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Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators

Shin-ichiro Shima* and Yoshiki Kuramoto
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 16 September 2003; published 31 March 2004!

Rotating spiral waves with a central core composed of phase-randomized oscillators can arise in reaction-
diffusion systems if some of the chemical components involved are diffusion-free. This peculiar phenomenon
is demonstrated for a paradigmatic three-component reaction-diffusion model. The origin of this anomalous
spiral dynamics is the effective nonlocality in coupling, whose effect is stronger for weaker coupling. There
exists a critical coupling strength which is estimated from a simple argument. Detailed mathematical and
numerical analyses are carried out in the extreme case of weak coupling for which the phase reduction method
is applicable. Under the assumption that the mean-field pattern keeps rotating steadily as a result of a statistical
cancellation of the incoherence, we derive a functional self-consistency equation to be satisfied by this space-
time dependent quantity. Its solution and the resulting effective frequencies of the individual oscillators are
found to agree excellently with the numerical simulation.

DOI: 10.1103/PhysRevE.69.036213 PACS number~s!: 05.45.Xt, 82.40.Ck

I. INTRODUCTION

Rotating spiral waves represent a most universal form of
patterns appearing in reaction-diffusion systems and other
dissipative media of oscillatory and excitable nature. Most of
the recent experimental and theoretical studies on rotating
spiral waves in reaction-diffusion systems have focused on
their complex behavior such as core meandering in two di-
mensions~2D! @1,2#, manipulation of the pattern using pho-
tosensitive Belousov-Zhabotinsky reaction@3,4#, and the to-
pology and dynamics of the singular filaments of 3D scroll
waves@5–7#. A little apart from this mainstream, the possi-
bility of a new type of spiral dynamics caused by a universal
mechanism was proposed recently by the present authors@8#.
This is characterized by the appearance of a local group of
oscillators near the center of spiral rotation where the oscil-
lators behave individually rather than collectively. A simple
class of three-component reaction-diffusion systems involv-
ing two diffusion-free components and an extra diffusive
component proved to exhibit this type of anomaly. Here the
last component plays the role of a coupling agent allowing
the otherwise independent local oscillators to communicate
with each other, where the communication takes place non-
locally. The crucial parameter to this peculiar spiral dynam-
ics is the strength of the nonlocal coupling. If it is suffi-
ciently large, the characteristic wavelength of the pattern,
especially the radius of the spiral core, becomes longer than
the coupling radius. Consequently, the coupling becomes ef-
fectively local, i.e., diffusive, and there is nothing peculiar
about the resulting spiral pattern. As the coupling becomes
weaker, in contrast, its nonlocal nature becomes stronger,
and finally a small group of phase-randomized oscillators
starts to be created near the center of rotation. We find in the
present paper that under certain conditions the phase-
randomized core is stationary in a statistical sense. This al-
lows us to formulate a statistical theory with which the entire
system dynamics, collective and individual, can completely

be specified. Actually, the exact self-consistent theory devel-
oped here provides a rare example of statistical theories as-
sociated with large systems of limit-cycle oscillators when
spatial degrees of freedom are involved.

The organization of the present paper is the following. In
Sec. II, we start with a brief review of some general features
of the three-component reaction-diffusion model introduced
earlier, and show how it is reduced to a two-component sys-
tem of nonlocally coupled oscillators. Then, adopting a spe-
cific model for the local oscillators, we present some results
of our numerical simulation revealing the fact that the spiral
core can be coherent or incoherent depending on the cou-
pling parameter. We shall also see that the critical coupling
strength associated with the onset of incoherence can be es-
timated from a simple argument. Sections III and IV, each
devoted to numerical and mathematical analyses, are con-
cerned with the special situation where the coupling is suffi-
ciently weak. Then the so-called phase reduction method is
applicable, by which a phase oscillator model with nonlocal
coupling is derived. What is remarkable is the fact that, as
opposed to the conventional view, description of the spiral
dynamics in terms of the phase oscillator model does not
lead to a topological contradiction but can even provide its
precise description. Using this nonlocal phase model, we de-
velop a mean-field theory similar to Kuramoto’s 1975 theory
on the onset of collective synchronization in globally
coupled oscillators@9#. The present mean-field theory is
based on the assumption of steady rotation of the mean-field
pattern. Owing to this assumption, we can derive a functional
self-consistency equation to be satisfied by the mean field.
Numerical solution of this functional equation is confirmed
to agree exceedingly well with the simulation results.

