctly separated,
probably except for hydrogen-metal systems where the pro-
tons diffuse quickly:

In homogeneous one-phase states we le@we;=0 and
e,=—ay/K. Here, well known is a parameter=|da/dyi/a
representing the strength of the composition dependence of
the lattice constana in a mixture® In our case we havey
=a/2K=0.067 and the spinodal temperatdign Eg. (2.16
becomes 2.31.

B. Slips and composition changes

plate: Incoherent elastic displacement after appearance of Edge dislocations appear in the form of slips or dipole

dislocations.

pairs!? because a single isolated dislocation requires a very
large elastic energy. Slips are thus fundamental units of plas-

the!® direction. The free energies and the free energy denstic deformations. In Fig. 2 we show the displacement and the

ties are measured in units phea® and u,o, respectively. For
simplicity, the scaled timealt, position vector™*r, and dis-
placement vectoa 'u will be written ast, r, andu, respec-
tively, in the same notation.

In this paper we seK/u,=4.5, aluy0=0.6, C/a’uy,
=0.05 andkgTo/vou0=0.05, whereT, is the mean-field
critical temperature in Eq.2.4). SinceT~ T, hereafter, the

composition around typical slips in a one-phase steady state
with length 1G/2a in the upper plate and &0in the lower
plate. Here we initially prepared a slip given by the linear
elasticity theory? at the critical compositiori()=0) and let

u and ¢ relax until the steady state was achieved. The tem-
perature was kept at/Tp=2.5 and no phase separation oc-
curred. As in the previous simulatioh8!® we can see Cot-

184114-5
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trell atmospheres around the dislocation cores. The
maximum and minimum of/ at the lattice points close to the
dislocation cores are of order £0.6. Cottrell's result is ob- g4,
tained as follows: Lef be much higher thaff, and o?/L, 002
and the gradient term be neglected; then, the conditionm‘;
SF/ Sy=const. yields cp/(1-cy)=const. exp-U/kgT), o
whereU=vya€,.28 In our case the maximum qQU|/kgT at  -00s
the lattice points is of order 1 and the accumulation is not o
very strong.

As a next step, starting with the configuration in Fig. 2,
we lowered the temperature T/ Ty=2 to induce spinodal
decomposition. Subsequently the Cottrell atmospheres grev
into domains and the dislocation cores stayed at the interfaci
regions. The domain size attained finally was of ordea.50 250
Figure 3 illustrates the displacement and the compo_sition in o6 7. Snapshot of the free energy density Eq. (2.3). The
the final steady Stat,e’ where the maximum an_d minimum Of)eaks are located near the dislocation cores and the clifflike struc-
¢rare about +0.9. Léonard and Dééa]b_tz_;uned similar com- e represents the interface free energy density.
position profiles in spinodal decomposition, where the elastic
field of dislocations(given by the linear elasticity theory
was fixed in space and time.

Mathematically, slips in steady states satisfly/ u=0
and SF/ syy=const. Without externally applied strains, they

Free energy density

After the above dislocation formation at a relatively early
stage, the composition changed very slowly. We show three
figures att=23000. In Fig. 6 we displays the following

are metastable owing to the Peierls potential energy arisinatram'

from the discreteness of the lattice structtiélthough not e=(e2+ed)!2 (4.4)
discussed in this paper, slips become unstable against expan- 22 = '

sion or shrinkage with increasing applied strain. which is invariant with respect to the rotational transforma-

tion (2.11). The slips make an angle of#4 with respect to
the x axis in the regions with largée,| (in the uniaxially
deformed regions while they are parallel to the or y axis
Figure 4 shows a single large haw-rich) domain at the  in the corner regions with lardes|.}? We also notice that the
center in the coherent condition at shallow quenchiing,  dislocation formation took place with the symmetry axis in
=2 after a long equilibration time. Hexgis about 0.7 inside the!! direction for our special geometry. Figure 7 gives the
the domain and about —0.7 outside. Its shape slightly devifree energy density in Eq. (2.3), where the peaks outside
ates from sphericity owing to the weak cubic anisotropy asthe domain represent the dislocation cores. In the interface
sumed in this paper. We next performed a second deepeegion it exhibits a clifflike structure arising from the gradi-
quenching toT/Ty=1. Subsequent diffusional adjustment of ent term and higher peaks arising from the dislocation cores.
the composition proceeded very slowly, but a discontinuityFigure 8 shows the order parametgr where we can see
of the order parameteh s about 1.8 was established rela- Cottrell atmospheres around the dislocation cores surround-
tively rapidly across the interfaceAs a result, at a time ing the domain. The system is still transient and there is still
about 1000 after the second quenching, the maximufa,pf
reached 1/4, the value at the stability limit, in the interface y=ca-cs
region[see the sentences below KE2.7)]. We then observed
formation of dislocations and generation of sound waves
emitted from the dislocations. The upper panel of Fig. 5
shows the coherent elastic displacemegy, just before the
dislocation formation, while the lower panel shows the sub-
sequent additional incoherent changa=u-u.,, after a
time interval of 1000. The free enerdgyin the state in the
lower panel is smaller than that in the upper panel by 152.9
in units of u,,@%. More details are as folllowsi) two pairs
of dislocation dipolegfour dislocationy appeared simulta-
neously in a narrow regiorii) two of them glided preferen-
tially into the softer region forming two slips perpendicular

