
Title Metal-insulator transition, spin gap generation, and charge
ordering in geometrically frustrated electron systems

Author(s) Fujimoto, S

Citation PHYSICAL REVIEW B (2003), 67(23)

Issue Date 2003-06-15

URL http://hdl.handle.net/2433/50020

Right Copyright 2003 American Physical Society

Type Journal Article

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39184511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Metal-insulator transition, spin gap generation, and charge ordering in geometrically
frustrated electron systems

Satoshi Fujimoto
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 24 February 2003; published 10 June 2003!

We investigate a~semi-!metal to insulator transition~MIT ! realized in geometrically frustrated electron
systems on the basis of the Hubbard model on a three-dimensional pyrochlore lattice and a two-dimensional
checkerboard lattice. Using the renormalization-group method and mean-field analysis, we show that in the
half-filling case, MIT occurs as a result of the interplay between geometrical frustration and electron correla-
tion. In the insulating phase, which has a spin gap, the spin rotational symmetry is not broken, while charge
ordering exists. The charge ordered state is stabilized so as to relax the geometrical frustration in the spin
degrees of freedom. We also discuss the distortion of the lattice structure caused by the charge ordering. The
results are successfully applied to the description of the MIT observed in the pyrochlore system Tl2Ru2O7.

DOI: 10.1103/PhysRevB.67.235102 PACS number~s!: 71.27.1a, 71.30.1h, 75.10.Lp

I. INTRODUCTION

Geometrical frustration in both localized and itinerant
electron systems is an important ingredient giving rise to rich
variety of condensed phases.1–8 In localized spin systems,
magnetic frustration suppresses a tendency toward a conven-
tional long-range order, and may stabilize some exotic state
such as a spin liquid or a valence bond crystal, as has been
extensively explored both experimentally1–8 and
theoretically.9–25 Also, for itinerant systems, it has been ar-
gued that geometrical frustration may cause some novel phe-
nomena such as heavy fermion state,26–32 anomalous Hall
effect induced by the chiral order,33,34 and so forth. Among
them, metal-to-insulator transition~MIT ! in geometrically
frustrated systems is an intriguing unsettled issue. It has been
found experimentally that the pyrochlore oxides, Tl2Ru2O7

and Cd2Os2O7, and the spinel compounds, CuIr2S4 and
MgTi2O4, exhibit MIT without magnetic long-range order at
finite critical temperatures.35–38 Since such systems possess
the fully frustrated lattice structure, referred to as a network
of corner-sharing tetrahedra~that is, a pyrochlore lattice!, the
magnetic properties of the insulating phase are not yet un-
derstood. Moreover, the mechanism of the MIT’s observed in
these systems is still an open problem. In contrast to the
localized spin systems, the presence of charge degrees of
freedom provides a route for the relaxation of magnetic frus-
tration. However, when electron correlation is sufficiently
strong, the magnetic frustration may still affect the low-
energy properties significantly. Thus, it is expected that geo-
metrical frustration plays an important role in the MIT’s.
From this point of view, in the present paper, we study the
interplay between electron correlation and geometrical frus-
tration in the Hubbard model on a three-dimensional~3D!
pyrochlore lattice and on a two-dimensional~2D! checker-
board lattice, the so-called 2D pyrochlore~Fig. 1!. Although
real pyrochlore oxides and spinel compounds have electronic
structure composed oft2g orbitals, the present study on these
simpler single-band models may provide important insight
into the role of geometrical frustration in MIT. Furthermore,
Tl2Ru2O7 has, apart from thet2g band, a nearly half-filled Tl

s band, whose important features are described by the 3D
pyrochlore Hubbard model.39 We believe that this model
may provide a useful understanding of the MIT undergone in
this material.

The noninteracting energy bands of these two Hubbard
models have a common interesting feature: They consist of a
flat band~or two degenerate flat bands! on the upper band
edge and a dispersive band that is tangent to the flat band~or
flat bands! at theG point.40 Itinerant ferromagnetism in the
case that the flat bands are partially occupied has been ex-
tensively studied by several authors so far.40,41 This particu-
lar band structure is due to the geometrical property ofline
graph in which the above 2D and 3D pyrochlore lattices are
classified. According to a theorem of the graph theory,42 a
tight-binding model on a line graph generated from a bipar-
tite graph withV vertices andE edges has flat bands with the
degeneracyD f5 lim

N→`
(E2V11)/N lying on the band

edge of dispersive bands. Here,N is the total number of unit
cells on the lattice. It should be noted that the existence of
the flat bands is analogous to the macroscopically large de-
generacy of the ground state of classical spin systems on line
graphs.9 Since line graphs consist of a network of complete
graphs which have a frustrated structure, the presence of the
flat bands is a result of geometrical frustration inherent in the
lattice structure. We would like to stress that, to study effects
of geometrical frustration in correlated electron systems, we
should distinguish two classes of geometrically frustrated
systems: one is the class of line graph and the other is not,
and does not possess flat bands. For example, a triangular
lattice is classified in the latter class. In this paper, we are
concerned with the former class, and show that, in the half-
filling case, the geometrical frustration in the above models
drives the system into an insulating state with a spin gap as
well as a charge gap. Also, in the insulating state, the spin
rotational symmetry is not broken, while charge ordering ex-
ists. The results of this paper have been partially reported in
Ref. 43 before.

