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Dislocation formation in two-phase alloys

Akihiko Minami and Akira Onuki
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 25 June 2004; published 18 November 2004)

A phase field model is presented to study dislocation formation(coherency loss) in two-phase binary alloys.
In our model the elastic energy density is a periodic function of the shear and tetragonal strains, which allows
multiple formation of dislocations. The composition is coupled to the elastic field twofold via lattice misfit and
via composition dependence of the elastic moduli. By numerically integrating the dynamic equations in two
dimensions, we find that dislocations appear in pairs in the interface region and grow into slips. One end of
each slip glides preferentially into the softer region, while the other end remains trapped at the interface. Under
uniaxial stretching at deep quenching, slips appear in the softer region and do not penetrate into the harder
domains, giving rise to a gradual increase of the stress with increasing applied strain in plastic flow.

DOI: 10.1103/PhysRevB.70.184114 PACS number(s): 62.20.Fe, 64.70.Kb, 81.40.Cd

I. INTRODUCTION

In crystalline solids many kinds of phase transformations
are strongly influenced by the elastic field.1–4 Since the work
by Cahn5,6 most theoretical studies have been focused on the
coherent case in which the lattice planes are continuous
through the interfaces. In the incoherent case, on the other
hand, dislocations appear around the interfaces and the con-
tinuity is lost partially or even completely. Such incoherent
microstructures emerge in various alloys when the lattice
constants or the crystalline structures of the two phases are
not close.7–10 Moreover, they are produced in plastic flow
because dislocations generated tend to be trapped at the in-
terfaces. In particular, coherency loss has been extensivesly
studied in the presence ofg8 precipitates of theL12
structure.9,10

Theory for the incoherent case is much more difficult than
for the coherent case, obviously because the effects cannot
be adequately described within the usual linear elasticity
theory.11 The aim of this paper is hence to present a simple
mathematical model reasonably describing the incoherent ef-
fects in binary alloys. Use will be made of a recent nonlinear
elasticity theory of plastic flow by one of the present
authors.12

A number of authors have studied composition changes
around dislocations fixed in space and time, which lead to a
compositional Cottrell atmosphere13 or preferential nucle-
ation around a dislocation.14,15 As recent numerical work in
two dimensions, phase separation has been studied by
Léonard and Desai16 and by Hu and Chen17 using a con-
tinuum Ginzburg-Landau or phase field model in the pres-
ence of fixed dislocations. In these papers, dislocations pre-
exist as singular objects before composition changes. We
also mention atomistic simulations of dislocation motion in-
fluenced by diffusing solutes18 or by precipitated domains.19

Mechanical properties of two-phase solids are very differ-
ent from those of one-phase solids.7,13,20 In the presence of
precipitated domains, dislocations can be pinned at the inter-
face regions and networks of high-density dislocations can
be formed preferentially in softer regions after
deformations.9 These effects are very complex but important
in technology. Our simulations will give some insights on the
behavior of dislocations in two-phase states.

This paper is organized as follows. In Sec. II we will
present the free energy functional for the composition and
the elastic field, in which the elastic energy density is a pe-
riodic function of the tetragonal and shear strains and the
composition is coupled to the elastic field. In Sec. III, we
will construct dynamical equations. In Sec. IV, numerical
results will be given on the dislocation formation around
domains and on the stress-strain relations under uniaxial
stretching.

