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The previous Faddeev calculation of the two-alpha plusL system forL
9 Be is extended to incorporate the

spin-orbit components of the SU6 quark-model(QM) baryon-baryon interactions. We employ the Born kernel
of the QM LN LS interaction and generate the spin-orbit component of theLa potential bya-cluster folding.
The Faddeev calculation in thej j -coupling scheme implies that the direct use of the QM Born kernel for the
LN LS component is not good enough to reproduce the small experimental valueDE,s

expt=43±5 keV for the
5/2+-3/2+ splitting. This procedure predicts 3–5 times larger values in the models FSS and fss2. The spin-orbit
contribution from the effective meson-exchange potentials in fss2 is argued to be unfavorable to the small,s
splitting, through the analysis of the Scheerbaum factors for the single-particle spin-orbit potentials calculated
in the G-matrix formalism.

DOI: 10.1103/PhysRevC.70.047002 PACS number(s): 21.45.1v, 13.75.Ev, 21.80.1a, 12.39.Jh

The study of hypernuclei based on the fundamental
baryon-baryon interactions is important, since the available
scattering data for the hyperon-nucleonsYNd interaction are
very scarce. We have recently proposed a comprehensive
quark-model (QM) description of general baryon-octet
baryon-octetsB8B8d interactions, which is formulated in the
s3qd-s3qd resonating-group method(RGM) using the spin-
flavor SU6 QM wave functions, a colored version of the
one-gluon exchange Fermi-Breit interaction, and effective
meson-exchange potentials(EMEPs) acting between quarks
[1–3]. The early version, the model FSS[1], includes only
the scalar(S) and pseudoscalar(PS) meson-exchange poten-
tials as the EMEPs, while the renovated one fss2[2,3] intro-
duces also the vector(V) meson exchange potentials and the
momentum-dependent Bryan-Scott terms for the S and V
mesons. Owing to these improvements, the model fss2 in the
NN sector has attained an accuracy comparable to that of
one-boson-exchange potentials(OBEPs).

These QM interactions can now be used for various types
of many-body calculations. In the previous paper[4], we
have carried out Faddeev calculations of the two-alpha plus
LsaaLd system, in which a two-range GaussianLN poten-
tial (called the SB potential), generated from the phase-shift
behavior of the model fss2[2,3] is employed. If we use the
pure Serber-typeLN potential with the Majorana exchange
mixture parameteru=1, this Faddeev calculation with the
proper treatment of the Pauli principle in theaa RGM kernel
can reproduce the ground-state and excitation energies of the

L
9 Be hypernucleus within 100–200 keV accuracy.

Another important piece of experimental information
from L

9 Be is the small spin-orbit splitting of the 5/2+ and
3/2+ excited states,DE,s

expt=43±5 keV[5,6], measured from
the recent Hyperballg-ray spectroscopy. It is widely known

that the single-particle(s.p.) spin-orbit interaction of theL
hyperon seems to be extremely small, especially in lightL
hypernuclei. In the nonrelativistic models of theYN interac-
tion, this is a consequence of the strong cancellation of the
ordinary LS component and the antisymmetricLS compo-
nent (LSs−d force), the latter of which is a characteristic fea-
ture of baryon-baryon interactions between nonidentical
baryons. For example, the SU6 QM baryon-baryon interac-
tion FSS[1] yields a strongLSs−d component[7], which is
about one-half of the ordinaryLS component, with the op-
posite sign. We performed theG-matrix calculation in sym-
metric nuclear matter, using this QM baryon-baryon interac-
tion [8], and calculated the so-called Scheerbaum factorSB,
which indicates the strength of the s.p. spin-orbit interaction
[9]. The ratio of SB to the nucleon strengthSN
,−40 MeV fm5 is SL /SN,1/5 and SS /SN,1/2 in the
Born approximation. TheG-matrix calculation of the model
FSS modifiesSL to SL /SN,1/12. The significant reduction
of SL in theG-matrix calculation of FSS is traced back to the
enhancement of the antisymmetricLS component in the di-
agonalLN channel, owing to theP-waveLN-SN coupling.

