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Free Yang-Mills theory versus toric Sasaki-Einstein manifolds

Tatsuma Nishioka* and Tadashi Takayanagi†

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 16 May 2007; published 8 August 2007)

It has been known that the Bekenstein-Hawking entropy of the black hole in AdS5 � S5 agrees with the
free N � 4 super Yang-Mills entropy up to the famous factor 4

3 . This factor can be interpreted as the ratio
of the entropy of the free Yang-Mills theory to the entropy of the strongly coupled Yang-Mills theory. In
this paper we compute an analogous factor for infinitely many N � 1 superconformal field theories
(SCFTs) which are dual to toric Sasaki-Einstein manifolds. We observed that this ratio always takes values
within a narrow range around 4

3 . We also present explicit values of volumes and central charges for new
classes of toric Sasaki-Einstein manifolds.

DOI: 10.1103/PhysRevD.76.044004 PACS numbers: 04.70.Dy, 04.50.+h

I. INTRODUCTION

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence [1] has been playing a crucial role in
exploring the nonperturbative aspects of gravity and gauge
theories for ten years. Even though there are many impor-
tant examples of AdS/CFT, a general condition that a given
CFT should have its AdS dual has not been known com-
pletely until now. One simple strategy to understand this
issue better is to study many examples of AdS/CFT sys-
tematically and see if there are any common properties for
CFTs which have their AdS duals.

Fortunately, infinitely many N � 1 superconformal
field theories (SCFTs) have recently been known to have
their AdS duals in terms of the five-dimensional Sasaki-
Einstein manifolds X5 [2–4], generalizing the celebrated
example T1;1 [5]. Therefore it is very interesting to find any
common properties among them. A basic and physically
important quantity will be the degrees of freedom of a
given CFT. We can estimate this by computing its thermo-
dynamical entropy at finite temperature.1

We can easily compute the entropy of a super Yang-
Mills theory in its strong coupling limit as the entropy of
the dual black hole [7,8]. On the other hand, it is very
difficult to calculate the entropy directly in the strongly
coupled Yang-Mills theory. Instead we assume a free Yang-
Mills approximation of SCFTs. This crude approximation
works better than we naively expect, due to the super
conformal symmetry. Indeed it has been known that this
approximation deviates from the dual gravity result only by
the factor 4

3 in the N � 4 super Yang-Mills theory [7].
Since this semiquantitative agreement is a remarkable
property, it is intriguing to see if a similar agreement is
true for other SCFTs which have their AdS duals.

Furthermore, it has been pointed out that even the
Hagedorn transition in the dual string theory on AdS5

can also be captured from the free Yang-Mills theory [9].
The aim of this paper is to investigate this ratio Sfree

Sstrong
of

the entropy of various N � 1 quiver gauge theories with
all interactions turned off, to the entropy in the strongly
coupled N � 1 SCFTs realized as IR fixed points of the
interacting quiver theories. We can physically interpret this
ratio as a measure of the strength of interactions in a given
CFT. We can compute the black hole entropy, which is
inversely proportional to the volume of Sasaki-Einstein
manifolds, by employing the Z-minimization method
[10] dual to the a-maximization [11–14]. Therefore we
can obtain this ratio only from the information of the toric
data for any toric Sasaki-Einstein manifolds. After we
search large families of infinitely many toric diagrams,
we find that the ratio is always in a narrow range 8

9 �
3
4 �

Sfree

Sstrong
& 1:2. The minimum value Sfree

Sstrong
� 32

27 is realized when

X5 is equal to T1;1 or its orbifolds.
This paper is organized as follows. In Sec. II we give the

expression of the ratio Sfree

Sstrong
in terms of the volume of

Sasaki-Einstein manifolds and the number of fields in the
dual gauge theory. In Sec. III we calculate this ratio ex-
plicitly for various examples. In Sec. IV we compute an
analogous ratio in N � 1 SQCD. In Sec. V, we summa-
rize our results and also discuss other interesting quantities.