The paper is organized as follows. In Sec. II, we introduce
the model and present briefly some basic results derived by
perturbative expansion in terms of electron-electron interac-
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tion. In Sec. III, the renormalization-group method applied to
the pyrochlore Hubbard models is developed. The results for
the 2D and 3D cases are given in Secs. IV and V, respec-
tively. In particular, we discuss the~semi-!metal-to-insulator
transition caused by geometrical frustration, and the proper-
ties of the insulating state in which both spin and charge
excitations have a gap. We confirm our results with the use
of the mean-field analysis. The effect of the coupling with
lattice degrees of freedom in the presence of the charge or-
dering is also discussed. Summary is given in Sec. VI.

II. MODEL HAMILTONIANS AND SOME PERTURBATIVE
RESULTS

Our system is described by the single-band Hubbard
model defined on the 2D checkerboard lattice or the 3D py-
rochlore lattice shown in Fig. 1. Diagonalizing the kinetic
term, we write the Hamiltonian as

H5 (
m51

m

(
ks

Ekmakms
† akms1

U

N (
k,k8,q

(
abgd

3Gabgd
0 ~k2q,k81q;k8,k!ak2qa↑

† ak81qb↓
† ak8g↓akd↑ ,

Gabgd
0 ~k1 ,k2 ;k3 ,k4!5 (

n51

m

sna~k1!snb~k2!sng~k3!snd~k4!,

~1!

wherem52 in the 2D case andm54 in the 3D case.akms

(akms
† ) is the annihilation~creation! operator for electron

with momentumk and spins in the m band.
In the 2D case

Ek152, ~2!

Ek254 coskxcosky22, ~3!

s11~k!5s22~k!5
sin@~kx1ky!/2#

A12coskxcosky

, ~4!

s21~k!52s12~k!5
sin@~kx2ky!/2#

A12coskxcosky

. ~5!

In the 3D case

Ek15Ek252, ~6!

Ek352212A11tk, ~7!

Ek452222A11tk, ~8!

tk5cos~2kx!cos~2ky!1cos~2ky!cos~2kz!

1cos~2kz!cos~2kx!. ~9!

Using the abbreviation,s(x6y)[sin(kx6ky), etc., we write
down sm1 ,sm2~k! in the 3D case

„s11~k!,s21~k!,s31~k!,s41~k!…

5„s~x1z!,s~y2z!,2s~x1y!,0…/n1 , ~10!

wheren65As(x6z)21s(y7z)21s(x1y)2 and

„s12~k!,s22~k!,s32~k!,s42~k!…

5„s~x1z!s~x2z!s~y2z!2s~y1z!@s~y2z!2

1s~x1y!2#,s~x1z!s~y1z!s~y2z!2s~x2z!

3@s~x1z!21s~x1y!2#,

2s~x1y!@s~x1z!s~y1z!

1s~x2z!s~y2z!#,s~x1y!n1
2
…/n2 , ~11!

for kx1kyÞ0, where n25n1„n1
2 n2

2 2@s(x1z)s(y1z)
1s(x2z)s(y2z)#2

…

1/2 and

„s12~k!,s22~k!,s32~k!,s42~k!…

5„2s~2x!,2s~2x!,2s~x2z!,2s~x1z!…

31/A2s~2x!214s~x2z!214s~x1z!2,

~12!

for kx1ky50. The expressions ofsm3(k) and sm4(k) are
very complicated. However in the following, we need only
sm3(k) for small k, which is given by

„s13~k!,s23~k!,s33~k!,s43~k!…

5~2kx2ky1kz ,kx1ky1kz ,

2kx1ky2kz ,kx2ky2kz!/2uku. ~13!

The annihilation operator of electrons at themth site in a unit
cell is given byckms5(n51

m smn(k)akns .
As mentioned in the Introduction, these systems have the

flat band~s!, Ek1 for the 2D case, andEk1 , Ek2 for the 3D
case. In the half-filling case,n51, on which we concentrate
henceforth, the flat band~s! is empty, while the dispersive
band~s! below the flat band~s! is fully occupied. In the non-
interacting half-filling case, the system is in a semimetal
state, since the Fermi velocity is vanishing, though there is
no excitation gap. In the following, we study how this state is
affected by electron correlation.

As shown in Ref. 27, at the half filling, the perturbative
calculation in U for Hamiltonian ~1! suffers from diver-
gences of the single-particle self-energy, due to the presence
of the flat band~s!. In the 2D case, the perturbative expansion
of the self-energy gives

ReS2D~«!;const1cU2ln~8t/«!1•••. ~14!

FIG. 1. 2D and 3D pyrochlore lattices.
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In the 3D case, we have

ReS3D~«!;const1c2U2Au«u1c3U4/Au«u1c4U4/u«u3/2

1•••. ~15!

These singular behaviors imply that some instability may be
induced by electron correlation. To pursue this possibility,
we will carry out the resummation of divergent terms using
the renormalization-group method in the following sections.

III. RENORMALIZATION-GROUP EQUATIONS

To treat the infrared divergences appeared in perturbative
expansion in a controlled manner, we exploit the
renormalization-group~RG! method. In previous application
of the RG method to electron systems,44–48 a momentum
cutoff that separates the neighborhood of the Fermi surface
from the higher momentum part is introduced. However, in

the presence of the flat band~s!, this procedure is not appli-
cable. To circumvent this problem, we introduce the infrared
energy cutoffL in the following manner:

cms~k,«n!5cms
. ~k,«n!Q~ u«nu2L!

1cms
, ~k,«n!Q~L2u«nu!. ~16!

Here, cms(k,«) is the Grassmann field corresponding to
akms .