II. REACTION-DIFFUSION MODEL
AND ITS REDUCED FORM

A. Effective nonlocality in reaction-diffusion systems

Consider a three-component reaction-diffusion system of
the following form:*Electronic address: s_shima@ton.scphys.kyoto-u.ac.jp
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] tX~r,t !5 f ~X,Y!1K~B2X!, ~1!

] tY~r,t !5g~X,Y!, ~2!

t] tB~r,t !52B1D¹2B1X. ~3!

The system is supposed to extend sufficiently in two dimen-
sions. The above model has recently been used as a paradig-
matic model for the study of various aspects of self-
oscillatory fields where the effective nonlocality in coupling
plays a crucial role@8,10,11#. The first two equations with
K50 represent a local limit-cycle oscillator. Our system may
therefore be interpreted as a continuum limit of a large as-
sembly of oscillators without direct mutual coupling which
are suspended in a diffusive chemical with concentrationB.
The last quantity plays the role of a coupling agent only by
which the local oscillators can mutually communicate. For
simplicity, a cross coupling between the local oscillators and
the diffusive field has been introduced in a linear form and
only betweenX and B. The coupling termK(B2X) may
equivalently be replaced with a more natural formKB if
f (X,Y) is suitably redefined, but we will work with the first
form for its mathematical convenience to be seen later.

Our system, possibly with various modifications and gen-
eralizations, bears some resemblance to biological popula-
tions of oscillatory and excitable cells such as suspensions of
yeast cells under glycolysis and slime mold amoebae in a
certain phase of their life cycle@12–14#. One may also note
some similarity of the above model to the recently developed
version of the Belousov-Zhabotinsky reaction using water-
in-oil Aerosol OT microemulsion@15–17#. Some of the in-
teresting theoretical aspects of our reaction-diffusion model
have already been reported@8,10,11#.

When the characteristic time scale ofB, denoted byt, is
sufficiently small, this component can be eliminated adia-
batically by solving the equation

052B1D¹2B1X. ~4!

The solution of the above equation is expressed in terms of
the Green’s functionG(r) in the form

B~r,t !5E G~r2r8!X~r8,t !d2r 8. ~5!

If our system is infinitely extended,G(r) is radially symmet-
ric, and for spatial dimension two it is given by a modified
Bessel function of the second kind, denoted byK0, with the
characteristic length scaler 05AD, i.e.,

G~r !5
1

2pr 0
2

K0S r

r 0
D , r 5uru. ~6!

Note that the aboveG(r ) satisfies the normalization condi-
tion *G(r )d2r 51 and behaves asymptotically asG(r )
;exp(2r/r0)/Ar /r 0 for r @r 0. We may callB(r,t) the space-
time dependentmean fieldbecause this quantity roughly rep-
resents a mean value ofX(r8,t) over a circular domain with
the radius ofO(AD) centered atr. Our original reaction-

diffusion system has now been reduced to the system of Eqs.
~1!, ~2!, and~5!, which represents a two-component oscilla-
tory field with nonlocal coupling.

Suppose that we change parameterK, which measures, in
terms of the reduced system, the strength of the nonlocal
coupling. If K is sufficiently large, the characteristic wave-
length of the pattern, denoted byl p , will be far longer than
the coupling radius~as is justified below!. Then the long-
wavelength approximation can be applied to Eq.~5!, giving
K(B2X).D̃¹2X, whereD̃5KD. Thus, the nonlocal cou-
pling practically reduces to a diffusive coupling in this
strong-coupling case. One may check the consistency of the
above argument by noticing the fact that the result of this
diffusion-coupling approximation itself tells thatl p estimated

from Eq. ~1! scales likel p;AD̃5AKD. Thus, sufficiently
largeK implies l p larger than the coupling radiusAD, so that
our long-wavelength assumption proves to be consistent. In
any case, our system for strong coupling reduces to a two-
component reaction-diffusion system, which, however, is the
case of our little concern in the present paper.

