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Using conformal perturbation theory, we show that, for some classes of the one-dimensional
quantum liquids that possess the Luttinger liquid fixed point in the low-energy limit, the Drude weight
at finite temperatures is nonvanishing, even when the system is nonintegrable and the total current is not
conserved. We also obtain the asymptotically exact low-temperature formula of the Drude weight for
Heisenberg XXZ spin chains, which agrees quite well with recent numerical data.
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Quantum one-dimensional (1D) systems show anoma-
lous transport properties quite different from higher
dimensional systems [1–16]. In particular, Zotos and
co-workers showed the remarkable fact that in integrable
1D systems the Drude weight is nonvanishing at finite
temperatures T, and the transport is ballistic, because of
the presence of nontrivial conservation laws [1,2]. The
Drude weight is a coefficient of the singular part of the
conductivity: ��!� � �D�T���!� � �regular part�. Their
proposal has been followed up by extensive studies based
on various techniques, such as the Bethe ansatz [3–5,9],
numerical methods [6–8,10], and bosonization [12].
Some authors also investigated how this anomalous trans-
port is affected by the perturbations that break the in-
tegrability [6–8,10]. Recent numerical studies suggest
that some classes of nonintegrable 1D systems may also
show the nonzero Drude weight at finite tempera-
tures, implying that the integrability is not a necessary
condition for D�T� � 0 [6–8]. However, the relation be-
tween the finite Drude weight and nonintegrable pertur-
bations has not yet been fully elucidated. The main
purpose of this Letter is to address this issue. Using
conformal perturbation theory, we explore the effects
of integrability-breaking perturbations on the finite-
temperature Drude weight in 1D Luttinger liquids includ-
ing spin systems and one-component fermion systems. As
a by-product, we also obtain the asymptotically exact
low-temperature formula of the Drude weight for Heisen-
berg XXZ spin chains.

The Hamiltonian consists of the low-energy fixed point
part HG and the irrelevant perturbation H0 that may
render the system nonintegrable. Namely, H �
HG �H0. HG is given by the Hamiltonian of the c � 1
Gaussian model [17],

HG �
Z L

0

dx
2
v��@x��x��

2 � �@x��x��
2�; (1)

for the system of the linear size L with the velocity v.
Here the boson fields � and � satisfy the canonical
commutation relation, ���x�; @x��x0�� � i��x� x0�. The

charge density (or spin density) operator and the corre-
sponding current operator, which satisfy the continuity
equation, are, respectively, given by ��x� �

����
K

p
@x�=

����
�

p

and J�x� � �
����
K

p
@t�=

����
�

p
. Here K is the Luttinger liquid

parameter. The irrelevant perturbation H0 is expressed
in terms of primary fields of the c � 1 universality class.
We are concerned with the case that the total current
J �

R
dxJ�x� is not conserved by the interaction H0:

�H0; J� � 0. This happens when H0 contains the cosine
interaction cos����x�� which stems from Umklapp pro-
cesses. In general, H � HG �H0 is not integrable. For
instance, the multiple-frequency cosine interaction such
as

R
dx

P
nfgn cos��n��x�� � g0n cos��n��x��g breaks the

integrability of the system [18].
To show the presence of nonvanishing Drude weight,

following Zotos et al. [2], we exploit the Mazur inequal-
ity which gives the lower bound for the Drude weight. The
lower bound is expressed in terms of nontrivial conserved
quantities, which can be found in our case as follows.
Introducing a cylindrical geometry with a system size L,
we write the spatial translation operator as [19],

I �
Z L

0

dx
2�

�T�x� � �TT�x�� �
2�
L

�L0 � �LL0�; (2)

where T�x� [ �TT�x�] is the holomorphic (antiholomorphic)
part of the stress tensor. Ln and �LLn are the Virasoro
generators. For any local field O�x�, the commutation
relation �I; O�x�� � �i@xO�x� holds. Note that O�x�
should not be multiplied by a c-number function f�x�,
because I does not operate on f�x� as translation [20]. In
the case that the Hamiltonian is written in terms of local
operators, H �

R
dxO�x�, we have �I; H� � 0 under the

periodic boundary condition. Thus, I is a nontrivial con-
served quantity in the perturbed system. An important
role played by the conservation law �I; H� � 0 for trans-
port properties was also noticed by Rosch and Andrei
previously [12,21]. For the c � 1 Gaussian model (1), I is
expressed as I � v