II. FREE ENERGY FUNCTIONAL

We consider a binary alloy consisting of two components
A andB neglecting vacancies and interstitials. The composi-
tions cA andcB of the two components satisfycA+cB=1. In
real metallic alloys undergoing a phase transition, there can
be a change in the atomic configuration within unit cells as
well as in the overall composition, resulting in ordered do-
mains with the so-calledL10 or L12 structure.2,4,21However,
in this paper, the composition difference is the sole order
parameter

c = cA − cB, s2.1d

for simplicity. The other variables representing the order-
disorder phase transition are neglected. Thenc is in the
range −1%c%1 and

cA = 1
2s1 + cd, cB = 1

2s1 − cd. s2.2d

In our free energyF=edr f the order parameterc and the
elastic displacement vectoru=sux,uyd are coupled. The free
energy densityf is of the form

f = fBWscd +
C

2
u ¹ cu2 + ae1c + fel. s2.3d

The first term is the Bragg-Williams free energy density ex-
pressed as4
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v0

kBT
fBW =

1 + c

2
lns1 + cd +

1 − c

2
lns1 − cd− T0c2/2T,

s2.4d

wherev0 is the volume of a unit cell representing the atomic
volume,T0 is the mean-field critical temperature in the ab-
sence of the coupling to the elastic field. Ifucu!1, we obtain
the Landau expansionv0fBW/kBT=s1−T0/Tdc2/2+c4/24
+¯. However, we will not use this expansion form because
we are interested in the deeply quenched case. The second
term in Eq.(2.3) is the gradient term whereC is a positive
constant. The parametera represents the strength of the cou-
pling between the composition and the dilation straine1
= ¹ ·u. This coupling arises in the presence of a difference in
the atomic sizes of the two species and is consistent with the
empirical fact that the lattice constant changes linearly as a
function of the average composition in many one-phase al-
loys (Vegard law). It gives rise to a difference in the lattice
constants of the two phases in phase separation(lattice mis-
fit). It also explains a composition inhomogeneity(Cottrell
atmosphere in one-phase states or precipitate in two-phase
states) around a dislocation.

In two dimensionsfel depends on the following strains

e1 = ¹xux + ¹yuy,

e2 = ¹xux − ¹yuy,

e3 = ¹yux + ¹xuy, s2.5d

where¹x=] /]x and¹y=] /]y. The elastic displacementu is
measured in a reference one-phase state at the critical com-
position. We calle2 the tetragonal strain ande3 the shear
strain. In this paper we use a nonlinear elastic energy density
of the form

fel =
1
2Ke1

2 + Fsc,e2,e3d. s2.6d

The first term represents the elastic energy due to dilation
with K being the bulk modulus. The second term arises from
anisotropic shear deformations defined for arbitrary values of
e2 ande3. Assuming a square lattice structure,12 we set

F =
m2

4p2f1 − coss2pe2dg +
m3

4p2f1 − coss2pe3dg. s2.7d

The principal crystal axes are along or make angles of ±p /4
with respect to thex or y axis. In Fig. 1 we plotF as a
function ofe2 ande3 for the casem2=m3=m0 in units of m0.
If the system is homogeneous, elastic stability is attained for
]2F /]e2

2.0 and]2F /]e3
2.0 or in the regionsue2−nu,1/4

and ue3−mu,1/4 with n andm being integer values.12

For small strainsue2u!1 andue3u!1, it follows the usual
standard form11

F > 1
2m2e2

2 + 1
2m3e3

2, s2.8d

in the linear elasticity theory. Therefore,

m2 = 1
2sC11 − C12d, m3 = C44, s2.9d

in terms of the usual elastic moduliC11, C12, andC44.
11 In

the original theory5 the isotropic linear elasticity with con-

stant m2=m3 was assumed. Subsequent theories treated the
case of the cubic linear elasticity with constantm2 and
m3.

2–4,6,22In the present paper, whileK is a constant,m2 and
m3 depend on the composition as

m2 = m20 + m21c, m3 = m30 + m31c. s2.10d

If m21.0 andm31.0, the regions with larger(smaller) c are
harder(softer) than those with smaller(larger) c. It is known
that thiselastic inhomogeneitygives rise to asymmetric elas-
tic deformations in two-phase structures and eventual pin-
ning of the domain growth.4,23,24