II. ENTROPY FROM BLACK HOLE AND FREE
YANG-MILLS THEORY

Consider a background AdS5 � X5 in type IIB super-
gravity, where X5 is a five-dimensional Sasaki-Einstein
manifold. This theory is dual to a four-dimensional N �
1 SCFT [5]. Such a theory is explicitly described by a
SU�N� quiver gauge theory [3,5]. A systematic construc-
tion of such gauge theories is recently found by using the
brane-tiling method [15,16] (for recent progresses see e.g.
[17–20]).

*nishioka@gauge.scphys.kyoto-u.ac.jp
†takayana@gauge.scphys.kyoto-u.ac.jp
1Another way to measure the degrees of freedom will be to

count the Bogomol’nyi-Prasad-Sommerfield (BPS) states of a
given SCFT. This has been discussed in [6], recently.
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The AdS radius is found to be

 R �
�
4�4gs�02N

Vol�X5�

�
1=4
; (2.1)

where Vol�X5� is the volume of X5 normalized such that
Vol�S5� � �3 [21]. The central charge a of the SCFT [22]
is related to the volume via

 a �
N2

4
�

�3

Vol�X5�
: (2.2)

The thermodynamical entropy S in the strong coupling
limit of the SCFT can be found from the entropy of the
AdS-Schwarzschild black hole2 (T is the temperature)

 Sstrong �
horizon area

4G�5�N
�

�5N2

2 Vol�X5�
VT3 � 2�2aVT3;

(2.3)

whereG�5�N is the 5D Newton constant and it is related to the
10D Newton constant G�10�

N � 8�6�04g2
s via the dimen-

sional reduction G�10�
N � R5 Vol�X5� �G

�5�
N . The entropy is

proportional to the central charge and this is consistent
with the expectation that a is related to the degrees of
freedom.

However, we would like to notice that the entropy is not
always proportional to a for all coupling regions. For
example, in the free super Yang-Mills theory, the entropy
is proportional to the number of bosons NB as the contri-
bution of a (free) gauge field A� is the same as a (free)
complex scalar field � (we count each of these as a unit
NB � 1.). Since the central charge a of A� is different from
that of �, the free Yang-Mills entropy is not proportional to
a.

Therefore it is interesting to consider the ratio Sfree

Sstrong
of the

free Yang-Mills entropy to the strongly coupled Yang-
Mills entropy. This ratio measures how the degrees of
freedom change when we turn on the interactions of the
quiver gauge theories. It is well known that Sfree

Sstrong
becomes 4

3

for the N � 4 super Yang-Mills theory [7]. In general
N � 1 SCFTs, we have to worry about the ambiguity of
the field content of the free field approximation due to the
Seiberg duality.3 Even though the entropy in the free Yang-
Mills theory depends on the frame of Seiberg duality or
equally on the choice of toric phases of X5 [23], we will
find that this ambiguity changes the entropy only slightly in
explicit examples. Thus this does not spoil our semiquan-
titative argument in this paper. We will proceed the argu-
ments by choosing a standard toric phase.

In the end, this ratio can be computed as follows via
AdS/CFT

 

Sfree

Sstrong
�

4

3
�
NB
4N2 �

Vol�X5�

�3 �
4

3
�
NB
16a
�

4

3
f; (2.4)

where we defined the ratio f normalized such that f � 1
for the N � 4 super Yang-Mills theory. We will present
results below in terms of this ratio f. A larger value of f
means that the degrees of freedom are more reduced in the
strongly coupled regime compared with the free Yang-
Mills theory. As we will see later, f takes values of order
1 (i.e. ��1	 0:2�) in all examples we studied. In the
orbifold theories, we always find f � 1. Moreover, the
value of f remains the same after we take a Zn orbifold
of any Sasaki-Einstein manifold X5. Notice that the con-
firmation that the ratio is always of order 1 is already a
nontrivial check of the AdS/CFT duality for infinitely
many SCFTs.