to each other; andiii) slips collided in many cases and kG, 8. snapshot of the order parameter around a hard domain
stopped far from the droplet, resulting in a nearly steady, the incoherent case obtained after a two-step quench. The peak

elastic deformation. Thus a half of the dislocation coresstructure at the interface arises because the system away from the
stayed at the interface and the others were distributed aroungkerface is still in a transient state. The peaks around the disloca-

the domain. These three processes took only a short time @bn cores in the outer soft region represent Cottrell atmospheres
order 100. (but the minima paired are not seen in the figure

C. Dislocation formation around a hard domain

- 1T

&ddd ocooo
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250
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stripes between the two adjacent hard domains, we obtain

e,~0.2 in the horizontal stripes ared~—0.2 in the vertical
l stripes. We then quenchd&dto T/Ty=1 to induce the com-
v i position readjustment. Figure 10 displays the resultant time
evolution of the total free enerdy=/drf and the snapshots
' of ein Eq. (4.9 at the points A...., and E. It demonstrates
. . . . ' that F mainly decreases due to the composition change but
sometimes due to appearance and gliding of slips in the soft

stripes. Note that the overall composition adjustment occurs

' slowly on the time scale dR?/Dy=10°-10° whereR is the
' domain size. In Fig. 11 we show the displacememithin
the square window in B, C, and D, respectively, while in Fig.

12 the bird views of the free energy densitythe square
_ btained hall =2 window are given at=0 and 4475 after the second quench.
FIG. 9. Domain structure obtained at a shall queméMo=2In o6 12 clearly illustrates appearance of the peaks repre-

the coherent condition. senting the dislocation cores.

a small composition flux through the interface.
E. Uniaxial stretching in two-phase states

D. Dislocation formation in a soft network Finally we apply a constant uniaxial deformation to ini-
Next we examine dislocation formation when hard rect-tially coherent states witfy)=0 to induce plastic flow. That

angular domains are densely distributed and wrapped by i&, we setu,=u,=0 at the bottom(y=0) and u,=-u,
percolated soft network. As in Fig. 9, we prepared such aely/2 at the top(y=L,). The applied strain rate was fixed
steady domain structure & To=2 in the coherent condition. at e=10% soe=et with t being the time after application of
As in the previous simulatior’$;?* the hard domaingin  the deformation. In Fig. 13 we plot the average normal stress
gray) are elastically isotropic, while the soft networkn N; versus the applied strainfor T/Ty=3, 2.4, and Zupper
white) is mostly uniaxially stretched. That is, in the soft plate), where

-1100 4
> -1206
g
:
12001 X //_’g 1210 BC |
N\ g 5
>
5
§ -1300f
g
3
-
-1400
-1500 |
'1600 1 1 1 L 1 k 1 1 1
5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
t
A (t=2500) B (t=4455) C (t=4460) D (t=4475) E (=42000)
i i il i i
L N N K B
DS > ey _
¥ K X 7 k£ 1 Z X X - il ik
Ve 2T v XS ~N v N 23 7 N NS . A NS s

FIG. 10. Relaxation of the total free ener§yin units of u,o=20kgT, after a two-step quench from/Ty=2 to 1 with the initial

configuration in Fig. 9. It mostly relaxes due to the gradual composition adjustment, but it sometimes relaxed due to dislocation formation

as enlarged in the inset. Snapshoteait the points A-E are given in the lower plates.
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and D.

where(: - -) denotes taking the spatial average. The snapshot:

of ein Eq. (4.4) are also given at the points a, b, andawer

plateg. For T/T,

80 170

75
0 and 4475 after the two-step quench in Fig.

OkgToug* att=

M20=2
10.

3 the system is in a homogeneous one-

phase state and random numbers with variance 0.01 were FIG. 12. Bird views of the free energy densityin units of

assigned tay at the lattice points &t=0. In the initial state at

TITy

FIG. 13. Stress-strain curves after application

104 for

3, 2.4, and 2. There is no dislocationtat

0. Snapshots daf in Eqg. (4.4) at points a, b, and
c are given below, which represent slip patterns

in plastic flow.

=et with e=

of uniaxial stretchinge

TITy

2 these numbers are mag-

2.4 the maximum and minimum @f ande, are +0.32

0.35

03

0.25

0.15
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025
015

and £0.05, respectively. At/ T,
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T/To=2 of plasticity have been gained. We mention them and give
¢=0.05 some remarks.
e lat (1) Performing a two-step quench, we have numerically
S : ; examined dislocation formation around the interface regions,
" . N i - which occur spontaneously in deeply quenched phase sepa-
ration. Experimentally? dislocation formation has been ob-
served around growing’ (Al;So) precipitates at low volume
fractions when the radii exceeded a threshold about 20 nm.
- - - Such spontaneous dislocation formation with domain growth
8=0-1Q . ) - has not yet been studied theoretically.
- ‘ (2) We have found that dislocations glide preferentially
, ; W ' into the softer regions with smaller shear moduli and tend to
\ X _/ oy 1 be trapped in the interface regions in agreement with a num-
; : / ber of observation§.Theoretically, the composition depen-
2 ®al o5 il dence of the elastic modulelastic inhomogeneipyis a cru-
cial ingredient to explain the experiments.
Y - . (3) We have applied uniaxial strain to create multiple
- s slips in two-phase alloys which were initially in the coherent
- “ condition. The dislocation formation starts in the mostly
i stretched middle points of the soft stripes. A stress-strain
™ - curve in Fig. 13 at deep quenching is very different from the
curves in one-phase states. In real two-phase alloys, a similar