In our theoryFsc ,e2,e3d in Eq. (2.7) is the simplest pe-
riodic function of e2 and e3 with period 1. The periodicity
arises from the fact that the square lattice is invariant with
respect to a slip of the crystal structure by a unit lattice
constant along a line parallel to thex or y axis. Notice that,
under rotation of the reference frame byu, e2 and e3 are
changed toe28 ande38, respectively, with12

e28 = e2 cos 2u + e3 sin 2u,

e38 = − e2 sin 2u + e3 cos 2u. s2.11d

For u=p /2 we havee28=−e2 ande38=−e3, so fel in Eq. (2.7)
remains invariant. Foru=p /4 we havee28=e3 and e38=−e2
and recognize that the roles of tetragonal and shear strains
are exchanged. Form2=m3, the linear elasticity in Eq.(2.8)
becomes isotropic, but the nonlinear elasticity is still aniso-
tropic [from the fourth-order terms in the expansion ofF in
Eq. (2.7) in powers ofe2 ande3].

The elastic stress tensorsJ=hsi jj is expressed as

sxx = Ke1 + ac + m2 sin s2pe2d/2p,

syy = Ke1 + ac − m2 sin s2pe2d/2p,

sxy = syx = m3 sins2pe3d/2p. s2.12d

In the linear elasticity, sins2pe2d /2p and sins2pe3d /2p are
replaced bye2 ande3, respectively. Notice the relation

FIG. 1. Normalized shear deformation energyFse2,e3d /m0 for
the casem2=m3=m0. The elastically stable regions are meshed with
solid lines on the surface.
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¹ · sJ = −
d

du
F, s2.13d

wherec is fixed in the functional derivativedF /du.
The mechanical equilibrium condition¹ ·sJ=0 is equiva-

lent to the extremum conditiondF /du=0. In the coherent
case this condition may be assumed even in dynamics. In
fact, using this condition in the linear elasticity, the elastic
field has been expressed in terms ofc in the previous theo-
ries(see the appendix).1–6 We then find the following.(i) The
typical strain around domains is given by4

e0 = aDc/L0, s2.14d

whereDc=Dc /2 is the composition difference between the
two phases and

L0 = K + m20 s2.15d

is the longitudinal elastic modulus. This strain needs to be
small(e0,1/4 approximately) as long as the system stays in
the coherent regime.(ii ) As will be shown in the the Appen-
dix, in the limit of weak cubic elasticity and weak elastic
inhomogeneity, one-phase states become linearly unstable
for kBfT−T0+Tkcl2/2g /v0,a2/L0. At the critical composi-
tion kcl=0 this condition becomesT,Ts with

Ts = T0 + v0a2/L0kB. s2.16d

(iii ) Furthermore, Eq.(A.5) suggests that the typical domain
size in steady pinned states is a decreasing function of the
quench depthTs−T.

III. DYNAMIC EQUATIONS

In the incoherent case the mechanical equilibrium does
not hold around dislocation cores when dislocations are cre-
ated and when they are moving.12 We thus need to set up the
dynamic equation for the elastic displacementu. In this pa-
per the lattice velocityv=]u /]t obeys the momentum
equation11

r
]v
]t

= h0¹
2v + ¹ · sJ . s3.1d

The mass densityr and the shear viscosityh0 are constants.
We neglect the bulk viscosity terms~¹ ·vd in Eq. (3.1) for
simplicity.12 In our model the sound waves relax owing to
this viscous damping and the mechanical equilibrium¹ ·sJ
=0 is rapidly attained unlessh0 is very small. Note that the
nonlinear terms in Eq.(3.1) are only those insi j in Eq.
(2.12).