The situation of our interest is the opposite case in which
K is so small thatl p becomes comparable with or even
smaller than the coupling radius ofO(AD). Then the
diffusion-coupling approximation breaks down, and the sys-
tem comes to behave in an unusual manner. It should be
noted here that the evolution equations themselves are free of
characteristic length scale below the coupling radius. There-
fore, oncel p comes to fall within the coupling radius, or
equivalently, once spatial variations with wavelengths
smaller than the coupling radius are generated spontaneously,
then there is no reason why spatial variations of even smaller
wavelengths should not occur. We suspect therefore that the
kind of anomaly of our concern might be characterized by a
fragmentation of the pattern down to infinitesimal spatial
scales. This is actually the case, which we show below by
presenting some numerical results on the nonlocally coupled
system given by Eqs.~1!, ~2!, and~5! with specific forms for
f andg.

B. Case of the FitzHugh-Nagumo oscillators

As a simple model for the local oscillators, let us consider
the FitzHugh-Nagumo model given by

f 5s21$~X2X3!2Y%, g5aX1b. ~7!

We fix the parameter values asa51.0, b50.2, and s
50.1, so that the system is well in the self-oscillatory re-
gime.

We carried out a numerical analysis on a nonlocally
coupled field of oscillators described by Eqs.~1!, ~2!, ~5!,
and ~7!. The system is defined over the square domainx,y
P@0,L# where B satisfies the free boundary conditions,
namely, the vertical component of“B to the boundaries van-
ishes. Thus, the Green’s functionG differs in this case from
the form given by Eq.~6! especially near the boundaries. In
practical numerical simulation, our continuous space was re-
placed with a square lattice of oscillators ofN3N lattice
points, a typical value ofN being 2048. At each time step,B
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was calculated from Eq.~5!, or equivalently Eq.~4!, by
means of a spatial Fourier transform. The fourth-order
Runge-Kutta scheme was adopted for the time integration of
Eqs.~1! and ~2!.

Some numerical results for two representative values ofK
are illustrated in Fig. 1. Figures 1~a!–1~c! correspond to the
case of largeK. They respectively show an overall spiral
pattern, its blowup near the center of rotation, and the phase
portrait of the pattern in theX-Y plane. The last quantity is
given by a set ofN2 points in theX-Y plane each represent-
ing the state of a local oscillator at a given time. In usual
reaction-diffusion systems such as those modeled with two-
component reaction-diffusion equations, the phase portrait
associated with a spiral pattern is considered to form a sim-
ply connected object involving a phase singularity. This is a
natural consequence of the homeomorphism which is sup-
posed to characterize the mapping between the physical

space and the state space. The same property seems to hold
in the present case of largeK, and this is consistent with the
fact already noted that for sufficiently strong coupling our
system reduces to a two-component reaction-diffusion sys-
tem.

Figures 1~d!–1~f! correspond to the case of smallK. The
overall spiral pattern does not seem qualitatively different
from that for largeK. As is clear from Fig. 1~e!, however,
closer observation of the core structure reveals a completely
new feature of the pattern. This is the appearance of a group
of oscillators near the center of rotation where the oscillators
seem to behave individually rather than collectively. The cor-
responding phase portrait, which is presented in Fig. 1~f!, no
longer seems to tend to a simply connected object in the
continuum limit. The hole created in the phase portrait gives
a clear indication of the breakdown of the homeomorphism
mentioned above. It may alternatively be said that a pair of
local oscillators situated infinitely close to each other are not
always so close in the state space, which says nothing but a
loss of spatial continuity of the pattern. At the same time, the
phase singularity, which is generally considered as a central
characteristic shared by spiral patterns, seems to be lost, i.e.,
the pattern no longer seems to involve a special local oscil-
lator for which the phase cannot be defined.

The origin of the spiral core anomaly of this kind may
qualitatively be understood in the following way. Our pri-
mary question is why the core region is the most fragile part
of the pattern with respect to the collapse of spatial continu-
ity. In order to see why, it is convenient to look upon Eqs.~1!
and ~2! as describing a single oscillator driven by a forcing
field B whose spatial variation is expected to be relatively
smooth from its definition given by Eq.~4!. Wherever the
oscillation amplitude ofB is sufficiently large, the oscillators
will individually synchronize with the motion ofB, so that a
local group of such oscillators will mutually synchronize
also. The corresponding local pattern will then look continu-
ous and smooth. This is considered to be the case for those
oscillators far apart from the central core, because the oscil-
lation amplitude ofB there should be relatively large. In
contrast, close to the central part of the pattern, where the
oscillation amplitude ofB should be relatively small, syn-
chronization becomes more difficult. Loss of mutual syn-
chrony implies the appearance of a group of phase-
randomized oscillators.

