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We study the spatial power spectra of Nikolaevskii turbulence in one-dimensional space. First, we show that
the energy distribution in wave-number space is extensive in nature. Then, we demonstrate that, when varying
a particular parameter, the spectrum becomes qualitatively indistinguishable from that of Kuramoto-
Sivashinsky turbulence. Next, we derive the critical exponents of turbulent fluctuations. Finally, we argue that
in some previous studies, parameter values for which this type of turbulence does not appear were mistakenly
considered, and we resolve inconsistencies obtained in previous studies.
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The spontaneous formation of spatially periodic structureAlso, we argue that in some previous works on Nikolaevskii
in reaction-diffusion systems was predicted by Turing inturbulence, values ok that are in fact inappropriate for
1952 [1] and experimentally confirmed many years laterstudying this type of turbulence were used.

[2,3]. The so-called Turing mechanism is now widely ac- Equation(1) has two parameters, the bifurcation param-
cepted, and we can retrieve many papers by searching for theter e and the system sizk. First, we derive thd. depen-
keyword “Turing pattern,” including a large number written dence of the spatial power spectr8fy) =(|vy|?), wherev,
this century{4]. Recently, we found evidence that the Turing is the spatial Fourier transform of= 24,4 and({) represents
instability in oscillatory systems can also cause an initiallya |ong-time average. The quanti§qg)/L is plotted as a
uniform state to evolve into a state characterized by spafnction of the wave numbeq for L=29 210 211 and 22
tiotemporal chaos instead of spatially periodic structurgyith ¢=0.02 in Fig. 1. There it is seen th&tq)/L possesses
[5.6]. This type of chemical turbulence is exhibited by the 5 ynjversal form independent bf This implies that the en-
equation ergy distribution in wave-number space is an extensive quan-
tity. In Ref. [12], the Lyapunov dimension and the
dahx0) = = e~ (1+ Y= (3ap?, @) Kolmogorov-Sinai entropy are studied for E€L) in the
casex=0.2, 0.5, and it is shown that these too are extensive
uantities. However, these values @are too large for Eq.
1) to exhibit the type of spatiotemporal chaos in which we
are interested, as we show below.
Second, we consider the dependence of the spatial

which was derived from a class of oscillatory reaction-
diffusion systems by means of a phase reduction techniqu
[6]. An equivalent equation was proposed by Nikolaevskii a
a model of seismic phenomefid. The uniform steady state

of Eq. (1), =0, is unstable with respect to finite-wavelength : :
perturbations when the small parameteis positive. How-  POWer density spectrurS(g)/L. In the following, we con-

. . o
ever, this instability does not lead to spatially periodic steady?lder only the single system side=2", because, as men-

states, because the equation possesses a Goldstone mdidied aboveS()/L is independent ot whenlL is suffi-

due to its invariance under transformations of the fagm ciently large. The peaks of the spectrum broaden and merge
— y+const, and the corresponding marginally stable long-
wavelength modes interact with the unstable short- S/t
wavelength modes. As a consequence, spatially periodic 440
steady states do not appear, and instead spatiotemporal chaos

is realized supercritically8,9]. Spatiotemporal chaos exhib-

iting a similar onset has been observed experimentally in
electrohydrodynamic convectidisoft-mode turbulence”in
homeotropically aligned nematic liquid crystal)] and nu- 10
merically in Rayleigh-Bénard convection under free-free 10
boundary condition§11]. In particular, Eq(1) has been ap-

plied to the study of the former type of convective system. It

is thus seen that this class of spatiotemporal chaos appears in
many types of physical systems, and for this reason, studying

Eq. (1) is important. In this paper, we study the statistical 0.01 01 q 1 10
properties of the spatiotemporal chaos exhibited by(Eqn
one-dimensional space with periodic boundary conditionst.

FIG. 1. Spatial power density spectrus(m)/L as a function of
he wave number for L=2°,219, 211 and 22 with €=0.02. The
fact that these plots fall on a universal curve independent of
implies the extensive nature of the energy distribution in wave-
*Electronic address: dan@ton.scphys.kyoto-u.ac.jp number space.
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FIG. 2. Spatial power density spectru®g)/L as a function of FIG. 3. e dependence of (v?). The three lines, included for