Hiyama et al. [10] calculated theLN spin-orbit splitting
in L

9 Be andL
13C in their cluster model, by using simple ap-

proximations of the Nijmegen one-boson-exchangeLN in-
teractions. They employed several two-range GaussianLS
potentials for theLN interaction, which simulate theLS and
LSs−d parts of the G-matrix interactions derived from
Nijmegen model-D(ND), model-F(NF), and NSC97a-f in-
teractions. For example, they obtainedDE,s=0.16 MeV for
NSC97f. When theLSs−d force is switched off, they obtained
0.23 MeV. Since these values are too large to compare with
the experiment, they adjusted the strength of theLSs−d poten-
tials, guided by the relative strength of the QMLSs−d force.
Such a procedure, however, does not prove the adequacy of
the QM spin-orbit interaction for the experimental data.

The purpose of this Brief Report is to show that, if we
carry out more serious calculations starting from the the QM*Electronic address: fujiwara@ruby.scphys.kyoto-u.ac.jp
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baryon-baryon interactions, the situation is not so simple as
stated in Ref.[10]. Here we concentrate only on the spin-
orbit interaction and use the QM exchange kernel directly,
following our basic idea in other applications of our SU6 QM
baryon-baryon interactions[11–13]. TheLa spin-orbit inter-
action is generated from the Born kernel of theLN LSQM
interaction, and the Faddeev equation is solved in the
j j -coupling scheme, by using the central plus spin-orbitLa
interactions. We find that our model FSS yields spin-orbit
splittings of almost 2/3 of the Nijmegen NSC97f result. We
find a large difference between FSS and fss2 for the effect of
the short-range correlations, especially in the way of the
P-waveLN-SN coupling.

We assume that theLN LS interaction is given by the
Born kernel of theLN QM interaction[9]:

vLN
LS sqf,qid = o

V
o
T

fsXT
VdudfT

LSsud+ sXT
VdsfT

LSsp − udgOV,

s1d

whereV=LS, LSs−d, andLSs−ds specify three different types
of spin-orbit operatorsOLS= in ·S, OLSs−d

= in ·Ss−d, and
OLSs−ds= in ·Ss−dPs, andT stands for various interaction types
originating from the quark antisymmetrization. Here we use
the standard notationn=fqi 3qfg, S=ssL+sNd /2, Ss−d

=ssL−sNd /2, Ps=s1+sL ·sNd /2, etc. The up-down and
strange spin-flavor factorssXT

Vdud andsXT
Vds in the LN chan-

nel and the direct and exchange spatial functionsfT
LSsud and

fT
LSsp−ud with cosu=sq̂f ·q̂id are explicitly given in Refs.[7]

and[9]. If we take the matrix element of Eq.(1) with respect
to the spin-flavor functions of theLa system, the nucleon
spin operator part disappears due to the spin saturated prop-
erty of the a cluster and we obtain the spin-flavor part as
XT

dSL and XT
eSL with SL=sL /2, XT

d=4fsXT
LSdud+sXT

LSs−d
dudg,

andXT
e=4fsXT

LSds+sXT
LSs−dsdsg. We therefore only need to cal-

culate the spatial integrals offT
LSsudin and fT

LSsp−udin. For
this calculation, we can use a convenient formula Eq.(B6)
given in Appendix B of Ref.[4]. The calculation is carried
out analytically, since it only involves Gaussian integration.
We finally obtain

VLa
LSsqf,qid = o

T
fXT

d VT
LS dsqf,qid+ XT

e VT
LS esqf,qidgin ·SL.

