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Interconnected Turing patterns in three dimensions
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We study numerically the Turing pattern in three dimensions in a FitzHugh-Nagumo-type reaction-diffusion
system. We have found that interconnected periodic domain structures such as a gyroid, Fddd, and perforated
lamellar structures appear in three dimensions, which never exist in lower dimensions. The stability analysis of
these structures is also performed by means of a mode expansion.
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More than 50 years ago, Turing showed that a coupled
reaction-diffusion equation with two components admits spa-
tially periodic solutions if certain conditions are fulfilled �1�.
The mechanism is now called a diffusion-driven instability
or Turing instability. For five decades, Turing patterns have
been studied numerically and mathematically as an example
of dissipative structures far from equilibrium �2�. Pattern for-
mation in various biological systems has also been accounted
for by the Turing mechanism �3�. Experimental evidence of a
Turing structure was observed in an open chemical reactor
�4,5�. However, almost all of the previous investigations are
restricted to one or two dimensions, where only stripe, hex-
agonal, and labyrinthine patterns are concerned.

In this Rapid Communication, we study Turing structures
in three dimensions. It is emphasized that there are essen-
tially new structures in three dimensions apart from the cor-
responding two-dimensional structures. An example is the
interconnected periodic domains whose surface consists of a
minimal surface such that the average curvature is zero ev-
erywhere on the surface. This kind of pattern can never exist
in two dimensions.

De Wit et al. �6� were studied Turing structures in three
dimensions by computer simulations. Later, De Wit et al. �7�
and Leppanen et al. �8� found numerically spherical domains
in a body-centered-cubic �bcc� lattice, hexagonally packed
cylinders, lamellar, and distorted lamellar structures. By
comparing dissipative structures with those arising in soft
matter physics, the possibilities of formation of periodic
minimal surfaces not only at the grain boundaries but also in
a bulk have also been discussed �7�. A group-theoretical
analysis of three-dimensional Turing patterns has been car-
ried out by Callahan and Knobloch �9�.

The model which we shall explore is the following Fitz-
Hugh Nagumo-type reaction-diffusion equation �10�:

�u

�t
= Du�

2u + u − u3 − v , �1�

�v
�t

= Dv�
2v + ��u − �v − �� , �2�

where the constants �, �, �, Du, and Dv are all positive. This
set of equations has been studied as a model equation of
impulse propagation along a nerve axion �11� and of the

Belousov-Zhabotinsky chemical reaction �12�. Equations �1�
and �2� have a stable solution periodic in space if the param-
eters are chosen such that the system without the diffusion
terms has only one equilibrium solution, �ū , v̄� which is
given by ū− ū3− v̄=0 and ū−�v̄−�=0. The linear stability
analysis of the uniform solution is readily carried out. By
setting �u− ū ,v− v̄��exp�ikx+�t�, we obtain the eigenvalue
� as a function of the wave number k. It is found that if
Du�Dv there is a bifurcation threshold such that the eigen-
value becomes positive for a finite value of k=kc.

We have carried out numerical simulations for the
coupled set of Eqs. �1� and �2� in three dimensions. The
space is divided into L3 cubic cells of size L=32 and the
periodic boundary conditions are imposed at the system
boundaries. The simple Euler algorithm is used with time
step �t=0.0070. In order to remove the anisotropy in dis-
cretizing the Laplacian, we have employed a 27-point differ-
ence scheme �13�.

One of the most crucial technical points is to determine
the spatial period of periodic structures. Although the critical
wave number kc�0 at the bifurcation point can be obtained
by the linear stability analysis, the true period at postthresh-
old is impossible to accurately evaluate analytically. We have
repeated simulations by changing the cell size �x and found
that �x=5.3	10−3 �the linear dimension of the system is
equal to 32	�x=0.17� is mostly commensurate with the pe-
riodic structures. We have verified that the results shown
below are unaltered for L=50 with �x=3.4	10−3 and L
=64 with �x=2.7	10−3. If the system size is large enough
compared to the spatial period, many grains appear in nu-
merical simulations. Those are almost frozen so that it is

FIG. 1. Five stationary solutions. The meanings of L, G, F, P,
H, and S are given in the text.
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difficult to obtain the final most stable structure. In order to
avoid this, the system size is chosen to be the same as the
unit cell of the structure.

Numerical simulations are performed for Du=5.0	10−5,
Dv=5.0	10−3, �=0.5, �=26, and changing the parameter �
�14�. We start with the unstable uniform solution �ū , v̄� with
small random perturbation superimposed. The random force
is added to Eqs. �1� and �2� to remove trapping at the meta-
stable states. The asymptotic stationary solutions obtained
are summarized in Fig. 1. This phase diagram was obtained
by changing the random initial conditions for a given value
of �. Note that two or three different structures coexist. The
abbreviations L, H, and S mean lamellar, hexagonal, and bcc
structures, respectively. The remaining three structures G, F,
and P are analyzed below.