The composition obeys the diffusive equation

]c

]t
= ¹ · lscd ¹

dF

dc
. s3.2d

The kinetic coefficient depends onc as25,26

lscd = l0s1 − c2d = 4l0cAcB, s3.3d

wherel0 is a constant. Hereu is fixed in the chemical po-
tential differencedF /dc, so

dF

dc
=

kB

v0
FT

2
lnS1 + c

1 − c
D − T0cG − C¹2c + ae1

+
m21

4p2f1 − coss2pe2dg +
m31

4p2f1 − coss2pe3dg.

s3.4d

The last two terms arise from the elastic inhomogeneity. If
lscd is of the form of Eq. (3.3), the diffusion equation
]cA/]t=D0¹

2cAs]cB/]t=D0¹
2cBd follows in the dilute limit

cA→0scB→0d with

D0 = l0kBTv0
−1, s3.5d

where the coupling to the elastic field becomes negligible. In
usual solid mixtures the diffusion is very slow and vacancies
are in many cases crucial for a microscopic description of
diffusion.26 Effects of such point defects are not treated in
the present theory.

FIG. 2. Displacement vector for a slip(dislocation pair) making
an angle of 3p /4 (upper plate) and 0(lower plate) with respect to
thex (horizontal) axis in a one-phase steady state atT/T0=2.5. The
arrows are from the initial position in a perfect crystal to the de-
formed position. The degree of darkness represents the
composition.

DISLOCATION FORMATION IN TWO-PHASE ALLOYS PHYSICAL REVIEW B70, 184114(2004)

184114-3



The total free energyFtot=F+edrrv2/2 including the ki-
netic energy then changes in time as

d

dt
Ftot = −E drFo

i j

h0s¹iv jd2 + lscdU ¹
dF

dc
U2G .

s3.6d

Here the surface integrals have been omitted, which vanish if
the boundaries are fixed and there is no flux of the atoms
from outside(and also if the periodic boundary condition is
imposed in simulations). The above time-derivative is
nonpositive-definite. As a result, the equilibrium is attained
whenv= ¹ ·sJ=0 anddF /dc=const.

If the lattice is deformed significantly, we should add the
convective term −¹ scvd on the right-hand side of Eq.(3.2),

treating Eq.(3.2) as the equation in the Euler description. If
its presence is assumed, another term of the form
−c¹dF /dc becomes also needed on the right-hand side of
Eq. (3.1). With these two terms we again havedFtot/dt%0.
These two terms are well known in critical dynamics of
fluids.4 However, in our solid case, the magnitude of the
displacementDu=e0

t dt8vsr ,t8d remains small and these two
terms give rise to no essential differences in our results at not
large applied strains.27

Also note that the dynamic Eqs.(3.2) and (3.3) may be
treated as Langevin equations with addition of the random
noise terms related to the kinetic coefficientslscd andh0 via
the fluctuation-dissipation relations.4 In this paper, however,
we neglect the random noise, because the thermal energy
kBT will be assumed to be much smaller than the typical
energy of elastic deformations.

IV. NUMERICAL RESULTS

A. Method

We integrated Eqs.(3.1) and(3.2) in two dimensions on a
2563256 square lattice. The mesh sizeDx was set equal to
the lattice constanta in the reference state withu=0, so the
system length isL0=256a. The vectorsu andv are defined at
the lattice pointssn,md, while the strains, the tensors, and the
composition are defined on the middle pointssn+1/2,m
+1/2d. These are needed to realize well-defined microscopic
slips in our numerical scheme.12 The periodic boundary con-
dition was imposed except the simulation of applying
uniaxial deformation(Figs. 13 and 14). Because the time
scale ofu is shorter than that ofc, we integrated Eq.(3.1)
using an implicit Crank-Nicolson method. Space and time
will be measured in units ofa and

t0 = sr/m20d1/2a, s4.1d

respectively, wherem20 is defined by Eq. (2.10) and
sm20/rd1/2 is the transverse sound velocity propagating in

FIG. 3. Displacement vector for a slip(dislocation pair) in a
two-phase steady state atT/T0=1.7 obtained from the configuration
in Fig. 2 after quenching. The arrows are from the initial position in
a perfect crystal to the deformed position. The dislocation cores are
trapped at the interface regions.