Using a standard method,49–52 we obtain the RG equa-
tions of the single-particle self-energy for electrons in them
andn bands,Smn(k), and the four-point vertex functions for
electrons in thea, b, g, andd bands,Gabgd(k1 ,k2 ;k3 ,k4):

]Smn
L ~k!

]L
52(

k8
d~ u«n8u2L!Gab

L ~k8!Gmbna
(4)L ~k,k8;k,k8!,

~17!

]Gabgd
(4)L ~k1 ,k2 ;k3 ,k4!

]L
5(

k,k8
(

mnlk
@Q~ u«nu2L!d~ u«n8u2L!1Q~ u«n8u2L!d~ u«nu2L!#Gml

L ~k!Gnk
L ~k8!

3F1

2
Gabmn

(4)L ~k1 ,k2 ;k,k8!Glkgd
(4)L ~k,k8;k3 ,k4!dk11k2 ,k1k8

2Gamgn
(4)L ~k1 ,k;k3 ,k8!Gkbld

(4)L ~k8,k2 ;k,k4!dk11k,k31k8

1Gamdn
(4)L ~k1 ,k;k4 ,k8!Gkblg

(4)L ~k8,k2 ;k,k3!dk11k,k41k8G
1(

k
d~ u«nu2L!Gmn

L ~k!Gabmngd
(6)L ~k1 ,k2 ,k,k,k3 ,k4!. ~18!

Here, Gmn
L (k)5@( i«n2Ekm)dmn2Smn

L (k)#21 and k
5( i«n ,k) and so forth.G (6)L is the six-point vertex. The
first, second, and third terms on the right-hand side of Eq.
~18! correspond to BCS and two zero sound~ZS and ZS8)
processes, respectively, of which the diagrammatic expres-
sions are shown in Fig. 2~a!.

In the following, we investigate the RG flow of the four-
point vertex functions up to one-loop order, and drop the
six-point vertex G (6)L and the self-energySL(k) on the
right-hand side of~18!. In our systems, there are six species
of four-point vertices, as shown in Fig. 2~b!, apart from the
spin degrees of freedom and the twofold degeneracy of the
flat bands in the 3D case. We assume that the momentum
dependences of the four-point vertex functions are given
mainly by G0(k1 ,k2 ;k3 ,k4) in the renormalization pro-
cesses. This is made explicitly by replacing
Gabab(k1 ,k2 ;k3 ,k4) with g1Gabab

0 (k1 ,k2 ;k3 ,k4),
Gbbba(k1 ,k2 ;k3 ,k4) with g4Gbbba

0 (k1 ,k2 ;k3 ,k4), etc. This
approximation is fairly good, because in the vicinity of theG
point, where the most important scattering processes occur,
the band structure is almost isotropic. The spin degrees of

FIG. 2. BCS, ZS, and ZS8 processes.~b! The six species of
four-point vertices. Here, ‘‘a’’ and ‘‘ b’’ indicate the dispersive band
and the flat band, respectively.~c! The leading singular bubble dia-
grams.
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freedom of the running couplingsgi ( i 51;6) is incorpo-
rated by decomposinggi into the spin singlet part and the
spin triplet part,

gi~s1 ,s2 ;s3 ,s4!5
gis

2
~ds1s3

ds2s4
2ds1s4

ds2s3
!

1
git

2
~ds1s3

ds2s4
1ds1s4

ds2s3
!.

~19!

It is also convenient in the following to decomposegi into
the charge part and the spin part,

gi~s1 ,s2 ;s3 ,s4!5
3git2gis

4
ds1s4

ds2s3

1
gis1git

4
ss1s4

•ss2s3
. ~20!

Because, at the half filling, the flat bands are empty and
the dispersive band is fully occupied, the particle-particle
processes between the flat bands and the particle-hole pro-
cesses between the flat bands and the dispersive band give
the leading singular contributions@see Fig. 2~c!#. We take
into account these contributions in the derivation of the RG
equations. It is straightforward to show that in the vicinity of
the G point the following relations hold:

(
BCS

Gaabb
0 Gbbab

0 '0, (
ZS

Gaabb
0 Gbaaa

0 '0,

(
ZS8

Gaabb
0 Gbaaa

0 '0, (
ZS

Gabab
0 Gaaab

0 '0,

(
ZS8

Gabab
0 Gaaab

0 '0. (
ZS

Gaaab
0 Gbbab

0 '0,

(
ZS

Gaabb
0 Gbbba

0 '0, (
ZS8

Gaabb
0 Gbbba

0 '0,

(
ZS

Gabbb
0 Gbbab

0 '0, (
ZS8

Gabbb
0 Gbbab

0 '0. ~21!

Here,(BCS, (ZS, and(ZS8 mean the momentum summation
in the intermediate state carried out over BCS, ZS, and ZS8
processes, respectively. Using these relations, we find that
the b function of g3 is approximately vanishing,

dg3s

dl
'

dg3t

dl
'0. ~22!

and the RG equations for the other running couplings are
written as53

dg1s

dl
52

ag4s
2 el

L0
1

b~L0e2 l !h

4
~g1s

2 16g1sg1t23g1t
2 !,

~23!

dg1t

dl
5

b~L0e2 l !h

4
~g1s

2 22g1sg1t15g1t
2 !, ~24!

dg2s

dl
52

ag2sg6se
l

L0
1b~L0e2 l !h

3@g1sg2s13~g1sg2t1g1tg2s2g1tg2t!#, ~25!

dg2t

dl
52

ag2tg6te
l

L0
, ~26!

dg4s

dl
52

ag4sg6s

L0
el1

b~L0e2 l !h

2
~g1sg4s13g4sg1t!,

~27!