C. Estimation of Kc

From the numerical data presented in Fig. 1, one may
expect the existence of a critical value of the coupling
strength, denoted asKc , associated with the onset of
incoherence. We now try to estimateKc for our system
of nonlocally coupled FitzHugh-Nagumo oscillators given
by Eqs. ~1!, ~2!, ~5!, and ~7!, where the spatial extension
is supposed to be infinite. Consider first the situation where
the coupling is large enough for the system to sustain a
rigidly rotating spiral wave with sufficient spatial smooth-
ness. The corresponding solution is represented byAs(r,t)
5@Xs(r,t),Ys(r,t)#. Let the center of rotation be atr50. By
assumption, the oscillator right at the center is motionless,

FIG. 1. Spiral patterns exhibited by nonlocally coupled
FitzHugh-Nagumo oscillators for two representative cases of strong
coupling @~a!, ~b!, and ~c!, K510.0] and weak coupling@~d!, ~e!,
and ~f!, K55.0]. Other parameters are fixed asa51.0, b50.2,
s50.1, andD51. ~a! and~d!: Overall patterns of the componentX
displayed in gray scale.~b! and ~e!: Their structures near the core.
~c! and ~f!: Corresponding phase portraits in theX-Y plane, where
the nullclinesf (X,Y)50 andg(X,Y)50 are also indicated.
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i.e., As(0,t)5(Xc ,Yc), whereXc and Yc are time indepen-
dent. Our question is at which value ofK this fixed point
becomes unstable and the oscillator there starts to oscillate.
To consider this problem, it is convenient to work with the
aforementioned mean-field picture by which we look upon
the local oscillators as being subject to a common space-time
dependent fieldB. The mean-field pattern should also rotate
rigidly aroundr50, so that the central oscillator is subject to
a constant forcingB(0). The system of Eqs.~1! and ~2!
describing this particular oscillator form an autonomous two-
dimensional dynamical system, so that onceB(0) is known
the value of the fixed point (Xc ,Yc) and its stability will
easily be found. The value ofB(0) can actually be estimated
from Eq.~5! by developingXs(r,t) into a Taylor series about
r50, which is allowed owing to the assumed smoothness of
the pattern. It is clear that, as a result of the isotropy of the
coupling functionG, there is no contribution toB(0) from
the first-order expansion terms. If the contribution from the
second-order terms is negligible, i.e., if the nonlinear varia-
tion of Xs within the coupling range aboutr50 is negligible,
then we may simply putB(0)5Xc . With this approximation,
it is clear from Eqs.~1! and~2! that the fixed point (Xc ,Yc)
is identical with the intersection of the nullclinesf 5g50,
i.e., the unstable fixed point of the local oscillators. Its linear
stability is also easy to analyze. The result is that the critical
coupling strength is given byKc5(123Xc

2)/s below which
the fixed point (Xc ,Yc) becomes Hopf unstable. Applying
the values ofa, b, ands used in our numerical simulations,
we obtainKc58.8. This value ofKc is consistent with our
direct numerical simulation, although its precise numerical
determination is yet unavailable.

III. SPIRAL DYNAMICS IN NONLOCALLY COUPLED
PHASE OSCILLATORS

In order to look into the nature and origin of our anoma-
lous spiral dynamics in further detail, we now consider the
situation where the coupling is much weaker thanKc . Figure
2 shows some results from our numerical simulation carried
out for K52.0, presented in a similar manner to Fig. 1.
While there seems nothing unusual about the overall spiral
pattern, the corresponding phase portrait forms a ring with a
relatively thin periphery, which is totally unlike a simply
connected object. We may alternatively say that the oscillator
amplitude everywhere takes almost a full value. This is ex-
actly the situation where the so-called phase description is
applicable. In fact, as we see later in this section, a simple
phase oscillator model with nonlocal coupling can develop a
spiral pattern with phase-randomized core similar to the
above.