R
dx@x��x�@x��x�. This is nothing but

the free field representation of the Virasoro generator (2).
Using the equation of motion of ��x� in the presence of

P H Y S I C A L R E V I E W L E T T E R S week ending
16 MAY 2003VOLUME 90, NUMBER 19

197202-1 0031-9007=03=90(19)=197202(4)$20.00  2003 The American Physical Society 197202-1



H0, we rewrite I as I �
R
dx@t��x�@x��x� � I0 with I0 �

�i
R
dx�H0; ��x��@x��x�. The total momentum is given

by P � I � pFJ=K, where pF is the Fermi momentum.
For the Hamiltonian H � HG �H0, although the system
is translationally invariant �I; H� � 0 as expected for
continuum field theory, the charge current (or spin cur-
rent) and the total momentum are not conserved, i.e.,
�P;H� � 0, and hence its transport property is nontrivial.
With the conserved quantity I, the Mazur inequality
reads [2]

D�T� 

1

LT
hJIi2

hI2i
: (3)

In general, the system has the reflection symmetry
(particle-hole symmetry in terms of fermion fields) �!
��, which leads to hJIi � 0. However, in the presence of
a symmetry-breaking field �h@x� (magnetic field in spin
systems or chemical potential in fermion systems), hJIi
may be nonzero. We can easily see that this external field
still conserves I. The symmetry-breaking field is incor-
porated into the shift of the boson field ~���x� � ��x� �
hx. Then we have

hJIi
LT

�
1

LT

�
�h

����
�
K

r
hJ2i � hJI0i

�

�
�h
T

����
�
K

r Z 1

0
d!Im�R�!� coth

�
!
2T

�
�
hJI0i
LT

; (4)

with

�R�!� �
�i
L

Z 1

0
dth�J�q; t�; J��q; 0��iei!tjq!0: (5)

Here we have used the fluctuation-dissipation theorem in
the last line of (4). In the case of Im�R�!� � 0, the
conductivity is given by Re���!�� � Kv��!�, showing
the presence of the finite-temperature Drude weight [see
(6) below]. In the other cases, the first term of the right-
hand side of (4) is nonvanishing, because Im�R�!� is
non-negative. Note that the first term of (4) cannot be
canceled with the second term for the following reason.
Let a be the lattice constant and s� 2 the dimension of
the leading term of H0. Then the second term of (4) is
proportional to as�2, of which the order in terms of a is
different from that of the first term. Hence, these two
terms cannot be canceled with each other and give a
nonzero lower bound for the Drude weight (3) provided
that hI2i=LT is finite. It is easily seen that hI2i=LT is never

divergent, since it is given by the derivative of the free
energy, and the free energy has no thermodynamic singu-
larities in 1D systems. As a result, we have shown that as
long as the translational invariance is recovered in the
scaling limit (i.e., I is conserved), the Drude weight at
finite temperatures is nonvanishing for the 1D systems
that have the Luttinger liquid fixed point in the presence
of particle-hole symmetry-breaking fields (magnetic
fields in spin systems), even if the system is nonintegrable,
and the charge current (or spin current) is not conserved.
One may question to what extent this argument is relevant
to lattice systems, which are, at short-length scale, not
translationally invariant. As the low-energy fixed point of
the systems is the Luttinger liquid, the correlation length
at T � 0 is infinite, characterizing the critical state
described by the c � 1 universality class. Thus, at suffi-
ciently low but finite temperatures, the correlation length
is much longer than the lattice constant, rendering the
systems approximately translationally invariant, pro-
vided that there exists no other length scale in the
Hamiltonian. It should be stressed that, as mentioned
before, to preserve the conservation law of I, the inter-
action H0 must not contain the c-number function f�x�
that introduces another length scale [20].

Hitherto, our argument is based on the nonperturbative
analysis. However, it is restricted to the case with sym-
metry-breaking fields. We investigate the case without the
external fields, by computing the conductivity perturba-
tively from the Kubo formula,

��!� �
i
!

�
Kv
�

��R�!�
	
: (6)

For concreteness, we introduce a specific model given by

H0 �
Z
dx

X
m�1

gm cos��m��x��: (7)

In general, the multiple-frequency cosine terms (7) break
the integrability of the system [18]. It is noted that the
ratio of any two �m’s must be rational to ensure that the
perturbative expansion in term of H0 does not generate
relevant interactions which invalidate the Luttinger liquid
fixed point. For simplicity, we assume �m � m�1. Let us
first consider the case that gn � 0 for n 
 2 and only a
single cosine interaction exists. In this case, the system is
the standard sine-Gordon model, which is integrable. We
expand the imaginary time current-current correlation in
terms of g1,

��i!� �
Z
dx

Z 1=T

0
d,hT@,��x; ,�@,��0; 0�i0e�i!, �

X1
n�1

�
g1
2

�
n 1

n!