dg4t

dl
52

ag4tg6t

L0
el , ~28!

dg5s

dl
52

ag2s
2 el

L0
, ~29!

dg5t

dl
52

ag2t
2 el

L0
, ~30!

dg6s

dl
52

ag6s
2

L0
el , ~31!

dg6t

dl
52

ag6t
2

L0
el , ~32!

whereh5(d22)/2, l 5 ln(L0 /L) with L0 the band width,
andd is the spatial dimension. In the 2D case

a5(
k

@s11
4 ~k!2s11

2 ~k!s12
2 ~k!#/2, ~33!

b5(
k

Im@ iL2Ek2#21/2'0.0622/t, ~34!

and in the 3D case

a5(
k

$@s11
2 ~k!1s12

2 ~k!#2

2@s11~k!s21~k!1s12~k!s22~k!#2%/2, ~35!

b5(
k

Im@ iL2Ek3#21/~4AL!'0.0775/t3/2. ~36!

In the derivation of these equations for the 3D case, we have
used the fact that in the vicinity of theG point, the two
degenerate flat bands do not mix with each other in the scat-
tering processes. Thus, in this case, the twofold degeneracy
just gives an overall factor of 2.

Since the initial values of the running couplings in the
triplet channel are zero for our models~1! the RG equations,
~26!, ~28!, ~30!, and~32!, giveg2t5g4t5g5t5g6t50. In the
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following sections, we study how the RG flows of the other
running couplings give rise to nontrivial effects.

IV. 2D PYROCHLORE HUBBARD MODEL

A. RG analysis

We first consider the 2D case, whose theoretical treatment
is simpler. We solved the RG equations~23!–~32! numeri-
cally for a particular set of parameter values, and obtained
the RG flow shown in Fig. 3. The running couplingsg5s and
g6s , of which the RG flows are not shown in Fig. 3, are
irrelevant in the low-energy limit. We found that for any
small value ofU/t, g1t flows into the strong-coupling re-
gime. This indicates some instability in this channel. Al-
thoughg1s also scales into the strong-coupling regime, it is
subdominant compared tog1t . We also show in Fig. 3 the
RG flows of the couplings 3g1t2g1s and g1s1g1t , which
are related to the charge and spin susceptibilities, respec-
tively. We see that some instability appears in the charge
degrees of freedom. To elucidate the nature of this instability
more precisely, we explore how this singularity affects the
single-particle self-energy. Although the diagonal parts of the
self-energyS11, S22 give just a chemical potential shift up
to the one-loop level, the off-diagonal self-energyS12
changes the electronic state drastically, as will be shown be-
low. Neglecting the diagonal self-energy, which are not im-

portant in the following argument, we expand the RG equa-
tion for the off-diagonal self-energy~17! up to the first order
in S12

L :

d~S12↑↑
L 1S12↓↓

L !

dl
52b~3g1t2g1s!~S12↑↑

L 1S12↓↓
L !,

~37!

d~S12↑↑
L 2S12↓↓

L !

dl
52b~g1s1g1t!~S12↑↑

L 2S12↓↓
L !, ~38!

dS12↑↓
L

dl
52b~g1s1g1t!S12↑↓

L . ~39!

Because the strongest divergence of the four-point vertex
appears in 3g1t2g1s ~see Fig. 3!, the off-diagonal self-
energy(sS12ss becomes nonzero at some criticalL5Lc .
This is easily seen by solving Eq.~37!, which gives

(
s

S12ss
L 5(

s
S12ss

L0 expF2bE
0

l

dl8~3g1t2g1s!G . ~40!

Although S12ss
L0 is vanishing in the vicinity of theG point,

because of the momentum dependence ofsmn(k), (sS12ss
Lc

becomes nonzero forL5Lc at those value 3g1t2g1s is di-
vergent. The nonzero off-diagonal self-energy hybridizes the
band 1 and the band 2 at theG point, and drives the system
into the insulating state with both spin and charge gaps.
Thus, the singularity of the RG flow signifies the~semi-
!metal-to-insulator transition.

B. Mean-field analysis

The above RG analysis implies the existence of a mean-
field solution for which the order parameter is given by

Dk[(
s

S12ss~k!; (
s5↑↓

^ak1s
† ak2s&. ~41!

This state is characterized by electron-hole pairing with par-
allel spins, which leads to the formation of both spin and
charge gaps preserving the spin rotational symmetry.Dk is
determined by the self-consistent mean-field equation, which
is obtained as follows. According to the numerical analysis
of the RG equations~23!–~31!, g4s is mainly renormalized
by the first term on the right-hand side of Eq.~27!. Then, the
renormalized couplingg4s is approximately given by RPA-
like expressions. As a result, the self-consistent gap equation
for Dk is expressed diagrammatically as shown in Fig. 4. The
first term on the right-hand side of the gap equation gives
less singular contributions than the second term. Thus, the
linearized gap equation, which determines the transition tem-
perature, is

Dk5(
q,k8

P~k,q2k!G11~q2k!G22~q2k!P~k8,q2k!

3G11~k8!G22~k8!Dk8 , ~42!

whereGmm(k)51/(«n2Ekm), k5( i«,k) and

FIG. 3. The RG flow of the running couplings in the 2D case
with U/8t50.25.
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P~k,k8!5 (
n56

nUtn~k,k8!

12cnD~k1k8!
, ~43!

t6~k,k8!5@s11~k!s12~k8!6s12~k!s11~k8!#2/2, ~44!