We now present a brief review of the phase reduction
method@18# in the form appropriate for the present purposes.
Each of our local oscillators without coupling is described
by a two-dimensional dynamical systemdA/dt5F(A),
whereA5(X,Y) andF5( f ,g). Let its stable time-periodic
solution with frequency v be given by A0(vt)
5@X0(vt),Y0(vt)#, which is a 2p-periodic function ofvt.
The corresponding limit-cycle orbit is represented byC.
Phasef associated with this oscillator must be defined out-

side C as well as onC. Most conveniently, it is defined in
such a way that the free motion of the oscillator satisfies
df/dt5v regardless of initial conditions. This requires that
f as a scalar fieldf~A! satisfies the identity gradAf•F(A)
5v. The wholeX-Y plane is then filled with equiphase lines
which are called isochrons, one of which is chosen to corre-
spond to the zero phase. Corresponding to eachf value, a
point A0(f) onC is determined uniquely, which says nothing
but the fact that an isochron andC intersect at a single point.

When the nonlocal coupling is introduced, the equation
for each local oscillator is modified as

] tA~r,t !5F~A!1p~r,t !, ~8!

where

p~r,t !5@pX~r,t !,0#,

pX~r,t !5KE G~r2r8!@X~r8,t !2X~r,t !#d2r 8.

Correspondingly, the equation for the phase is modified as

] tf5gradA f•@F~A!1p#5v1gradA f•p. ~9!

If the perturbationp is sufficiently weak, which we assume
now, the oscillator will keep staying onC in good approxi-
mation. Then gradA f in Eq. ~9! may safely be evaluated on
C, or

gradA f.@ZX~f!,ZY~f!#,

FIG. 2. Spiral patterns exhibited by nonlocally coupled
FitzHugh-Nagumo oscillators withK52.0, presented in a similar
manner to Fig. 1. For this value ofK, the amplitude degrees of
freedom become almost irrelevant.
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where

ZX~f!5@]Xf~A!#A5A0(f) ,

andZY(f) is defined similarly. At the same time,pX may be
approximated with

pX.KE G~r2r8!@X0„f~r8,t !…2X0„f~r,t !…#d2r 8.

Thus, the phase equation becomes

] tf~r,t !5v1KZX„f~r,t !…E G~r2r8!

3@X0„f~r8,t !…2X0„f~r,t !…#d2r 8.

Since the small effect of the perturbation on] tf can be
time-averaged over one cycle of oscillation@18#, the phase
equation finally takes the form

] tf~r,t !5v1KE G~r2r8!G„f~r,t !2f~r8,t !…d2r 8,

~10!

where

G~f2f8!5
1

2pE0

2p

ZX~l1f!

3@X0~l1f8!2X0~l1f!#dl.

By using the above formula,G~f! may be computed numeri-
cally if the forms of f and g are given explicitly. For the
present case of FitzHugh-Nagumo oscillators, numerically
obtainedG~f! is displayed in Fig. 3.

The phase-coupling functionG~f!, which is a 2p-periodic
function off, generally involves various harmonics, and this
is also true of the curve given in Fig. 3. We still expect that
the spiral dynamics of our concern does not depend so
heavily on the specific form ofG~f!. Therefore, in order for
further mathematical analysis to be practicable, we will work

with the simplest in-phase-type coupling function, i.e.,G~f!
52sin~f1a! ~uau,p/2!. Thus, the phase equation takes the
form

] tf~r,t !5v2KE G~r2r8!sin@f~r,t !2f~r8,t !1a#d2r 8

~11!

for which an in-depth mathematical analysis is possible as
we see below.

Before proceeding to the analysis of Eq.~11!, we remark
that the above phase equation is also a correct reduced form
of a nonlocal version of the complex Ginzburg-Landau equa-
tion @19#, the latter itself being a reduced form of our three-
component reaction-diffusion model close to the Hopf bifur-
cation and comparably close to the limit of vanishing
coupling @11#. This fact gives a further support to our view
that the application of Eq.~11! to our problem is reasonable.

We are still far from a full understanding of the solution to
the universal equation~11!, and our concern below is its
spiral wave solution in two dimensions. Although the equa-
tion involves four parametersv, K, r 0, anda, the only rel-
evant parameter isa. The reason is the following. First,r 0,
on whichG(r ) depends@see Eq.~6!#, may be chosen to be
the length unit, so that we may putr 051. Similarly, the
coupling strengthK may be fixed to 1 by suitably choosing
the time unit. The natural frequencyv can be eliminated by
working with a suitable comoving frame of reference, i.e.,
via the transformationf→f1vt. In the following analysis,
however, the irrelevant parameterv is retained as a nonzero
constant, while we choosea50.3 andr 05K51.