We can represent other physical quantities in terms of f.
The analogous ratio Efree

Estrong
of the Casimir energy in a super

Yang-Mills theory compactified on a thermal circle [24] is
the same as before Efree

Estrong
� 4

3 f. Also the ratio of entangle-

ment entropy [25] becomes
Sfree
A

Sstrong
A

� 2
3 f [26] when we define

the subsystem A by dividing the boundary into two half-
planes.

We would like to stress again that the ratio f is essen-
tially (the inverse of) the central charge a divided by the
number of free fields NB. The central charge itself in-
creases (linearly) as the size of the toric diagram grows4

[27]. Since the number of fields NB also scales linearly as
the area of the diagram becomes infinitely large, the ratio f
stays finite.

III. ENTROPY FROM TORIC SASAKI-EINSTEIN
MANIFOLDS

A classification of the toric Sasaki-Einstein manifolds
can be obtained by using the toric diagrams [10,28] which
describe corresponding Calabi-Yau cones. Though origi-
nally the toric diagrams are three dimensional for the cones
over X5, we can project them onto a two-dimensional plane
due to the Calabi-Yau condition. Thus we can write the
coordinates of vertices in the toric diagrams with n vertices
(i.e. n polygon) as �1; pi; qi� 2 Z3 (i � 1; 2; � � � ; n). We
can compute several physical quantities of a quiver gauge
theory from the toric diagram of its dual Sasaki-Einstein
manifold.

The number of vector multiplets and chiral multiplets in
a standard choice of the toric phase is given by [3]

 Ngauge � 2 � �area of the toric diagram�;

Nmatter �
X

1�i<j�n

jpiqj 
 pjqij:
(3.1)

2In this paper we consider the AdS black holes in the Poincaré
coordinate.

3We are very grateful to Yuji Tachikawa for pointing out this
issue to us in detail.

4This can also be seen in explicit examples. It is clear from the
result (3.2) for Yp;q that the corresponding central charge be-
haves as a / p in the limit p! 1 with p=q kept finite.
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The above formula shows that Ngauge is the same as the
Euler number of the toric manifold. This is because the
Euler number counts the number of independent (frac-
tional) D branes. On the other hand, Nmatter is found by
considering intersections of 3-cycles in the mirror Calabi-
Yau cone in [3].

Using this, the number of total bosons is found to be
NB � Ngauge � Nmatter. Notice that in the above formula
(3.1) of the number of matter fieldsNmatter, we are choosing
a particular toric phase. We will be able to employ other
equivalent descriptions of the quiver gauge theories by
applying the Seiberg’s duality where the number of matter
fields Nmatter takes different values [23]. As we will see
below in the explicit example of Yp;q, this ambiguity
changes the value of the ratio f only slightly, though we
cannot give a complete general discussion on this issue
since its systematic treatment has not been developed well
at the present. Thus we will compute the ratio f by choos-
ing a particular choice of the toric phase by using the
formula (3.1) in most of the examples in this paper. We
argue that the ambiguity of the toric phases does not spoil
our semiquantitative arguments in this paper because it
does not affect the ratio f substantially as mentioned.
Also notice that in spite of this subtle ambiguity of the
physical definition of the ratio f, this quantity is com-
pletely well defined after we plug (3.1) into the formula.
This means that this value is mathematically exactly well
defined as we can find a unique value when a toric diagram
is given. Thus this quantity is also very interesting from
this mathematical viewpoint.

Quite recently, the existence and uniqueness of the
Sasaki-Einstein metric have been proved in [28] if a given
toric diagram satisfies a simple condition (such a toric
diagram is called good).5 First we will study all toric
diagrams described by four vertices and then we examine

some particular classes with five or more vertices. To
summarize the results obtained in this section, we will
draw up the Tables I and II.