FIG. 4. Hard domain in a steady state atT/T0=2. The displace-
ment in the square region will be displayed in Fig. 5.
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the11 direction. The free energies and the free energy densi-
ties are measured in units ofm20a

2 andm20, respectively. For
simplicity, the scaled timet0

−1t, position vectora−1r, and dis-
placement vectora−1u will be written ast, r, andu, respec-
tively, in the same notation.

In this paper we setK /m20=4.5, a /m20=0.6, C/a2m20
=0.05 andkBT0/v0m20=0.05, whereT0 is the mean-field
critical temperature in Eq.(2.4). SinceT,T0 hereafter, the

elastic energy to create a single slips,m20v0d is much larger
than kBT in our simulations. Furthermore, we assume weak
cubic elastic anisotropy withm30/m20=1.1 and moderate
elastic inhomogeneity withm21=m31=0.6m20.

The dimensionless kinetic coefficients are given by

l0
* = l0t0m20a

−2, h0
* = h0/t0m20. s4.2d

We setl0
* =10−4 andh0

* =0.1. Then,

l0
* /m0

* = D0r/h0 , 10−3. s4.3d

Since the relaxation rate of a sound with wave-numberk is
h0k

2/r, the time scale ofc becomes longer than that of the
elastic field by three orders of magnitude. In real solid alloys,
these two time scales are much more distinctly separated,
probably except for hydrogen-metal systems where the pro-
tons diffuse quickly.4

In homogeneous one-phase states we havee2=e3=0 and
e1=−ac /K. Here, well known is a parameterh= u]a/]cu /a
representing the strength of the composition dependence of
the lattice constanta in a mixture.5 In our case we haveh
=a /2K=0.067 and the spinodal temperatureTs in Eq. (2.16)
becomes 2.31.

B. Slips and composition changes

Edge dislocations appear in the form of slips or dipole
pairs,12 because a single isolated dislocation requires a very
large elastic energy. Slips are thus fundamental units of plas-
tic deformations. In Fig. 2 we show the displacement and the
composition around typical slips in a one-phase steady state
with length 10Î2a in the upper plate and 10a in the lower
plate. Here we initially prepared a slip given by the linear
elasticity theory12 at the critical compositionskcl=0d and let
u andc relax until the steady state was achieved. The tem-
perature was kept atT/T0=2.5 and no phase separation oc-
curred. As in the previous simulations,17,18 we can see Cot-

FIG. 5. Upper plate: Coherent elastic displacementucoh just be-
fore birth of dislocations at deep quenching atT/T0=1. Lower
plate: Incoherent elastic displacement after appearance of
dislocations.

FIG. 6. Snapshot ofe in Eq. (4.4) after dislocation formation,
which is zero within the hard domain and nonvanishing outside.
The slip lines end at dislocations.
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trell atmospheres around the dislocation cores. The
maximum and minimum ofc at the lattice points close to the
dislocation cores are of order ±0.6. Cottrell’s result is ob-
tained as follows: LetT be much higher thanT0 anda2/L0
and the gradient term be neglected; then, the condition
dF /dc=const. yields cA/ s1−cAd=const. exps−U /kBTd,
whereU=v0ae1.

28 In our case the maximum ofuUu /kBT at
the lattice points is of order 1 and the accumulation is not
very strong.

As a next step, starting with the configuration in Fig. 2,
we lowered the temperature toT/T0=2 to induce spinodal
decomposition. Subsequently the Cottrell atmospheres grew
into domains and the dislocation cores stayed at the interface
regions. The domain size attained finally was of order 50a.
Figure 3 illustrates the displacement and the composition in
the final steady state, where the maximum and minimum of
c are about ±0.9. Léonard and Desai16 obtained similar com-
position profiles in spinodal decomposition, where the elastic
field of dislocations(given by the linear elasticity theory)
was fixed in space and time.

Mathematically, slips in steady states satisfydF /du=0
and dF /dc=const. Without externally applied strains, they
are metastable owing to the Peierls potential energy arising
from the discreteness of the lattice structure.12 Although not
discussed in this paper, slips become unstable against expan-
sion or shrinkage with increasing applied strain.