s2d

We calculate the spin-flavor factors and spatial integrals
for each of the interaction types,T=D−, D+ andSsS8d. From
our previous paper[7], we find the spin-flavor factors given
in Table I. Note that the most important knock-on term of the
D− type turns out to be zero in theLa direct potential, be-
cause of the exact cancellation between theLS and LSs−d

factors in the up-down sector. As a result, the main contribu-
tion to theLa spin-orbit potential in the present formalism
comes from the strangeness exchangeD− term, which is non-
local and involves a very strong momentum dependence. If
the quark mass ratiol=sms/mudd goes to infinity, all of these
spin-flavor factors vanish, which is a well-known property of
the spin-flavor SU6 wave function of theL particle. Only the
strange quark ofL contributes to the spin-related quantities

like the magnetic moment, since the up-down diquark is
coupled in the spin-isospin zero forL. The explicit expres-
sions of the spatial integralsVT

LS dsqf ,qid andVT
LSesqf ,qid will

be given elsewhere, since they are rather lengthy. The partial-
wave components of Eq.(2) are calculated from the formula
in Appendix C of Ref.[14] by using the Gauss-Legendre
20-point quadrature formula. Since the model fss2 contains
theLS components from the EMEPs, we should also include
these contributions to theLa spin-orbit interaction. A de-
tailed derivation of the EMEP Born kernel for theLa system
is deferred to a separate paper.

For the Faddeev calculation, we use the same conditions
as used in Ref.[4], except for the exchange mixture param-
eteru of the SBLN potential. We here use a repulsiveLN
odd interaction withu=0.82 in order to reproduce the
ground-state energy ofL

9 Be. This is because the 5/2+- 3/2+

,s splitting is rather sensitive to the energy positions of these
states, measured from theL

5 He+a threshold. We also use
Nijmegen-typeLN potentials from Ref.[15]. The aa RGM
kernel is generated from the three-range Minnesota force
with u=0.946 87. The harmonic oscillator width parameter
of the a cluster is assumed to ben=0.257 fm−2. The partial
waves up tolmax=,1max=6 are included both in theaa and
La channels. The momentum discretization points are se-
lected byn1–n2–n3=10–10–5 with the midpointsp, q=1,
3, and 6 fm−1. The Coulomb force is incorporated in the
cutoff Coulomb prescription withRC=10 fm.

Table II shows the results of Faddeev calculations in the
j j -coupling scheme. First we note that the ground-state ener-
gies do not change much from theLS-coupling calculation,
which implies the dominantS-wave coupling of theL hy-
peron. The final values for the,s splitting of the 5/2+- 3/2+

excited states areDE,s=137 keV for FSS and 198 keV for
fss2, when the SB force withu=0.82 is used for theLN
central force. If we compare these results with the experi-
mental value 43±5 keV, we find that our QM predictions are
3–5 times too large. If we use theG-matrix-simulated
NSC97fLSpotential in Ref.[10], we obtain 209 keV for the
same SB force withu=0.82. The difference from 0.16 MeV
in Ref. [10] is due to the model dependence to theaa and
La central interactions. We find that our FSS prediction for
DE,s is less than 2/3 of the NSC97f prediction, while fss2

TABLE I. The spin-flavor factors of theLa potential for the
quark-modelLSexchange kernel. The parameterl=sms/mudd is the
strange to up-down quark mass ratio.

T XT
d XT

e

D− 0 4

9l
S2 +

1

l
D

D+ −
2

9l
S2 +

1

l
D 0

S, S8 −
1

9l
S2 −

1

l
D 2

9l
S2 −

1

l
D
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gives almost the same result as NSC97f. If we switch off the
EMEP contribution in the fss2 calculation, we findDE,s
=86 keV. This results from the very smallLSs−d component
generated from the EMEPs of fss2.