D~q!52TU(
n,k

G11~k!G11~q2k!, ~45!

with c152a and c25(ks11
2 . Here, we have ignored the

diagonal self-energy. Equation~42! implies that the gap
function can be written as

Dk5s11~k!s12~k!D05
D0~coskx2cosky!

2~12coskxcosky!
, ~46!

whereD0 is a constant. From Eq.~42!, we have the equation
that determines the transition temperature

15
U2

16t F lnS 8t

U D2b0G lnS 8t

Tc
D , ~47!

where b050.322. Equation~47! implies that for U,Uc
;0.725(8t), a state with nonzeroD0 is realized. Note that
the gap function~46! has a line node structure similar to
dx22y2 symmetry. However, this line node vanishes, when
we take into account the coupling with lattice, as will be
discussed in Sec. IV D.

Generally, in 2D systems, thermal fluctuations may sup-
press the transition temperature down to zero. The above
mean-field solution is also affected seriously by thermal fluc-
tuations, becauseU(1) Goldstone mode related with the
phase of̂ ak1s

† ak2s& does not survive at finite temperatures.
To see this, we have applied the Ginzburg-Landau analysis to
this mean-field solution and found that, in the 2D case, the
transition temperature vanishes in accordance with the
Mermin-Wagner-Coleman theorem. Nevertheless, the above
analysis demonstrates that in the ground state at zero tem-
perature the gapDk is nonzero, and the system is in an insu-
lating state.

C. Properties of the insulating state

1. Spin-gap state with spin rotational symmetry

We now further investigate the properties of the insulating
phase using the mean-field solution. The single-particle
Green’s functions in this state are given by

G11
MF~k,«n!5

a(1)

i«1m2Ek
(1)

1
a(2)

i«1m2Ek
(2)

, ~48!

G22
MF~k,«n!5

a(2)

i«1m2Ek
(1)

1
a(1)

i«1m2Ek
(2)

, ~49!

where

Ek
(6)5@Ek11Ek26A~Ek12Ek2!214Dk

2#/2, ~50!

a(6)56
E(6)2Ek1

Ek
(1)2Ek

(2)
. ~51!

In the insulating phase, because the order parameter does not
break the spin rotational symmetry, there is no long-range
magnetic order. However, a spin-gap exists. The spin gap
behavior is observed in the temperature dependence of the
spin-lattice relaxation rate 1/T1 probed by NMR measure-
ments. It is obtained from the above mean-field solution,

1

T1T
;E dE

@Ni~E!#2

2T cosh2
E

2T

, ~52!

Ni~E!5K AE22Dk
2

E21Dk
2 L

k;0

E3/2. ~53!

Here,^•••&k;0 is the angular average neark50. Because of
the nodes ofDk , we have 1/(T1T);T3. However, as will be
discussed in the following section, the coupling with lattice
degrees of freedom changes this power-law behavior to an
exponential decay, 1/(T1T);exp(2D/T).

2. Charge ordering

Another important property of the insulating phase mani-
fests in the charge degrees of freedom. The formation of the
gapDk brings about a difference between the charge densi-
ties at the sites 1 and 2 in a unit cell given by

r12r2524(
k

s11~k!s12~k!Dk

A~Ek22Ek1!214Dk
2
Q~m2Ek

(2)!;D0 /t.

~54!

Thus, charge ordering~CO! with a charge-density displace-
ment proportional to the gap characterizes this insulating
state. The CO pattern is shown in Fig. 5. This noteworthy
result can be understood as follows. In our system, three
electrons occupying nearest-neighbor sites cost energy loss
caused by magnetic frustration. Conversely, magnetic frus-
tration induces an effective finite-range repulsion between
electrons at nearest-neighbor sites. If this finite-range repul-

FIG. 4. Diagrams for the linearized gap equations.
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sion is sufficiently strong to overcome the on-site Coulomb
interactionU, the CO state will be stabilized. This is possible
if U is not so large. AsU increases, a transition to a conven-
tional Mott insulator with no charge ordering should occur.
This transition cannot be described within our weak-coupling
analysis.

The CO pattern shown in Fig. 5 is regarded as an assem-
bly of one-dimensional chains in the@1,1# and @1,21# di-
rections. This observation implies that CO reduces the spatial
dimension effectively to relax geometrical frustration.

D. Coupling with lattice distortion

The presence of CO found in the preceding section im-
plies that the coupling between the charge fluctuation and
lattice degrees of freedom may give rise to the distortion of
the lattice structure. Since the band structure possesses the
double degeneracy at theG point even forU50 in the half-
filling case, the Jahn-Tellar distortion may occur to lift the
degeneracy. However, in our system, the lift of the double
degeneracy corresponds to the situation that the charge den-
sity on the site 1 is different from that on the site 2. It is
highly nontrivial whether the inhomogeneous charge distri-
bution is realized even in the presence of the on-site repul-
sion U, which, in general, should suppress the charge fluc-
tuation. The results obtained in the previous sections
remarkably show that the interplay between the one-site re-
pulsion and geometrical frustration stabilizes the charge or-
dering in the ground state, to which the Jahn-Tellar lattice
distortion may adjust. In this section, we discuss the distor-
tion of the lattice structure compatible with the CO state.

Since the band degeneracy appears only at theG point, it
is sufficient to consider the point group of the tetragonal
crystal systemD4h. The doubly degenerate levels at theG
point belong toEu representation. There are three normal
modes that are relevant to the Jahn-Tellar distortion:@Eu

2#
5A11B1g1B2g. The normal coordinates of these modes
are, respectively, given by

Q~A1g!52u1x2u1y1u2x2u2y1u3x1u3y2u4x1u4y ,
~55!