A. Toric diagrams with four vertices

1. Yp;q

As a first example, we consider the familiar example
Yp;q [2] whose toric diagram is given by Fig. 1 (p and q are
integers such that p � q � 0). The volume of Yp;q is
known to be

 

Vol�Yp;q�

�3
�

q2�2p�
����������������������
4p2 
 3q2

p
�

3p2�3q2 
 2p2 � p
����������������������
4p2 
 3q2

p
�
: (3.2)

The number of bosons which appear in the dual field
theory [3] is given by NB

N2 � 2�3p� q�, where we have
employed the explicit values (3.1) in the standard choice
of toric phase. As a result, the ratio f is expressed as
follows

 f�x� �
x2�3� x��2�

����������������
4
 3x2
p

�

6�3x2 
 2�
����������������
4
 3x2
p

�
; x �

q
p
: (3.3)

This is plotted in Fig. 2 and the function f�x� (0 � x � 1)
takes the values within the range

 

8
9 � f�x� � 1:024 59: (3.4)

Notice that at x � 0, where X5 becomes the orbifold
T1;1=Zp, the function f�x� takes its minimum value f �
8
9 . The maximum value in (3.4) is attained when x �
0:769 29. On the other hand, at x � 1, where X5 is the
orbifold S5=Z2p, the function f�x� takes f � 1.

Now, let us ask how the ratio f depends on the choice of
toric phases. All toric phases in Yp;q have been obtained in
[23]. The number of matter fields takes the following range

 6p� 2q �
NB
N2 � 8p; (3.5)

TABLE I. Table of the values of f for various Sasaki-Einstein manifolds considered in Sec. III.
We gave the maximum value fmax of f as the minimum value is always 8

9 .

SE manifolds fmax Ngauge=N
2 Nmatter=N

2

Yp;q 1.024 59 2p 4p� 2q
Lp;q;r 1.024 59 p� q p� 3q
Xp;q 1.037 29 2p� 1 4p� 2q� 1
Zp;q 1.050 07 2p� 2 4p� 2q� 2

(symmetric pentagon)

1.031 722p�2r
 q� 2p�4r
 q�

(symmetric hexagon)

1 4q�p� r� 8q�p� r�

Regular polygon 1.096 62 n sin�2�n � 2n sin�2�n � (n : even) 2n sin��n��1� cos��n�� (n : odd)

5This condition essentially requires that pi 
 pi�1 and qi 

qi�1 are coprime for all i (refer to the second paper of [28]).
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if we search all toric phases. The lowest value is the one
(3.1) we employed in the above and this leads to the result
(3.4). On the other hand, if we compute the ratio f by using
the highest possible value NB

N2 � 8p, then the ratio takes the
following range

 1< fhigh <
32
27: (3.6)

This deviates from (3.4) less than 20%. Thus we expect that
our particular choice (3.1) of the toric phase does not spoil
our semiquantitative arguments in this paper.

2. Lp;q;r

We move onto the toric Sasaki-Einstein manifolds Lp;q;r.
This class includes all examples whose toric diagrams
consist of four vertices as shown in Fig. 3. Define x � p

q ,
y � r

q and then they should satisfy 0 � x � y � 1, y �
x�1

2 . The relation between Yp;q and Lp;q;r is given by
Yp;q � Lp
q;p�q;p and thus Yp;q is on the line y � x�1

2 .
The volume of Lp;q;r is found to be as follows [4]

 Vol �Lp;q;r� � �3 �
�p� q�3W

8pqrs
; (3.7)

where W is the solution to the quartic equation

 

�1
 F2��1
G2�h4

 � 2h2



2�2
 h��
2 
 3h2


�W

� 
8h��2
 h��2 
 h2

�30� 9h���W2

� 8�2
 9h��W3 
 27W4 � 0: (3.8)

Here we defined F � 1
x
1�x , G � 2y
x
1

1�x , h	 � F2 	G2.
There are four solutions to this equation and only one of
them is a positive real number. We use this solution for
computing the volume of Lp;q;r.