C. Dislocation formation around a hard domain

Figure 4 shows a single large hard(A-rich) domain at the
center in the coherent condition at shallow quenchingT/T0
=2 after a long equilibration time. Herec is about 0.7 inside
the domain and about −0.7 outside. Its shape slightly devi-
ates from sphericity owing to the weak cubic anisotropy as-
sumed in this paper. We next performed a second deeper
quenching toT/T0=1. Subsequent diffusional adjustment of
the composition proceeded very slowly, but a discontinuity
of the order parameterDc about 1.8 was established rela-
tively rapidly across the interface.4 As a result, at a time
about 1000 after the second quenching, the maximum ofue2u
reached 1/4, the value at the stability limit, in the interface
region[see the sentences below Eq.(2.7)]. We then observed
formation of dislocations and generation of sound waves
emitted from the dislocations. The upper panel of Fig. 5
shows the coherent elastic displacementucoh just before the
dislocation formation, while the lower panel shows the sub-
sequent additional incoherent changedu=u−ucoh after a
time interval of 1000. The free energyF in the state in the
lower panel is smaller than that in the upper panel by 152.9
in units of m20a

2. More details are as folllows:(i) two pairs
of dislocation dipoles(four dislocations) appeared simulta-
neously in a narrow region;(ii ) two of them glided preferen-
tially into the softer region forming two slips perpendicular
to each other; and(iii ) slips collided in many cases and
stopped far from the droplet, resulting in a nearly steady
elastic deformation. Thus a half of the dislocation cores
stayed at the interface and the others were distributed around
the domain. These three processes took only a short time of
order 100.

After the above dislocation formation at a relatively early
stage, the composition changed very slowly. We show three
figures at t=23 000. In Fig. 6 we displays the following
strain:

e= se2
2 + e3

2d1/2, s4.4d

which is invariant with respect to the rotational transforma-
tion (2.11). The slips make an angle of ±p /4 with respect to
the x axis in the regions with largeue2u (in the uniaxially
deformed regions), while they are parallel to thex or y axis
in the corner regions with largeue3u.12 We also notice that the
dislocation formation took place with the symmetry axis in
the11 direction for our special geometry. Figure 7 gives the
free energy densityf in Eq. (2.3), where the peaks outside
the domain represent the dislocation cores. In the interface
region it exhibits a clifflike structure arising from the gradi-
ent term and higher peaks arising from the dislocation cores.
Figure 8 shows the order parameterc, where we can see
Cottrell atmospheres around the dislocation cores surround-
ing the domain. The system is still transient and there is still

FIG. 7. Snapshot of the free energy densityf in Eq. (2.3). The
peaks are located near the dislocation cores and the clifflike struc-
ture represents the interface free energy density.

FIG. 8. Snapshot of the order parameter around a hard domain
in the incoherent case obtained after a two-step quench. The peak
structure at the interface arises because the system away from the
interface is still in a transient state. The peaks around the disloca-
tion cores in the outer soft region represent Cottrell atmospheres
(but the minima paired are not seen in the figure).
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a small composition flux through the interface.

D. Dislocation formation in a soft network

Next we examine dislocation formation when hard rect-
angular domains are densely distributed and wrapped by a
percolated soft network. As in Fig. 9, we prepared such a
steady domain structure atT/T0=2 in the coherent condition.
As in the previous simulations,23,24 the hard domains(in
gray) are elastically isotropic, while the soft network(in
white) is mostly uniaxially stretched. That is, in the soft

stripes between the two adjacent hard domains, we obtain
e2,0.2 in the horizontal stripes ande2,−0.2 in the vertical
stripes. We then quenchedT to T/T0=1 to induce the com-
position readjustment. Figure 10 displays the resultant time
evolution of the total free energyF=edr f and the snapshots
of e in Eq. (4.4) at the points A,…, and E. It demonstrates
that F mainly decreases due to the composition change but
sometimes due to appearance and gliding of slips in the soft
stripes. Note that the overall composition adjustment occurs
slowly on the time scale ofR2/D0=105−106 whereR is the
domain size. In Fig. 11 we show the displacementu within
the square window in B, C, and D, respectively, while in Fig.
12 the bird views of the free energy densityf the square
window are given att=0 and 4475 after the second quench.
Figure 12 clearly illustrates appearance of the peaks repre-
senting the dislocation cores.