Q~B1g!5u1x1u1y1u2x2u2y2u3x2u3y2u4x1u4y ,
~56!

Q~B2g!52u1x1u1y1u2x1u2y1u3x2u3y2u4x2u4y ,
~57!

whereuia ( i 51,2,3,4 anda5x,y,z) is the displacement of
the i site in thea direction. The lattice distortions corre-
sponding to these modes are schematically shown in Fig. 6.
The lattice distortions change the kinetic term of the Hamil-
tonianHkin→Hkin1DHkin with

DHkin52aA1g(i , j ~c1i
† c1 j1c2i

† c2 j1c1i
† c2 j1c2i

† c1 j !Q~A1g!

2aB1g(i , j ~c1i
† c1 j2c2i

† cj !Q~B1g!

2aB2g(i
~c1i

† c2i 1ax
2c1i

† c2i 1ay
1c2i

† c1i 1ax

2c2i
† c1i 1ay

1H.c.!Q~B2g!. ~58!

Here, we omit the spin index. TheA1g andB2g modes do not
lift the degeneracy at theG point. Obviously, theB1g mode is
the only lattice distortion that is consistent with the CO pat-
tern shown in Fig. 5. After this lattice distortion occurs, the
single-particle excitation gap completely opens at theG point
without line nodes, leading the exponential decay of the
spin-lattice relaxation rate, as announced in the preceding
section.

V. 3D PYROCHLORE HUBBARD MODEL

A. RG analysis

The above analysis can be straightforwardly generalized
to the case of a 3D pyrochlore lattice. We obtain the RG flow
numerically from Eqs.~23!–~32! for d53. Here, in contrast
to the 2D case, for sufficiently smallU all couplings are
irrelevant, and thus the semimetal state is stable. However,
for values ofU larger than a certain critical value but still
smaller than the band width, RG flow similar to that in the
2D case is obtained, as shown in Fig. 7. The coupling 3g1t
2g1s, which is related to the charge degrees of freedom,
scales into the strong-coupling regime. This RG flow implies
that, as in the 2D case, a particle-hole pairing between the
flat bands and the dispersive band is realized below a critical
temperature, leading spontaneous gap formation both in the
charge and spin degrees of freedom. Note that the spin-gap
formation does not signify the breaking of the spin rotational
symmetry, since the vertex in the spin degrees of freedom
g1s1g1t is still finite at the critical value of ln(L0 /L).

B. Mean-field analysis

Although the value ofU used above is relatively large, we
expect that the one-loop RG calculation still gives qualita-

FIG. 5. The CO pattern in the 2D case.

FIG. 6. Three normal modes of the lattice distortion.
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tively correct results, as long asU is smaller than the band
width. To examine the validity of the one-loop calculation,
we explore the self-consistent mean-field solution. The order
parameters for the particle-hole pairing state suggested from
the above RG flows is,

Dk
(13)5(

s
^ak1s

† ak3s&, ~59!

Dk
(23)5(

s
^ak2s

† ak3s&. ~60!

The self-consistent gap equations for the 3D case are also
given by the diagram shown in Fig. 4, from which we find
that the gap functions are given by

Dk
(13)5 (

n51

4

sn1~k!sn3~k!Dn
(13)

5 (
n51

2

sn1~k!sn3~k!~Dn
(13)2D3

(13)!, ~61!

Dk
(23)5 (

n51

4

sn2~k!sn3~k!Dn
(23)

5 (
n51

3

sn2~k!sn3~k!~Dn
(23)2D4

(23)!. ~62!

Here, we used the orthogonal relations(n51
4 sn1sn350,

(n51
4 sn2sn350, ands4150. Using the symmetry properties

of smn(k) in momentum space, we can impose some restric-
tions on the structure of the gap functions without solving
the gap equations. Under the transformation,x→y, y→x,
z→2z, the coefficients ofDk

(13) are transformed as

s11s13→2s21s23, ~63!

s21s23→2s11s13, ~64!

s31s33→2s31s33. ~65!

Because of the symmetry of a tetrahedronTd , the gap func-
tion should be unchanged up to the sign by this transforma-
tion. Then, we have

D1
(13)5D2

(13) ~66!

or

D1
(13)1D2

(13)52D3
(13). ~67!

In a similar manner, using the transformationx→x, y→z,
z→y, we obtain

D1
(13)5D3

(13) ~68!

or

D1
(13)1D3

(13)52D2
(13). ~69!

Combining Eqs. ~67! and ~69!, we end up with D1
(13)

5D2
(13)5D3

(13) and thus,

Dk
(13)50. ~70!

Applying a similar argument toDk
(23) , we find D1

(23)5D2
(23)

5D3
(23) and

Dk
(23)5s42~k!s43~k!~D4

(23)2D1
(23)!. ~71!

The quantityD4
(23)2D1

(23) is determined from the gap equa-
tion. According to the RG analysis, the transition occurs only
for sufficiently largeU. Therefore, to determine the transition
temperature and the gap function correctly, we need to take
into account the self-energy corrections, i.e., pair breaking
effect. This calculation is rather involved, and we have not
yet carried it out. However, we see from the RG flow that at
the critical temperatureTc;L0e2 l c5(8t)0.0042, a transi-
tion from a semimetal to an insulator occurs. In the resulting
insulating state, the threefold degeneracy at theG point in the
semi-metal state is lifted completely, and a spin gap as well
as a charge gap exists. The gap functionDk

(23) has both line
and point nodes determined bys42(k)s43(k)50. However,
these nodes are eliminated by the coupling with lattice de-
grees of freedom, as will be shown in Sec. V D.