As an alternative prescription to correlate theL
9 Be ,s

splitting and the basic baryon-baryon interaction, we exam-
ine the Scheerbaum’s s.p. spin-orbit potential(Scheerbaum
potential) for the s0sd4 a cluster in the Scheerbaum formal-
ism. For the Scheerbaum factorSL=−8.3 MeV fm5, calcu-
lated in Ref.[9] for FSS in the simplest Born approximation,
we obtainDE,s=121 keV for the SB force withu=0.82. If
we compare this with the value 137 keV for FSS, we find
that the Scheerbaum potential seems to be reliable even in
our QM nonlocal kernel. However, this agreement is fortu-
itous, since the center-of-mass correction to the,s operator
in theLa system is quite large. When the Scheerbaum factor
evaluated in the Born approximation is used in the Scheer-
baum potential, one needs to multiplySL by the factor
sz+4d /4=1.297, wherez=ML /MN is the mass ratio ofL to
the nucleon. A more precise comparison can therefore be
made by using SL

eff=s1+z /4dSL=−10.12 MeV fm5 from
SL=−7.8 MeV fm5. The latter value is obtained from thep
=0 Wigner transform withq̄=0.7 fm−1 in Ref. [9]. This po-
tential is plotted in Fig. 1 with the dotted curve. If we use the
Scheerbaum potential with thisSL

eff value, we obtainDE,s
=147 keV, which is close to 137 keV. Similarly, the fss2
valueSL=−10.87 MeV fm5 or SL

eff=−14.10 MeV fm5, in the
Born approximation yieldsDE,s=204 keV. It is amazing that
the nonlocalLa kernel by FSS, appearing in Fig. 1 as the
strongly momentum-dependent Wigner transform, is well
simulated by a single-Gaussian Scheerbaum potential with

an appropriateSL
eff. Figure 1 also shows theLa spin-orbit

potential predicted by theG-matrix-simulated NSC97f-type
LN potential in Ref.[10]. The Scheerbaum factor for this
LN potential is calculated to beSL=−10.34 MeV fm5 for
q̄=0.7 fm−1. If we use the Scheerbaum potential with
SL

eff=−13.41 MeV fm5, we obtainDE,s=194 keV, which is
close to 209 keV.

Table III lists the results ofG-matrix calculations for the
Scheerbaum factorsSL in symmetric nuclear matter. The
Fermi momentumkF=1.07 fm−1, corresponding to half of
the normal densityr0=0.17 fm−3, is assumed. For solving
G-matrix equations, the continuous prescription is used for
intermediate spectra. Table III also shows the decomposi-
tions into various contributions and the results when theLN-
SN coupling through theLSs−d andLSs−ds forces is switched
off (coupling off) in the G-matrix calculations. For FSS, we
find a large reduction ofSL value from the Born value
−7.8 MeV fm5, especially when this(dominantly) P-wave
LN-SN coupling is properly taken into account. When all

TABLE II. The ground-state energyEgrs1/2+d, 5 /2+, 3/2+ exci-
tation energiesExs5/2+d, Exs3/2+d, and spin-orbit splittingDE,s

=Exs3/2+d−Exs5/2+d calculated by solving the Faddeev equations
for the aaL system in thej j -coupling scheme. The exchange mix-
ture parameter of the SBLN force is assumed to beu=0.82. The
La spin-orbit force is generated from the Born kernel of the FSS
and fss2LN LS interactions. For the fss2LS interaction, theLS
component from the EMEPs is also included.

vLN
LS vLN

C Egrs1/2+d Exs5/2+d Exs3/2+d DE,s

(MeV) (MeV) (MeV) (keV)

SB −6.623 2.854 2.991 137

NS −6.744 2.857 2.997 139

FSS ND −7.485 2.872 3.024 152

NF −6.908 2.877 3.002 125

JA −6.678 2.866 2.991 124

JB −6.476 2.858 2.980 122

SB −6.623 2.828 3.026 198

NS −6.745 2.831 3.033 202

fss2 ND −7.487 2.844 3.064 220

NF −6.908 2.853 3.035 182

JA −6.679 2.843 3.024 181

JB −6.477 2.834 3.012 178

Expt. [6] −6.62s4d 3.024(3) 3.067(3) 43s5d

FIG. 1. Comparison ofLa spin-orbit potentials predicted by the

Wigner transform of FSS withq=0, 1, 2, 3 fm−1 and R̂·q̂=0
(solid curves), the Scheerbaum potential with SL

eff=
−10.12 MeV fm5 (dotted curve), and the G-matrix-simulated
NSC97f-type potential[10] (dashed curve).