E. Uniaxial stretching in two-phase states

Finally we apply a constant uniaxial deformation to ini-
tially coherent states withkcl=0 to induce plastic flow. That
is, we set ux=uy=0 at the bottomsy=0d and ux=−uy

=eL0/2 at the topsy=L0d. The applied strain rate was fixed
at ė=10−4, soe= ėt with t being the time after application of
the deformation. In Fig. 13 we plot the average normal stress
N1 versus the applied straine for T/T0=3, 2.4, and 2(upper
plate), where

FIG. 9. Domain structure obtained at a shall quenchT/T0=2 in
the coherent condition.

FIG. 10. Relaxation of the total free energyF in units of m20v0=20kBT0 after a two-step quench fromT/T0=2 to 1 with the initial
configuration in Fig. 9. It mostly relaxes due to the gradual composition adjustment, but it sometimes relaxed due to dislocation formation
as enlarged in the inset. Snapshots ofe at the points A,E are given in the lower plates.
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N1 = ksxx − syyl =
1

p
km2 sins2pe2dl, s4.5d

wherek¯l denotes taking the spatial average. The snapshots
of e in Eq. (4.4) are also given at the points a, b, and c(lower
plates). For T/T0=3 the system is in a homogeneous one-
phase state and random numbers with variance 0.01 were
assigned toc at the lattice points att=0. In the initial state at
T/T0=2.4 the maximum and minimum ofc ande2 are ±0.32
and ±0.05, respectively. AtT/T0=2 these numbers are mag-

FIG. 13. Stress-strain curves after application
of uniaxial stretchinge= ėt with ė=10−4 for
T/T0=3, 2.4, and 2. There is no dislocation att
=0. Snapshots ofe in Eq. (4.4) at points a, b, and
c are given below, which represent slip patterns
in plastic flow.

FIG. 11. Elastic displacementu in the marked regions B, C,
and D.

FIG. 12. Bird views of the free energy densityf in units of
m20=20kBT0v0

−1 at t=0 and 4475 after the two-step quench in Fig.
10.
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nified to ±0.75 and ±0.20. All the initial states are coherent
without dislocations. ForT/T0=3 the elastic instability oc-
curs ate=1/4 resulting in a fine mesh of slips as in the lower
left plate. ForT/T0=2.4 the onset point of the slip formation
is decreased toe=0.17. ForT/T0=3 the onset is very early at
0.015, the stress-strain relation exhibits zig-zag behavior
upon appearance of slips, and the stress continue to increase
on the average(up to the upper bound ofe given by 0.35 in
the simulation). Figure 14 consists of snapshots ofe in Eq.
(4.4) and the shear deformation energy densityF in Eq. (2.7)
in units of m20. We can see the quadratic appearance of dis-
locations at the center of the uniaxially stretched stripes at
e=0.05(top plate), gliding of the dislocations and pinning at
the interfaces ate=0.1 (top and middle plates), and thicken-
ing of the slips intoshear bandsat e=0.2 (bottom plate). In
our simulations, when soft regions between hard domains are
narrow, they can be strongly deformed uniaxially and dislo-
cations often appear at their middle points.

We mention a creep experiment in the presence of high
volume fractions ofg8 precipitates,9 where softer disordered
g regions were observed to be filled with dislocation net-
works after large deformations.