The particle-hole pairing state characterized by the order
parameters~59! and ~60! is analogous to the excitonic
insulator.54 However, this analogy is not complete. In con-
trast to the excitonic insulator that is realized in particle-hole
symmetric bands, the pairing state found above is stabilized
by strong interaction between flat bands and dispersive bands

FIG. 7. The RG flow of the running couplings in the 3D case
with U/8t50.625.
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in the absence of particle-hole symmetry. Thus, we believe
that this is a mechanism for the particle-hole pairing specific
to pyrochlore systems.

C. Properties of the insulating state

1. Spin-gap state with spin rotational symmetry

It is straightforward to compute magnetic properties of the
gapped state using the mean-field solution obtained in the
preceding section. In the insulating phase with the single-
particle excitation gapDk

(23) , the spin-lattice relaxation rate
1/T1 is also given by Eq.~53!. Since the gap function has
nodes, 1/(T1T) decreases in a power law as temperature is
lowered: 1/(T1T);T3. However, as will be discussed in Sec.
V D, in the presence of the coupling with lattice degrees of
freedom, the nodes of the gap function disappear. In this
case, the spin-lattice relaxation rate shows an exponential
behavior, 1/(T1T);exp(2D/T).

The spin-gap behavior appears in the spin-spin correlation
function Imxs(q,v) for all q. The momentum dependence of
Imxs(q,v) is quite small, indicating that geometrical frus-
tration suppresses any tendency toward a conventional mag-
netic order. Such smallq-dependence of Imxs(q,v) was also
found in the semimetal state aboveTc .27

2. Charge ordering

Here, we examine the possibility of a CO state in the 3D
system. There are four sites in a unit cell. The appearance of
a gap causes a charge-density displacement on each site
given by

drn52(
k

sn2~k!sn3~k!Dk
(23) , ~72!

for n51,2,3, and

dr452 (
n51

3

drn . ~73!

Using the symmetry properties ofsmn(k), we obtain

dr15dr25dr3Þ0, ~74!

dr4523dr1 . ~75!

It is thus found that CO with the pattern displayed in Fig. 8
occurs in the insulating phase. Interestingly, a similar CO
pattern is observed in the spinel system AlV2O4 which pos-
sesses aV site corner-sharing tetrahedron network.55 Within
the above analysis, the sign ofdr4, which depends on the
phase of the order parameterD4

(23)2D1
(23) , is not determined.

Thus, the states ofdr4.0 anddr4,0 are degenerated. As
will be discussed in the following section, this degeneracy is
lifted by the coupling with lattice degrees of freedom.

Note that the CO pattern shown in Fig. 8 is regarded as an
alternate stack of 2D kagome lattices and triangular lattices
in the @21,1,21# direction. As in the 2D case, CO brings
about the effective reduction of spatial dimension to relax
geometrical frustration.

D. Coupling with lattice distortion

As in the 2D case, CO found in the preceding section may
bring about lattice distortion. Here, we discuss this possibil-
ity. Since, at the half filling, all important processes occur in
the vicinity of the G point, it is sufficient to consider the
point group of the tetrahedronTd . The representation ofTd
is reduced toA11T2. The triply degenerate levels at theG
point Ek15Ek25Ek3 (k50) belong toT2. Thus, the normal
modes that may lift the degeneracy are obtained from the
symmetric product representation,@T2

2#5A11E1T2. The
normal coordinates corresponding to these three modes are

Q~A1!5~u1x2u2x1u3x2u4x1u1y2u2y2u3y1u4y1u1z

1u2z2u3z2u4z!/A3, ~76!

Q(1)~E!5~u1x2u2x1u3x2u4x1u1y2u2y2u3y1u4y

22u1z22u2z12u3z12u4z!/A6, ~77!

Q(2)~E!5~u1x2u2x1u3x2u4x2u1y1u2x1u3x2u4x!/A2,
~78!

Q(1)~T2!5u1x1u2x2u3x2u4x , ~79!

Q(2)~T2!5u1y2u2y1u3y2u4y , ~80!

Q(3)~T2!5u1z2u2z2u3z1u4z . ~81!

FIG. 8. Fig. 8. The CO pattern in the 3D case.

FIG. 9. The normal modes ofTd . ~a! A1, ~b! E, ~c! T2.
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They are schematically shown in Figs. 9~a–c!. The breezing
modeA1 does not lift the degeneracy at theG point. TheE
and T2 modes split the triply degenerate levels into three
different levels or one separated level and doubly degenerate
levels. The modification of the kinetic energy due to these
modes are

DHkin5bE(
i , j

FQ(1)~E!

2A3
~2ci1

† cj 212ci3
† cj 42ci1

† cj 3

2ci2
† cj 32ci2

† cj 42ci1
† cj 41H.c.!

1
Q(2)~E!

2
~ci1

† cj 41ci2
† cj 32ci1

† cj 32ci2
† cj 41H.c.!G

1bT2(i , j FQ(1)~T2!

A2
~ci1

† cj 42ci2
† cj 31H.c.!

1
Q(2)~T2!

A2
~ci1

† cj 22ci3
† cj 41H.c.!

1
Q(3)~T2!

A2
~ci1

† cj 32ci2
† cj 41H.c.!G . ~82!