Z
dx

Z 1=T

0
d,

Z
d�1� . . . d�n�e�i!,

�
X

�i���1

hT@,��x; ,�@,��0; 0�e
i�1��1�ei�2��2� . . . ei�n��n�i0: (8)

Here
R
d�n� �

R
L
0 dxn

R1=T
0 d,n, ��n� � ��xn; ,n�, h� � �i0 is the average with respect to HG. Using the conformal Ward

identity, we rewrite the nth order term of (8) as

P H Y S I C A L R E V I E W L E T T E R S week ending
16 MAY 2003VOLUME 90, NUMBER 19

197202-2 197202-2



�
gn1
2nn!

X
i;j

�i�j�G�i!��2F�1�2...�n�i!�1� �ij��; (9)

where

F�1�2...�n�i!�1� �ij�� �
Z
d�1� . . . d�j� 1�d�j� 1� . . . d�n�hTei�1��1�ei�2��2� . . . ei�n��n�i0e

i!�,i�,j�; (10)

G�i!� �
Z
dx

Z 1=T

0
d,hT@,��x; ,���0; 0�i0e�i!,; (11)

with hT@,��x; ,���0; 0�i0 � i�T=4� coth���T=v��x�
iv,�� � c:c: For ! � 0, G�i!� � v=�i!� and for ! � 0,
G�0� � v=T. Correlators of vertex operators exp�i�i�� in
(10) are nonvanishing only for

Pn
i �i � 0 because of U(1)

symmetry. Then, without loss of generality, we can put
�2m�1 � �1, �2m � ��1, and n � 2m. It is difficult to

obtain the explicit expression of (10) as a function of !.
However, to show the presence of the Drude weight, it is
sufficient to investigate the low-frequency behavior of
F�1�2...�n�i!�1� �ij��. For this purpose, using the con-
formal transformation z � exp�2�Tw=v� (w � x� iv,),
we change the geometry of the system from a strip with a
width 1=T to a two-dimensional plane. The correlator of
vertex operators is transformed as

Z
d�1� . . . d�n� 1�hei�1��w1; �ww1� . . . e�i�1��wn; �wwn�i0e

�i!�,i�,n�

�
Z
d2z1jz1j

��2
1=4���2 . . . d2zn�1jzn�1j

��2
1=4���2jznj

�2
1=4�e�i!�,i�,n�

�
2�T
v

�
��2

1=2��n�4n�2
hei�1��z1;�zz1� . . . e�i�1��zn;�zzn�i0:

(12)

Here we have relabeled the index as n! j. Following
Konik and LeClair [22], we map the IR region to the
ultraviolet (UV) region by the conformal transforma-
tion z0 � 1=z. Note that under this transformation the
expression of the right-hand side of (12) is unchanged.
Thus, although the IR region of the w coordinate is
mapped to both the IR and UV regions of the z coordi-
nate, we need to consider only the UV behavior in the
z coordinate. Exploiting the short distance expansion
of operator product for the U(1) Gaussian theory [19],
we find that the dimension of hexp�i�1��z1; �zz1�� . . .
exp��i�1��zn; �zzn��i0 in the UV region is �2

1n=�2��, and
hence the dimension of the right-hand side of (12) is zero.
Therefore, the IR singularity of (10) is at most logarith-
mic, if it exists. We can apply the same argument to
dkF�1�2...�n�i!�1� �ij��=d�i!�

k and find that its dimen-
sion in the UV region of the z0 coordinate is also zero,
because the derivative with respect to! does not give rise
to an extra dimension in the right-hand side of (12).
Hence, F�1�2...�n�!�1� �ij�� has no singularity in the
limit of !! 0. After the analytic continuation in the
upper half plane i!! !� i0, we can expand (10) for
small !: F�1�2...�n�!�1� �ij�� � a0 � a1!�1� �ij� �
a2!