The number of bosons in the dual gauge theory [16,29]
is given by NB

N2 � 2�p� 2q�. In the end, the ratio f�x; y� is
expressed as follows

 f�x; y� �
�1� x�3�2� x�W�x; y�

xy�1� x
 y�
;

�
x � y; y �

x� 1

2

�
:

(3.9)

The numerical analysis shows that the range of f�x; y� is
the same as the one for Yp;q

0.2 0.4 0.6 0.8 1

0.9

0.92

0.94

0.96

0.98

1.02

FIG. 2. The values of f for Yp;q.

TABLE II. Table of the values of f and the volumes for various Sasaki-Einstein manifolds
defined by the specified four-dimensional surfaces in the corresponding Calabi-Yau cones. The
final example is defined by the octagonal toric diagram whose vertices are given by (1, 0), (2, 0),
(3, 1), (3, 2), (2, 3), (1, 3), (0, 2), and (0, 1) after being projected to the two-dimensional plane
R2.

SE manifolds f Vol�X5�=�3 Ngauge=N2 Nmatter=N2

dP0 � P2 (S5) 1 1
3 3 9

dP1 (Y2;1) 322�91
����
13
p

648 � 1:003 25 46�13
����
13
p

324 4 10

dP2 (X2;1) 118�22
����
33
p

243 � 1:005 68 59�11
����
33
p

486 5 11

dP3 (Z2;1) 1 2
9 6 12

SP (X1;1) 5
��
3
p

9 � 0:96225 2
��
3
p

9 3 7
PdP4 (toric) 0.969 64 0.17630 7 15
dP4 (nontoric) 55

54 � 1:018 52 5
27 7 15

(symmetric octagon)

28
27 � 1:037 04 8

81 14 28

[p−q−1, p−q]

[p, p]

[1, 0][0, 0]

FIG. 1. Toric diagram of Yp;q.
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8
9 � f�x; y� � 1:024 59: (3.10)

B. Toric diagrams with five vertices

1. Xp;q

Xp;q is given by a specific toric diagram with five
vertices (Fig. 4) [30]. The number of bosons are NB

N2 � 6p�
2q� 2. We can compute the volume of Xp;q using the
Z-minimization procedure [10], but its analytic expression
is difficult to find. Therefore we performed a numerical
analysis and obtained the following range

 

8
9 � f � 1:037 29: (3.11)

The maximum is realized when �p; q� � �4; 3�.

2. Symmetric pentagon

To find many more examples, we consider the five vertex
toric diagram defined by Fig. 5. It has the reflection sym-
metry along the vertical axis.6 Note also that this toric
diagram can be regarded as a deformation of that of the
second delPezzo surface dP2. The numbers of fields are
NB
N2 � 12pr
 4pq. Notice that since integer points are
included on the edges of the toric diagram, the resulting
manifold also includes orbifold singularities.7

We can perform the Z-minimization analytically in
this case and the Reeb vector is found as �3; 0;
3�4qr
r2


�������������
8qr3�r4
p

�

4�q
r� �. Then f is given in terms of y � q
r (0 �

y � 1) by

 f�y� �
32�3
 y��1
 y�3�1�

��������������
8y� 1
p

�

27�3

��������������
8y� 1
p

��1�
��������������
8y� 1
p


 4y�2
: (3.12)

This expression shows us the function f takes the range

 

8
9 � f�y� � 1:031 72: (3.13)

Finally, we would like to summarize the central charge and
the R-charges of baryons in this example as follows
 

a�
27p�3r2


��������������������
8qr3� r4

p
��r2
 4qr�

��������������������
8qr3� r4

p
�2

128�r
 q�3�r2�
��������������������
8qr3� r4

p
�

N2;

R1 � R4 �
�1�

��������������
8y� 1
p


 4y��3

��������������
8y� 1
p

�

4�1
 y�2�1�
��������������
8y� 1
p

�
N;

R2 � R3 �
�1�

��������������
8y� 1
p


 4y�2

4�1
 y�2�1�
��������������
8y� 1
p

�
N;

R5 �
2y�3


��������������
8y� 1
p

�

�1
 x��1�
��������������
8y� 1
p

�
N: (3.14)