the wave numbeq for several values of with L=2°. From top to  reference, have slopes 8f4,3/4, and 4/4.
bottom, we have=0.4, 0.2, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01, 0.008,
0.006, 0.004, and 0.002. The inset displays the spatial power derAlso, Fujisakaet al. derived amplitude equations applicable
sity spectrum obtained from the well-known Kuramoto-Sivashinskyin higher-dimensional spaces using the form Ez). [16].
equation for the sake of comparison. The validity of this form is supported by numerical results
that show \{(v?) o e¥* for €c[0.01,0.1 [15]. However,
whene increases, as shown in Fig. 2. In particular, wlkes  based on an analysis of the time series of the spatial Fourier
larger than about 0.1, the spectrum is qualitatively indistin-amplitude of turbulent fluctuations for E¢L) with the fixed
guishable from that of the Kuramoto-Sivashingki8) equa-  value e=0.0001, Tribelsky and Tsuboi conjectured the scal-
tion, du(x,t)=—2(1+32) i~ (3ap)? [13]. This can be under- ing \(v? = €2 in Ref.[9]. Also, in Ref.[17] it is shown that
stood as follows. The spatiotemporal chaos exhibited by Eq\/<v_2\Loc ! for e[0.1,1]. The discrepancy in the latter case
(1) with a sufficiently smalle arises from the uniform steady seems to be easily accounted for, as it would appear that the
state =0, owing to the interaction between the weakly result for the exponent reported in RéL7] had not yet
stable long-wavelength modes and the unstable shortonverged, because the value ofised there is too large.
wavelength modes. The band of unstable modes has a widtowever, the situation is not so clear with regard to the
in wave-number space of ordet’?, lying on either side of apparent inconsistency reported in R§], because the
g=1. Therefore, unless'/?<1, the weakly stable and un- value ofe used there is certainly sufficiently small. Further-
stable bands of modes cannot be distinguished, and thus thgore, we believe that the numerical results of R&6] are
situation is effectively the same as that for the KS equationinsufficient to establish the validity of the form given in Eq.
in which case chaos arises through interactions among un2) for the following reasons(1,) The results were obtained
stable long-wavelength modes. As a condition to ensure thdbr values ofe in a range of only one ordee,e [0.01,0.1. It
the unstable and weakly stable bands of Eq.are suffi- s quite likely that this small range is insufficient to yield a
ciently separated, we conjecture tle¥f must be at least one ¢lear result for the power-law exponeli®,) Studying only
order of magnitude smaller than 1. Hence, in order to clearlyhe order parameteﬁ?}, we are able to examine the valid-
observe the characteristic Nikolaevskii chaos exhibited b¥ty of only the assumed exponent 3/4 for the amplitude of
this equation, we believe that th@®(e) <0.01 is necessary. gix Verifying the validity of the other exponents requires a
This leads us to conclude that the valee0.2 ande=0.5  gifferent approach(3,) Employing the spatial coordinaté
used in Refs[12,14] (which employs a wavelet decomposi- = 12 jmplies the assumption that the spatial scale of turbu-
tion) are too large to observe this type of spatiotemporajent fiyctuations is very much larger than that of the funda-
chaos and that the power spectrum found in those works igental wavee™. This scale separation is ensured whéfi
actually that of KS spatiotemporal chaos. In fact, it is shown< 1 Taking this condition as implying tha/? can be no
below that the exponents of the scaling for the chaotic greater than 0.1, we obtain the requirem@te) <0.01 to
fluctua_t|ons of Eq(1) dp not converge foO(e)%_O.L guarantee sufficient separation of scales. Now, to resolve the
Noting that the spatiotemporal chaos exhibited by B#.  inconsistency among the results of the previous studies and
results from the interaction between the long-wavelengthy examine the validity of Eq(2), we define some new order

modes neag=0 and the short-wavelength modes in the un-yarameters and examine theidependence both for smaller
stable band surrounding=1, Matthews and Cox derived \jyes ofe and over a wider range of values efthan in

closed-form amplitude equations by hypothesizing that th%revious studies.
behavior of the system can be described in terms of a quan- gjrst as shown in Fig. 3, we find that the results {M

tity v taking the form converge fore<0.1, where we have;umoc €* These re-

v=PAX,T)E*+c.c. +ef(X,T), (2)  sults indicate that if we wish to study the characteristic spa-
tiotemporal chaos exhibited by E¢l), we must choose a

whereA andf represent the slowly varying amplitudes of the value of e no greater than 0.1. Then, as seen in Fig. 4, we
two sets of modes, and we defiXe= €/>x andT=€'t [15].  find Aqex €2, whereAq is defined as the width at half maxi-
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FIG. 6. e dependence df(q.=1). The three lines, included for

FIG. 4. € dependence akq. The three lines, included for refer-
reference, have slopes 874,4/4, and 5/4.

ence, have slopes df/4,2/4, and 3/4.