2�1� �ij� � � � . Substituting this into (9) and fromP
i�i � 0, we find that the expansion of �R�!� in terms

of g1 does not give rise to singularity stronger than 1=!.
Thus, the Drude weight term of ��!� is not eliminated by
resummation of higher-order singularities. A careful
treatment of the limit !! 0 for the second order term
of (9) verifies that the strongest singularity of ��!� is not
of order �1=!2, but �1=!. Actually, the presence of the
double pole 1=!2 is forbidden, because it breaks the non-
negativity of Re��!�. Consequently, we have the Drude
weight at finite temperatures as expected from the inte-
grability of the model.

It is straightforward to generalize the above argument
to the nonintegrable case with multiple cosine interac-
tions (7). The perturbative expansion gives the same
expressions as (8) and (9), except that �i takes the values
of �1, �2 � 2�1, �3 � 3�1; . . . , and so forth. Applying
the above argument to this case, we also find that the
dimension of F�1�2...�n�i!�1� �ij�� and its derivative
with respect to ! is zero, and that F�1�2...�n�i!�1�
�ij�� has no IR singularity for !! 0. This observation
leads to the conclusion that the 1=! singularity of ��!�
cannot be eliminated by the resummation of higher-order
singularities. Therefore, the finite-temperature Drude
weight exists for the nonintegrable model (1) and (7).
The above analysis generalizes Zotos et al.’s original
proposal partially to nonintegrable systems. This remark-
able result is physically understood as follows. The exis-
tence of nontrivial conservation law permits macroscopic
numbers of level crossing [23]. It is expected that, even
for nonintegrable systems, level crossing may be possible
provided that a certain nontrivial conservation law holds.
Then the presence of macroscopic numbers of degenerate
levels results in the nonvanishing Drude weight at finite
temperatures [6,11].

On the basis of the above perturbative analysis, we
calculate the Drude weight at low temperatures for
Heisenberg XXZ chains,

HXXZ � J
X
i

�Sxi S
x
i�1 � Syi S

y
i�1 ��SziS

z
i�1�; (13)

where � � � cos���2�. We consider only the massless
regime �1< � � 1. The low-energy effective Hamil-
tonian for this regime is completely obtained by
Lukyanov [24]. Using his result, we obtain the lead-
ing temperature dependence of the Drude weight at low
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temperatures. For 2=3<�2 < 1, up to logarithmic cor-
rections, it is given by

D�T� � D�0�
�
1� A

sin�2�=�2�

8��2 62�2a�T��4=�
2��4

	
;

(14)

A � B2

�
1

�2 ; 1�
2

�2

��
2�2cot2

�
�

�2

�
�  0

�
1

�2

�

�  0

�
1�

1

�2

�	
; (15)

where a � 2�1� �2�=�J sin���2��, D�0� � 1=�2�a�2�,
and B�x; y� � ��x���y�=��x� y�,  �x� � �0�x�=��x�.
For 0<�2 < 2=3, we have

D�T� � D�0�
�
1�

66� � 6�
12

�a�T�2
	
: (16)

The expressions for 6, 6�, and 6� are given by Eq. (2.24)
in Ref. [24]. At the isotropic point �2 � 1, logarithmic
corrections caused by marginal interaction are incorpo-
rated into the renormalization of the running coupling
constant, and we end up with

D�T� �
J
4

�
1�

g
2
�O�g2�

	
: (17)

Here g is determined by Eq. (3.18) in Ref. [24] with h �
0. D�T� is nonvanishing at the isotropic point in accor-
dance with Ref. [10]. The above formulas are applicable
only in the low-temperature region T � a�1. We show
the plot ofD�T� as a function of T for several values of �2

in Fig. 1. The result for �2 � 5=6 agrees well with the
recent quantum Monte Carlo (QMC) data obtained by
Alvarez and Gros [10]. As �2 decreases, the temperature
dependence becomes stronger. However, it should be cau-
tioned that, for small �2, the applicable temperature
range becomes narrower; e.g., for �2 � 1=12, a�1 �
0:1411. In principle, we can improve the formulas by
taking into account higher-order corrections.

In summary, we have shown that in a wide class of 1D
integrable and nonintegrable systems with the Luttinger
liquid fixed point, as long as the systems recover transla-
tional invariance in the scaling limit, the Drude weight is
nonvanishing at finite temperatures, even when the charge
current (or spin current) is not conserved.
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Education, Science, and Culture, Japan.
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FIG. 1. Plot of D�T� vs T for �2 � 1, 1=12, 1=8, 5=6, 3=5
(from bottom to top). For comparison, the QMC data for �2 �
5=6 is quoted from Ref. [10] (circles).
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