Numerical simulation of Eq.~11! was carried out in a
two-dimensional system. The numerical scheme adopted is
the same as that explained in the preceding section. As ex-
pected, we see from Fig. 4 the appearance of rotating spiral
waves with a disordered group of oscillators near the core
very similar to what we have seen in the preceding section.

For the arguments developed below, it is convenient to
define a mean fieldW(r,t) through

W~r,t !5E G~r2r8!exp@ if~r8,t !#d2r 8. ~12!

FIG. 3. Phase-coupling functionG~f! vs f for coupled
FitzHugh-Nagumo oscillators. This quantity can be used for the
study of nonlocally coupled phase oscillators given by Eq.~10!.

FIG. 4. Spiral pattern~left! and its core structure~right! exhib-
ited by nonlocally coupled phase oscillators governed by Eq.~11!,
wherea50.3.
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The modulusR and the phaseQ of this complex quantity are
defined by

W~r,t !5R~r,t !exp@ iQ~r,t !#.

Since the definition~12! of the mean field involves a
weighted spatial average over infinitely many local oscilla-
tors, this quantity is expected to be smooth in space even if
these oscillators are behaving incoherently. This property of
W is also clear from the differential form of Eq.~12!, i.e.,

052W1¹2W1exp~ if!. ~13!

The above equation implies a strong similarity ofW to B
governed by Eq.~4!. If the mean-field pattern rotates steadily
with frequencyV, thenR is time independent and the rela-
tive mean-field phaseQ0 defined by

Q~r,t !5Vt1Q0~r,t !

is also time independent.
In terms ofR(r,t) andQ(r,t), Eq. ~11! may be expressed

in the form of a one-oscillator dynamics

] tf~r,t !5v2R~r,t !sin@f~r,t !1a2Q~r,t !#,

or if we introduce a relative phase variablec(r,t) through

f~r,t !5Vt1c~r,t !,

we have

] tc~r,t !5v2V2R~r,t !sin@c~r,t !1a2Q0~r,t !#.
~14!

The definition of the mean field given by Eq.~12! becomes

R~r,t !exp@ iQ0~r,t !#5E G~r2r8!exp@ ic~r8,t !#d2r 8.

~15!

Note that the set of Eqs.~14! and ~15! is still equivalent to
the original phase equation~11!.

We now proceed to someanatomyof the anomalous core
structure taking advantage of the numerically observed fact
that the mean-field pattern has a well-defined center of rota-
tion ~chosen to ber50! at whichW50. One may thus imag-
ine a linear cross sectionS of the pattern passing through
r50 and study the radial profiles of various quantities emerg-
ing alongS. Some results obtained in this way of analysis are
summarized in Figs. 5~a!–5~c!.

An instantaneous radial profile of the mean-field modulus
R is presented in Fig. 5~a!. As expected, it has a vanishing
value at the origin, and its temporal fluctuation is also found
negligibly small.

Figure 5~b! shows an instantaneous distribution of the
phasesf of the local oscillators lying onS ~indicated by
crosses!. The same panel also includes the pattern of the
mean-field phaseQ on the same cross section~indicated
by open circles!. It is clear that there exists a well-defined
critical radius separating the domains of coherent and inco-
herent oscillators from each other. We also confirmed~but

not shown explicitly! that the profiles of the mean-field phase
and that of the phases of the coherent oscillators are almost
stationary except for a drift with constant velocityV.

Our interpretation of the results given by Figs. 5~a! and
5~b! is that the entire system now splits into two subdomains
such that the oscillators in one domain synchronize com-
pletely with the periodic mean-field forcing, while those in
the other domain fail in synchronization. Further evidence
supporting this interpretation is provided in Fig. 5~c! where
the distribution of the mean frequencyv̄ ~defined by a long-
time average of] tf) of the local oscillators lying onS is
shown. This frequency pattern is clearly composed of two
parts; namely, in the outer domain the oscillators have an
identical frequency, while in the inner domain the frequen-
cies are distributed, the latter implying phase randomization
consistent with the scattered dots appearing in Fig. 5~b!.