-t - monotonic increase of the stress without overshoot has been
{ % observed, but a considerable amount of defects should pre-
S 4 : - - exist in such experiments particularly in work-hardened
e D(ez,es,y) sampleg.3:20

. ) This work is a theoretical step to understand complex

FIG. 14. Snapshots & in Eq. (4.4) and the shear deformation nhenomena of incoherency in solids. Finally, we mention

energy densityb in Eq. (2.7) at T/Tp=2 for €=0.05, 0.1, and 0.2. 5 future problems which could be studied numerically in
our scheme.

nified to +0.75 and +0.20. All the initial states are coherent (1) The composition has been taken as a single-order pa-
without dislocations. Foil/T;=3 the elastic instability oc- rameter. We should investigate dislocation formation in more
curs ate=1/4resulting in a fine mesh of slips as in the lower general phase separation processes involving an order-
left plate. ForT/Ty=2.4 the onset point of the slip formation disorder phase transitiéf'®and in diffusionlesgMartensi-
is decreased te=0.17. ForT/T,=3 the onset is very early at tic) structural phase transitioR$.
0.015, the stress-strain relation exhibits zig-zag behavior (2) Dislocations move under applied strain. The motion is
upon appearance of slips, and the stress continue to increaseémplicated when they are coupled with an order parameter
on the averagéup to the upper bound af given by 0.35in  and when the time scale of the order parameter is $iGW.
the simulation. Figure 14 consists of snapshotseoin Eg.
(4.4) and the shear deformation energy denditin Eq. (2.7)
in units of u,o. We can see the quadratic appearance of dis-
locations at the center of the uniaxially stretched stripes at The authors would like to thank Toshiyuki Koyama for
€=0.05(top platg, gliding of the dislocations and pinning at valuable discussions on the incoherency effects in metallic
the interfaces a¢=0.1(top and middle platgsand thicken-  alloys. This work was supported by Grants-in-Aid for Scien-
ing of the slips intoshear bandsat é=0.2 (bottom platg. In  tific Research and for the 21st Century COE proj@xnter
our simulations, when soft regions between hard domains afgr Diversity and Universality in Physiggrom the Ministry
narrow, they can be strongly deformed uniaxially and dislo-of Education, Culture, Sports, Science and Technology of
cations often appear at their middle points. Japan.

We mention a creep experiment in the presence of high
volume fractions ofy’ precipitates, where softer disordered
v regions were observed to be filled with dislocation net-

works after large deformations. Here we assume weak elastic anisotropy and weak elastic
inhomogeneity in the coherent condition in two dimensions,
supposing shallow quenching. Then we may eliminate the
elastic field in terms off using the mechanical equilibrium

In summary, we have presented a coarse-grained phasendition V-3=0 in the linear elasticity. We consider the
field model of plastic deformations in two-phase alloys.space integral of the last two terms in the free energy density
Though our simulations have been performed in two dimenin Eq. (2.3): AF=[dr[ae;y+f,]. We assume thdju,,| and
sions, a number of insights into the very complex processels,] are much smaller thanL,=K+u,, and that &,
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=2(uo0! 30— 1) is small. ThenAF may be rewritten d<324 Up= pp10?2L2, 03 = 2uz10?/L2. (A.4)
2

AF:J dr{— i¢,2+ lfcudvxvywﬁ] +f dr[92¢|(v)2( The third-order terms are known to give rise to pinning of

2L 2 domain growth(and some frustration effects whegp andgs;

i i 3,24
_ V§)W|2 + gV, Vw2, (A1) have different S|gr1)§ B B

_ _ _ In our simulations we sef,=2(1/1.1-1)=-0.18 and
wherew is obtained from the Laplace equation Teub=0.0043u,, SO the domains tend to become square or

V2w = - () (A.2) rectangular with interfaces parallel to tleor y axis. Fur-

. . ~ thermore, we sef,=03/4=0.003%,0. FOr wmp;~ u3; the
with (¢) being the average order parameter. In the first linetypical domains in pinned two-phase staRsis given by>
of Eq. (A.1) the bilinear terms are written with

_ 3
oun= = (20212 ook (A.3) Re~ Yl ua(A0],

The term proportional tor.,, gives rise to anisotropic Wwhere v is the surface tension anfic is the composition
domains? The second line consists of the third-order termsdifference between the two phases. TRgsdecreases as the
with quenching becomes deeper.

(A.5)
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