The formation of G is displayed in Fig. 2. We have carried
out a Fourier transformation of the asymptotic values of u
and v, and obtained the Bragg peaks which are listed in Table
I together with the peak intensities. The peak position is
defined by k�L /2
 with k� the wave number vector. The third
peaks are not shown in Table I because those intensities Ik
= �uk�2�21 are quite small. From these results we identify G
with a gyroid structure. It is well known that a gyroid struc-
ture can be approximated by the following level set equation

0 = 8�1 − ���sin 2x sin z cos y + sin 2y sin x cos z

+ 2 sin 2z sin y cos x� − 4��cos 2x cos 2y + cos 2y cos 2z

+ cos 2z cos 2x� − � , �3�

where � and � are the parameters �15�. The Bragg positions
evaluated numerically are completely consistent with the re-
ciprocal lattice vectors obtained from Eq. �3�. The
asymptotic domain structure of F and the Bragg positions are
shown in Fig. 3. The Bragg peaks are listed together with the
peak intensities in Table II. We omitted the Bragg peaks for
Ik100. From these analyses we conclude that this structure
is an Fddd structure. Similarly, the stationary structure of P
is displayed in Fig. 4 together with the Bragg positions. The
intensity of the higher order peaks decreases more slowly
than those of the Fddd structure. This is a layer structure
having holes in each layer and is identified with the so called
perforated lamellar structure.

As mentioned above, several structures can coexist for a
fixed set of parameters. One of the basic questions is to de-
termine the most stable structure. However this is highly
nontrivial because Eqs. �1� and �2� are nonvariational with
no Lyapunov functional. Probably the general method to see
the relative stability of two different structures is to examine
the motion of a planer interface separating those structures as
was attempted in �8� for a bistable reaction-diffusion system.
If one of the structures invades the other, one may conclude
that the former is more stable than the latter. However to
achieve this, one needs to provide a sufficiently large system
for numerical simulations. This is beyond our computer fa-
cilities.

Here we employ two methods to examine the stability.
One is to explore numerically the volume of the basin of
each stable structure. To this end, we have carried out the

FIG. 2. �Color online� �a�–�d� Structural evolution of domains for �=0.04 and �e� the Bragg positions of the asymptotic structure. For the
sake of clarity, the domains in �a� represent the isosurface of u=0.08 whereas those in �b�–�d� represent the isosurface of u=0.05. �e� The
radius of the spheres is proportional to the relative peak intensity. In this figure, Fig. 3�b�, and Fig. 4�b�, the Bragg point at the origin is
omitted.

TABLE I. The Bragg peak positions and their intensities �arbi-
trary unit� of a gyroid structure. In this table and Table II, the Bragg
positions that are symmetric with respect to the origin are omitted.

Peak Position Ik Peak Position Ik

�2, 1, 1� 1599.49 �1,−1,−2� 1599.78

�2, 1,−1� 1599.85 �1,−2, 1� 1599.73

�2,− 1, 1� 1599.83 �1,−2,−1� 1599.76

�2,−1,−1� 1599.66 �2, 2, 0� 589.813

�1, 2, 1� 1599.79 �2, 0, 2� 589.858

�1, 2,−1� 1599.50 �2, 0,−2� 589.935

�1, 1, 2� 1599.82 �2,−2, 0� 589.889

�1, 1,−2� 1599.72 �0, 2, 2� 589.931

�1,−1, 2� 1599.51 �0, 2,−2� 589.779

FIG. 3. �Color online� Fddd structure for �=0.04 represented by
the isosurface of u=0.05 and �b� the Bragg positions with Ik

�800 in Table II. The details of �b� are the same as those in Fig.
2�e�. The Bragg points on the same plane are connected with the
line. It is noted that the quasiproper hexagon and the two rectangles
are parallel to each other.
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following simulations. We provide the structures of L, G, H,
S, F, and P for a given value of � and start numerical simu-
lations for Eqs. �1� and �2� with a certain amplitude of ran-
dom forces up to 4	105 time steps. Then, we turn off the
random forces and continue numerical simulations up to the
same steps as the above and see whether the initial structure
appears or not. In this way, we can obtain numerically the
upper limit of the noise amplitude below which the initial
structure recovers. Table III shows the results for �=0.04. It
is found that G is mostly robust against the perturbation.
Other structures do not survive even for weaker perturbation.
This implies for �=0.04 that G has the widest basin of at-
tractor in the functional space. If the amplitude of noises is
larger than 0.044, G is broken and one of the other structures
F, H, or L appears asymptotically.