Since the stretch of bonds may reduce the hopping integral, it
is plausible to assumebE.0 andbT2

.0. The lattice distor-
tion that is consistent with the CO pattern shown in Fig. 8 is
obtained by puttingQ(1)(T2)52Q(2)(T2)52Q(3)(T2)Þ0
and Q(1)(E)5Q(2)(E)50. This mode is shown in Fig. 10.
Here, we have dropped the rotational degrees of freedom
around (21,1,21) axis. ForQ(1)(T2).0, the triply degen-
erate levels at theG point split into one lower level and
upper doubly degenerate levels. Thus, at the half filling, this
lattice distortion generates a full gap without a node in the
single-particle excitation. Note that the full gap opens not
only at theG point but also over the entire Brillouin zone, as
easily verified by diagonalizing the kinetic term with this
lattice distortion. On the other hand, forQ(1)(T2),0, the
lower levels are doubly degenerated, and the system is still in
the semimetallic state unless we do not take into account the
correlation-driven CO transition obtained in the previous
sections. Thus, it is expected that the case ofQ(1)(T2).0, in
which both the lattice distortion and electron correlation sta-

bilize the gapped state, is energetically favorable. Under the
trigonal distortion withQ(1)(T2).0 shown in Fig. 10, the
charge density on the site 4 in the tetrahedron is larger than
those on the other three sites. This is easily seen by calculat-
ing straightforwardly the charge density on each site in a
single tetrahedron with the trigonal distortion. Then, the sign
of dr4, which is not determined in the absence of the lattice
coupling as mentioned in the previous sections, is chosen as
dr4.0 by the lattice distortion.

The lattice distortion discussed here and the CO state
shown in Fig. 8 are similar to the experimental observation
for AlV 2O4, apart from the doubling of the unit cell in the
@1,1,1# direction found in AlV2O4.55 Since, in AlV2O4, the
t2g orbital of V sites plays a central role, our simple model is
not directly applicable to this system. However, according to
the recent local-density approximation calculation, the band
structure near the Fermi surface possessess-like character
because thes orbital of Al site partially hybridizes with the
a1g orbital split from thet2g orbital by a trigonal crystal
field.56 Thus, CO observed in AlV2O4 may be microscopi-
cally explained by the mechanism described here. It should
be emphasized that in our scenario, the interplay between
electron correlation and geometrical frustration is the most
important ingredient for the realization of the CO state and
the lattice distortion is merely a secondary effect.

E. Application to MIT in Tl 2Ru2O7

We now apply the results obtained above to the descrip-
tion of the MIT observed in Tl2Ru2O7. As mentioned in the
Introduction, according to Ishii and Oguchi, the electronic
structure of this system consists of thes orbital of Tl sites, as
well as the t2g orbitals of Ru sites.39 The band structure
formed by the former is well approximated by our model.
The band calculation gives the band width of this system
8t;2 eV.39 Experimental data on the size ofU does not
exists. However, typically, the value ofU for transition-metal
oxides is;2 eV. This gives us reason to believe that the
analysis presented in this paper, which suggests that the MIT
occurs for largeU;8t, can be applied to the description of
the Tl2Ru2O7 system. The transition temperature estimated
from the RG analysis isTc;98 K, which is almost compa-
rable with the experimental values 100;120 K.35 A recent
NMR measurement of Tl nuclei has revealed the presence of
a spin gap in the insulating state, which is consistent with our
results.57 The possible existence of a CO state and large en-
hancement of charge fluctuations aboveTc predicted in our
theory have not yet been investigated experimentally. The
experimental determination of whether a CO state exists for
Tl2Ru2O7 is a crucial test of this theory. When there exists
coupling to a lattice, CO should accompany lattice distortion.
As discussed in Sec. V C, the CO pattern found in this study
suggests that the cubic lattice symmetry is broken down to
trigonal symmetry. Actually, it has been found experimen-
tally that, in Tl2Ru2O7, the lattice structure changes discon-
tinuously at the MIT point. This observation seems to sug-
gest the presence of large charge fluctuations in this system.

FIG. 10. The lattice distortion consistent with the CO pattern
shown in Fig. 8.
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VI. SUMMARY

We have studied the MIT caused by the interplay between
geometrical frustration and electron correlation. We have
found, using the RG method and mean-field analysis that the
2D and 3D pyrochlore Hubbard models at the half-filling
show the transition from semi-metal to spin-gapped insula-
tor. The transition occurs at a finite critical temperatureTc in
the 3D case, and atT50 in the 2D case. In the insulating
state, CO occurs concomitantly so as to relax geometrical
frustration. The results obtained here are successfully applied
to the description of the MIT observed in the pyrochlore
oxide Tl2Ru2O7, though it is a future issue to examine ex-
perimentally the presence of the CO state in this system, as
predicted from our theory. The CO pattern found in this pa-
per is also very similar to that observed in AlV2O4. The
mechanism for CO in this system may be explained by the
scenario described in this paper, because the electronic struc-
ture of AlV2O4 possesses partially flat bands,56 which is a
crucial ingredient for CO induced by geometrical frustration.
It is a future issue to explore this possibility taking into ac-
count thet2g orbitals ofV sites.

The insulating state found in our systems is characterized
by particle-hole pairing. In this sense, it is analogous to the
excitonic insulator. However, there are some important dif-
ferences between them. In contrast to the excitonic insulator,
the spin-gapped insulator in the pyrochlore Hubbard models
is stabilized by the presence of flat bands originated from
geometrical frustration. Interestingly, Singhet al.pointed out
a possibility of the excitonic insulator realized in the pyro-
chlore oxides Cd2Os2O7.58 Since its electronic structure near
the Fermi energy consists of thet2g manifolds, our model is
not simply applicable to this system. It is an intriguing issue
to extend our analysis to more realistic models with this
electronic structure.
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