mum for the peak centered at=1 of the spatial power ;g €2 as shown in Fig. 4, we can reasonably assume

density spectrum. This is evidence that the characteristic spa, . .—  _ 12 - . .
tial scale of turbulent fluctuations &°°. Finally, we present ?A(X)A(O))-exp[—e x]. Then, substituting this into the in-

in Figs. 5 and 6 the dependence of the spatial power den-t€grand of Eq(4), we obtain
sities S(qg)/L and S(q.)/L for the two characteristic modes S(1) = L1, (5)
(o andq.. These are the wave numbers nearesjt® and
g=1 (explicitly, gy=1X 27/L and q,=81x 27/L) that can  (Here, we have uselde’’?> 1. This is reasonable because we
be realized in our system of site=2° with periodic bound- consider the sufficiently large systeh9].) Comparing this
ary conditions. From the figures it is seen tlﬁqo)oce?’/z equation and the result displayed in Fig. 6, we find3/4,
and S(qy) = L. The former relation cannot be seen as ClearlyWhiCh is consistent with the result found for the exponent of
as the latter, because, for larger wavelength modes, fewerv®) obtained from Fig. 3. Similarly, we find
wavelengths are contained in the finite-size space, and there- | 261
fore there is a larger statistical error in the result, which is SO =L ' (6)
obtained by integrating Eq1) over a finite interval of time.  with g=1[20]. Thus, we arrive at the following conclusions.
Here, substituting=e“A(X, T)e*+c.c. +€*f(X,T) into the  Our results confirm the validity of the form given in E®).
Wiener-Khintchine relation, Further, they indicate that the result for the exponent of
L _ \m given in Ref.[17] is erroneous because the value had
Sg) =L f (v(x)v(0))e™"¥dx, (3)  not yet converged, as conjectured above. Equatisnsnd
0 (6) imply that the amplitudes of the Fourier modes with
we obtain wave numbers 2/L(=0) and 1 defined in Ref[9] are
. 27e*/\L and 27€?/\L, respectively. Thus, our results in-
S(1) = LJ eza(A(X)K(O))dx, (4) digate that the values of the quantitle?/ae’e_in Figs. 3 and
0 4 in Ref.[9] are of order 1 and 0.1, respectively, because the
- _ parameter values used there ae0.0001 andL=27/p,
where we have use(AA)=(AA)=(Af)=(Af)=0. Now, be-  wherep=3.125x 1073, In fact, the figures in Ref9] support
cause the characteristic spatial scale of turbulent fluctuationthis argument. We believe that the reason why Matthetvs
al. reported that the form Eqg2) is inconsistent with the
numerical results in Refl9] is that they missed the —1/2
10 appearing in the exponents of E¢S) and(6), which is due
to the spatial correlation of turbulent fluctuations. At the end
of this paragraph, although we consider the sufficiently large
X VL system in this paper, it is worthwhile mentioning that in nu-

0.1 X merical simulations one has to choose the system lsize
such a way that.€>>1, otherwise the -1/2 in the expo-
nents of Eqs(5) and(6) disappears. This implies thathas
¥ also a lower bound=L"?) for simulations at fixed. in order
0.001 to observe the characteristic Nikolaevskii chaos.

In summary, we have found that the spatial power spec-
trum of Eqg.(1) in wave-number space is an extensive quan-
tity. The spectrum fore=0(0.1) is qualitatively indistin-

FIG. 5. e dependence d®qy=0). The three lines, included for guishable from that of the Kuramoto-Sivashinsky equation.
reference, have slopes 64,6/4, and 7/4. We obtained the critical exponents of the turbulent fluctua-

0.001 0.01 € 0.1 1
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tions for Eq.(1), and we found that these exponents converggulses become more regularly distributed eslecreases.
for e<=0(0.1). Beyond such a value, because the unstablesuch studies might make it possible to estimate that the criti-
and weakly stable modes of this equation are not well sepazal exponents converge far< 0(0.1). The spectrum of the
rated, it exhibits spatiotemporal chaos of the KS type, not th s equation possesses a wavy structure for large wave num-
Nikolaevskii type. Therefore, we conclude that the worksyq < \we pelieve that for the spectrum of EY, the peaks of

presented in Ref$12,14,17, where values o€ greater than - -
0.1 were used, in fact studied KS-type chaos. The numericaﬂ1IS wavy structure, which appear @& 1, 2, 3,..., become
Wcreasmgly sharp as decreases.

results obtained in this paper are consistent with those give

in Ref. [9] and with the amplitude equations appearing in b T js very grateful to H. Fujisaka for useful discussions

Ref.[15]. Toh reported that a pulse-distributed model repro- - :
duces the spatial spectrum of the KS equafib]. We be- and gratefully acknowledges financial support by the Japan

lieve that that model is applicable also to E#y), for which Society for the Promotion of Scien¢aSP3.
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