FIG. 5. Radial profiles of various quantities corresponding to the
spiral core of Fig. 4.~a! Instantaneous radial profile of the mean-
field modulusR. ~b! Instantaneous radial profile of the phasesf of
the local oscillators~crosses! and that of the mean-field phaseQ
~open circles!. ~c! Radial profile of the mean frequencyv̄ ~defined
by a long-time average of] tf) of the local oscillators.
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In the following section, we develop a theory for deter-
mining the mean-field pattern together with its rotation fre-
quency, and also the motion of the individual oscillators
driven by this mean field, in a self-consistent manner.

IV. THEORY

The basic equations to work with are Eqs.~14! and ~15!.
Our theory starts with the assumption that the mean-field
pattern is steadily rotating, and therefore we drop thet de-
pendence fromR and Q0 in these equations. A complete
solution to this system of equations can be obtained in the
following two steps. We first solve Eq.~14! for eachc as a
function of R andQ0, which is easy to do. Note thatR and
Q0 are the quantities yet to be determined. Second, the entire
set of these solutions is substituted into Eq.~15!. The right-
hand side of Eq.~15! thus becomes a functional of the mean-
field. In this way, the mean field value at each spatial point is
expressed in terms of a functional of the mean field itself.
Solution of this functional self-consistency equation exists
only for a special value of the rotation frequencyV of the
mean-field pattern. We will therefore be working with a non-
linear eigenvalue problem. The final solution of this func-
tional equation could be found only numerically.

The above self-consistent way of finding a solution to a
many-oscillator problem resembles strongly Kuramoto’s
1975 theory of synchronization phase transition in a large
population of globally coupled oscillators with distributed
natural frequencies@9#. The main difference is that the oscil-
lators are now coupled nonlocally rather than globally, and
consequently the mean field is generally space dependent
leading to a functional self-consistency equation rather than
a simple transcendental equation. Although the natural fre-
quencies of the oscillators are identical in the present case,
the actual frequencies can be distributed due to the existence
of a spatial gradient of the mean field. A simpler, one-
dimensional version of the present type of theory based on a
similar model of nonlocally coupled phase oscillators was
reported earlier@20#.

An important feature common to all such theories is that
the one-oscillator equation which involves the mean-field
amplitude as a parameter admits either a stationary solution
or a drifting solution. Which one to hold depends on the
modulus of the mean field. The crucial point to the theory is
how to deal with the drifting solutions, because a simple
substitution of this type of solutions into the definition of the
mean field apparently contradicts the assumed stationarity of
the mean field~in a suitable comoving frame of reference!.
The seeming contradiction here can be resolved by using the
invariant measure associated with the drift motion. We will
now show explicitly the steps leading to an exact solution to
the problem.

As stated above, there are two possible cases regarding
the solution of Eq.~14!. They are~case I! uv2Vu,R and
~case II! uv2Vu.R. Correspondingly, the oscillators are di-
vided into two groups. In the first case, which corresponds to
the group of coherent oscillators, Eq.~14! admits a pair of
stable and unstable fixed points. The stable one, denoted by
c0(r), is given by

c0~r!5sin21S v2V

R~r! D1Q0~r!2a.

The actual frequenciesv̄ of the oscillators in this group are
of course identical withV. We substitute the above solution
for c(r) into Eq.~15!, and restrict the integral to the domain
where the inequalityuv2Vu,R(r) is satisfied. In this way,
the contribution to the local mean-field value coming from
the coherent group of oscillators is obtained.

The second case corresponds to the group of incoherent
oscillators, for which Eq.~14! admits a drifting solution. The
actual frequenciesv̄(r) are now distributed and they are eas-
ily calculated as

v̄5V12pF E
0

2pS dc

dt D
21

dcG21

5V1~v2V!A12S R

v2V D 2

.

The contribution to the local mean-field value from this in-
coherent group of oscillators can be found in the following
way. Sincec is drifting, the factor exp(ic) in the integrand in
Eq. ~15! does not have a definite value. We are thus led to the
idea that this factor should rather be replaced with its statis-
tical average which can be calculated by using the invariant
measure, i.e., the probability densityp(c) associated with
the drift motion. Noting that the probability density for the
oscillator’s phase to take on valuec must be inversely pro-
portional to the drift velocity given by the right-hand side of
Eq. ~14!, we have

p~c!5C@v2V2R sin~c1a2Q0!#21, ~16!

where C is the normalization constant given byC
5(2p)21(v2V)A12R2/(v2V)2.