V. SUMMARY AND CONCLUDING REMARKS

In summary, we have presented a coarse-grained phase
field model of plastic deformations in two-phase alloys.
Though our simulations have been performed in two dimen-
sions, a number of insights into the very complex processes

of plasticity have been gained. We mention them and give
some remarks.

(1) Performing a two-step quench, we have numerically
examined dislocation formation around the interface regions,
which occur spontaneously in deeply quenched phase sepa-
ration. Experimentally,10 dislocation formation has been ob-
served around growingg8 sAl3Scd precipitates at low volume
fractions when the radii exceeded a threshold about 20 nm.
Such spontaneous dislocation formation with domain growth
has not yet been studied theoretically.

(2) We have found that dislocations glide preferentially
into the softer regions with smaller shear moduli and tend to
be trapped in the interface regions in agreement with a num-
ber of observations.7 Theoretically, the composition depen-
dence of the elastic moduli(elastic inhomogeneity) is a cru-
cial ingredient to explain the experiments.

(3) We have applied uniaxial strain to create multiple
slips in two-phase alloys which were initially in the coherent
condition. The dislocation formation starts in the mostly
stretched middle points of the soft stripes. A stress-strain
curve in Fig. 13 at deep quenching is very different from the
curves in one-phase states. In real two-phase alloys, a similar
monotonic increase of the stress without overshoot has been
observed, but a considerable amount of defects should pre-
exist in such experiments particularly in work-hardened
samples.7,13,20

This work is a theoretical step to understand complex
phenomena of incoherency in solids. Finally, we mention
two future problems which could be studied numerically in
our scheme.

(1) The composition has been taken as a single-order pa-
rameter. We should investigate dislocation formation in more
general phase separation processes involving an order-
disorder phase transition2,4,16 and in diffusionless(Martensi-
tic) structural phase transitions.2,4

(2) Dislocations move under applied strain. The motion is
complicated when they are coupled with an order parameter
and when the time scale of the order parameter is slow.18,29
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APPENDIX

Here we assume weak elastic anisotropy and weak elastic
inhomogeneity in the coherent condition in two dimensions,
supposing shallow quenching. Then we may eliminate the
elastic field in terms ofc using the mechanical equilibrium
condition ¹ ·sJ=0 in the linear elasticity. We consider the
space integral of the last two terms in the free energy density
in Eq. (2.3): DF=edrfae1c+ felg. We assume thatum21u and
um31u are much smaller thanL0=K+m20 and that ja

FIG. 14. Snapshots ofe in Eq. (4.4) and the shear deformation
energy densityF in Eq. (2.7) at T/T0=2 for e=0.05, 0.1, and 0.2.
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=2sm20/m30−1d is small. ThenDF may be rewritten as4,23,24

DF =E drF−
a2

2L0
c2 +

1

2
tcubu¹x¹ywu2G +E drfg2cus¹x

2

− ¹y
2dwu2 + g3cu¹x¹ywu2g, sA.1d

wherew is obtained from the Laplace equation

¹2w = c − kcl, sA.2d

with kcl being the average order parameter. In the first line
of Eq. (A.1) the bilinear terms are written with

tcub= − s2a2/L0
2dm20ja. sA.3d

The term proportional totcub gives rise to anisotropic
domains.22 The second line consists of the third-order terms
with

g2 = m21a
2/2L0

2, g3 = 2m31a
2/L0

2. sA.4d

The third-order terms are known to give rise to pinning of
domain growth(and some frustration effects wheng2 andg3
have different signs).23,24

In our simulations we setja=2s1/1.1−1d>−0.18 and
tcub>0.0043m20, so the domains tend to become square or
rectangular with interfaces parallel to thex or y axis. Fur-
thermore, we setg2=g3/4>0.0035m20. For m21,m31 the
typical domains in pinned two-phase statesRE is given by23

RE , g/fm21sDcd3g, sA.5d

where g is the surface tension andDc is the composition
difference between the two phases. ThusRE decreases as the
quenching becomes deeper.
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