The other method is to derive approximately a Lyapunov
functional for Eqs. �1� and �2� �16�. In the limit �, Dv→�
with � /Dv finite, one may set �v /�t=0 in Eq. �2�, so that the
variable v can be eliminated and one obtains

�u

�t
= −

�F

�u
, �4�

where

F�u	 =
 dr��Du

2
��� u�2 −

u2

2
+

u4

4
� +

�

2Dv

 dr�
 dr��G�r�,r���

	�u�r�,t� − �� 	 �u�r��,t� − �� . �5�

The Green function is defined through

− �2 +
��

Dv
�G�r�,r��� = ��r� − r��� . �6�

Since � /Dv is positive, the functional F plays a role of a
Lyapunov functional for the reduced equation �4�.

Here we make a remark that the Lyapunov functional �5�
is the same as the free energy functional derived in the study
of the microphase separation of diblock copolymers �17� if
�=0 and � is replaced by the spatial average of u where u
has a meaning of the local concentration difference between
two blocks. Since u is a conserved quantity in block copoly-
mers, the time-evolution equation is not given by Eq. �4� but
by �u /�t=�2��F /�u�.

We attempt to investigate the relative stability of Turing
structures by using the Lyapunov functional �5� in the re-
duced system. Of course, this is an approximation for the
original coupled set of Eqs. �1� and �2�. However, we expect
that some insights into the stability are provided by this
method.

We employ the mode expansion for the variable,u

u�r�,t� = ū + ��
n=1

N

an�t�eiq�n·r� + c.c.� , �7�

where an�t� is the real amplitudes and c.c. means a complex
conjugate. The fundamental reciprocal lattice vectors are

TABLE II. The Bragg peak positions and their intensities �arbi-
trary unit� of an Fddd structure.

Peak Position Ik Peak Position Ik

�1, 2, 1� 2817.23 �1, 1,−2� 145.39

�−1, 1, 2� 2785.42 �1, 2, −1� 142.13

�1,−2,−1� 2571.37 �1,−2, 1� 137.97

�1, 1, 2� 2559.69 �0, 2,−2� 835.60

�2, 1,−1� 1457.85 �1, 0, 3� 170.05

�2,−1, 1� 1297.37 �1,−3, 0� 173.25

�2,−1,−1� 192.43 �1, 0,−3� 214.31

�2, 1, 1� 179.87 �1, 3, 0� 211.79

�1,−1, 2� 147.37 �4, 0, 0� 137.61

TABLE III. Maximum perturbation strength beyond which the
original structure does not survive at �=0.04.

Structures Strength

Gyroid 0.044

Fddd 0.040

Hexagonal cylinder 0.038

Lamellar 0.020

bcc 0.015

PL 0.008

FIG. 4. �Color online� Perforated lamellar structure for �
=0.04 represented by the isosurface of u=0.05 and �b� the Bragg
positions with Ik�750. The details of �b� are the same as those in
Fig. 2.

FIG. 5. Phase diagram in the �-� plane. The most stable regions
for lamellar, hexagonal. gyroid and BCC are indicated by L, H, G
and S, respectively.
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listed in Table I. The number of modes is equal to N=18 for
the gyroid structure. It is noted that lamellar, hexagonal, bcc,
and Fddd structures can be represented as a substructure of
the gyroid in the sense that the reciprocal vectors of these
structures are contained in the 18 modes. We have verified
numerically that the spatial variation of the structures in Fig.
2�d� is almost sinusoidal and hence that the mode expansion
trancated up to N=18 is justified �18�. Substituting Eq. �7�
into Eq. �5� and ignoring the higher harmonics, we obtain the
Lyapunov functional in terms of the amplitudes and the mag-
nitudes of the reciprocal vectors, Fmode=F��an	 ,qn�. This ex-
plicit form is not written here because it is lengthy. Minimi-
zation of Fmode with respect to an and qn gives us the
stationary structures and the value of the Lyapunov func-
tional for each structure. In this way, one may determine the
most stable structure for fixed parameters in the reduced sys-
tem �4�. The result is summarized in Fig. 5. This theoretical
phase diagram is not inconsistent with numerical results in
Fig. 1 for �=26.

In summary, we have studied Turing patterns in three di-
mensions. Apart from lamellar and hexagonal structures
which are simple generalization of two-dimensional patterns,
we have obtained gyroid, Fddd, bcc, and perforated lamellar
structures. Except for the bcc structure, the domains consist
of interconnected networks which are characteristic to three
dimensions. Furthermore, all of these structures have also
been obtained in an entirely different problem, that is, mi-
crophase separation of diblock copolymers. In this paper, we
have shown, explicitly, the relationship between the three-
dimensional Turing pattern far from equilibrium and mi-
crophase separation in thermal equilibrium. The results ob-
tained here would provide deep insights into the fundamental
mechanism of pattern formation in nature.
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