TABLE III. The Scheerbaum factorsSL in symmetric nuclear
matter with kF=1.07 fm−1, predicted byG-matrix calculations of
FSS and fss2 in the continuous prescription for intermediate spec-
tra. Decompositions into various contributions are shown, together
with the cases when theLN-SN coupling by theLSs−d andLSs−ds
forces is switched off(coupling off). The units are MeV fm5.

Model Full Coupling off

Odd Even Odd Even

LS −17.36 0.38 −19.70 0.30

FSS LSs−d 14.83 0.22 8.37 0.26

total −1.93 −10.77

LS −19.97 −0.14 −21.04 −0.20

fss2 LSs−d 8.64 0.21 6.12 0.23

total −11.26 −14.89
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the LN-SN couplings, including those by the pion tensor
force, are switched off, theLSs−d contribution is just a half of
the LS contribution with the opposite sign(in the dominant
odd partial waves), which is the same result as in the Born
approximation. The3P2+3F2 LN-SN coupling enhances
the attractiveLS contribution slightly, while the1P1+3F1
LN-SN coupling enhances the repulsiveLSs−d contribution
largely. If we use this reduction of theSL factor from −7.8 to
−1.9 MeV fm5 in the realisticG-matrix calculation, we find
that the presentDE,s value −137 MeV is reduced to an al-
most correct value −33 keV. However, such a reduction of
the Scheerbaum factor due to theLN-SN coupling is sup-
posed to be hindered in theLa system in the lowest-order
approximation from the isospin consideration. On the other
hand, the situation of fss2 in Table III is rather different,
although the cancellation mechanism between theLS and
LSs−d components and the reduction effect ofSL factor in the
full calculation are equally observed. When all theLN-SN
coupling is neglected, the ratio of theLSs−d andLS contribu-
tions in the quark sector is still one-half. Since the EMEP
contribution is mainly for theLS type, it amounts to about
−6 MeV fm5, which is very large and remains with the same
magnitude even after theP-wave LN-SN coupling is in-
cluded. Furthermore, the increase of theLSs−d component is
rather moderate, in comparison with the FSS case. This is
because the model fss2 contains an appreciable EMEP con-
tribution s,40%d which has very fewLSs−d contributions. As
a result, the totalSL value in fss2G-matrix calculations is
3–6 times larger than the FSS value, depending on the Fermi

momentumkF=1.35–1.07 fm−1. Such an appreciable EMEP
contribution to theLScomponent of theYN interaction is not
favorable to reproduce the negligibly small,s splitting of

L
9 Be.

Summarizing this work, we have performed the
j j -coupling Faddeev calculations forL

9 Be by incorporating
La LS interactions generated from the Born kernel of the
QM baryon-baryon interactions. This calculation corre-
sponds to an evaluation of the Scheerbaum factors in the
Born approximation. Since theP-wave LN-SN coupling is
not properly taken into account, the present calculation using
the FSS Born kernel yields too large spin-orbit splitting of
the 5/2+ and 3/2+ excited states ofL

9 Be by a factor of 3. In
the model FSS, a reduction by a factor of1/2–1/4 is ex-
pected in theG-matrix calculation of the Scheerbaum factor
SL [9], depending on the Fermi momentumkF
=1.35–1.07 fm−1. In fss2, theG-matrix calculation for the
Scheerbaum factor yields a rather large valueSL

,−11 MeV fm5, with very weakkF dependence, due to the
appreciable EMEP contributions. The QM baryon-baryon in-
teraction with a large spin-orbit contribution from the meson-
exchange potentials is, in general, unfavorable to reproduce
the very small,s splitting observed inL

9 Be. It is a future
problem how to incorporate theP-waveLN-SN coupling in
cluster model calculations like the present one.
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