Putting together the above-stated two types of contribu-
tions to the mean field, we finally obtain a functional self-
consistency equation in the form

R~r!eiQ0(r)5E G~r2r8!h@R~r8!,Q0~r8!,v2V#d2r 8,

~17!

where

h~R,Q0 ,v2V!

5H exp@ ic0~R,Q0 ,v2V!# ~ uv2Vu,R!

E
2p

p

p~c,R,Q0 ,v2V!exp~ ic!dc ~ uv2Vu.R!,

or more explicitly
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eic05ei (Q02a)HA12S v2V

R D 2

1 i
v2V

R J ,

E
2p

p

p~c!eic dc5 iei (Q02a)S v2V

R D
3H 12A12S R

v2V D 2J .

Numerical solution of Eq.~17! can be found iteratively.
We did this in a finite domain defined byx,yP@0,40# with G
appropriate for the free boundary conditions imposed on Eq.
~13!. Since a solution of Eq.~17! would only be available for
a special value ofV2v which is still to be determined, its
trial value was adjusted in each iteration step in such a way
that a suitably defined distance between the two mean-field
patterns, one produced at the current step and the other at the
next step, may be minimized. In this way, by starting with a
suitable initial mean-field pattern similar to the one obtained
from numerical simulations, a rapid convergence of the
mean-field pattern and the value ofV was achieved.

In Fig. 6 our theoretical results obtained in this way are
compared with the data given in Fig. 5, i.e., the results from
direct numerical simulation of Eq.~11!. The agreement is so
excellent that our theory is expected to hold exactly in the
continuum limit.

V. SUMMARY AND CONCLUDING REMARKS

Spontaneous generation of a local group of phase-
randomized oscillators near the center of a rotating spiral
pattern was confirmed through numerical simulations on
nonlocally coupled oscillators. It was argued that smaller
value of the coupling strength favors the occurrence of the
core anomaly. The critical coupling strengthKc associated
with the onset of this anomaly was estimated from a simple
argument. WhenK is sufficiently small, by which the oscil-
lation amplitude even near the center of rotation takes almost
a full value, a group of incoherent oscillators always exists.
Still the overall spiral pattern looks completely normal.
Guided by this fact observed numerically, we applied the
phase reduction method for the purpose of gaining a deeper
understanding of the phenomenon. The resulting phase oscil-
lator model with nonlocal coupling was found to exhibit the
same type of core anomaly. Under the assumption that the
pattern of a suitably defined mean field is steadily rotating in
spite of the existence of incoherence, we derived a functional
self-consistency equation to be satisfied by the mean field. Its
solution successfully reproduced various results obtained
from our direct numerical simulations carried out on this
phase model.

Finally, we remark that the present study is confined to a
particular domain of parameter values where the mean-field
dynamics is regular. Our preliminary study suggests that un-
der different conditions more complex collective dynamics
occurs, which is characterized, e.g., by an elongation of the
domain of incoherent oscillators and its irregular motion@8#.
For the case of nonlocally coupled FitzHugh-Nagumo oscil-

lators for smallK, this occurs for largerb, i.e., when the
symmetry of the local oscillator dynamics is lowered, al-
though a perfect symmetry (b50, or the van der Pol limit! is
not necessary for the steady rotation of the mean field. For
largerK ~still below Kc), in contrast, regular dynamics of the
mean field and circular shape of the domain of incoherent
oscillators seem to persist against relatively strong asymme-
try of the oscillator dynamics. These results will be reported
elsewhere.
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FIG. 6. Comparison between the theory and numerical simula-
tion. Theoretical results are indicated with solid lines in~a! and~c!,
and solid lines and scattered dots in~b!. Numerical data, which are
the same as those given in Fig. 5, are indicated with open circles
and crosses.~a! Instantaneous radial profile of the mean-field modu-
lus R. ~b! Instantaneous radial profile of the mean-field phaseQ and
that of the phasesf of the local oscillators, where the theoretically
obtained scattered dots are the random numbers chosen from the
probability distribution given by Eq.~16!. ~c! Radial profile of the
mean frequencyv̄ of the local oscillators.
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