C. Toric diagrams with six vertices

1. Zp;q

The Sasaki-Einstein manifold Zp;q is defined by the toric
diagram with six vertices in Fig. 6 [31]. The number of
bosons is NB

N2 � 6p� 2q� 4.
The volume of Zp;q is given as follows [31]

 Vol �Zp;q� � �3 �
9p3 
 9p2q� 6pqy2 
 2y2

2

3y2
2�3p
 y2�

2 : (3.15)

Here y2 is the solution to the cubic equation 2y3 

9pqy2 
 9p2�2p
 3q�y� 27p3�p
 q� � 0 which lives
in the region 0< y2 < 3p. We find the function f takes the

[1, p]

[1, 0]

[0, p−q]

[0, p−q+1]

[2, 0]

FIG. 4. Toric diagram of Xp;q.

[p, q]

[p, r]

[−p, q]

[−p, r]

[0, 0]

FIG. 5. Toric diagram of a symmetric pentagon.

[−k, q]
[P, s]

[0, 0] [1, 0]

FIG. 3. Toric diagram of Lp;q;r. The integers p, q, r, s, and P
are taken such that p� q � r� s, ks� qP � r, k > 0, and 0 �
p � r � s � q.

6This symmetry allowed us to set the Reeb vector of the form
�3; 0; z�, which largely reduces the amount of the computations
of Z-minimization.

7This means that these toric diagrams do not generically
satisfy the ‘‘goodness’’ condition in [28]. However, the corre-
sponding manifolds and their dual gauge theories are physically
sensible as the orbifolds T1;1=Zp are. Also if we would like to
keep the diagrams good, we can consider limits of good toric
diagrams. If we take the coordinates �pi; qi� very large, we can
approach the symmetric pentagon as much as we want because
the function f is invariant under the total scaling of the diagram.
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following values

 

8
9 � f � 1:050 07: (3.16)

The maximum value is again taken for Z4;3.

2. Symmetric hexagon

As another example of toric diagrams with six vertices,8

we consider the ones with the reflection symmetries along
the horizontal and vertical directions described by Fig. 7.
This symmetry allows us to set the Reeb vector equal to
�3; 0; 0�. The number of bosons is NB

N2 � 12q�p� r�. In this
case, the function f does not depend on q as in the case of
the symmetric pentagon. Define x � r

p (0 � x � 1) and
then the analytic expression of the function f�x� is simply
given by

 f�x� �
4�2
 x��1� x�

9
: (3.17)

Thus we obtain

 

8
9 � f�x� � 1: (3.18)

The maximum value is taken when x � 1=2, which corre-
sponds to the third delPezzo surface dP3. The minimum
value is realized when x � 0, 1, i.e. orbifolds of T1;1.

Note that the central charge and R charges of baryons are
given by the following expressions

 a �
27p2q

16�2p
 r�
N2;

R1 � R2 � R4 � R5 �
1

2�2
 x�
N;

R3 � R6 �
1

2
 x
N:

(3.19)

D. Toric diagram with infinitely many vertices

It is very important to find how much the upper bound of
the function f increases as we raise the number n of

vertices in toric diagrams. As the easiest example for
general n we concentrate on the specific example of the
most symmetric toric diagram (i.e. the regular polygons)
whose vertices are given by ��cos�2�n i�; sin�2�n i��, (i �
1; 2; . . . ; n). The value of f does not depend on � because
the function f is invariant under the total rescaling of the
toric diagram. Therefore, we can realize this diagram as a
limit of very large toric diagrams taking �! 1. Then,
because of the Z2 � Z2 symmetry, it is clear that the Reeb
vector is given by �3; 0; 0�. Thus it is direct to compute its
volume and the function f. The numbers of fields in the
dual gauge theory are Ngauge

N2 � n sin�2�n � and Nmatter

N2 �

2n sin�2�n � for n even, Nmatter

N2 � 2n sin��n��1� cos��n�� for n
odd (we set � � 1). The function f becomes

 n : even f�n� �
n2

9
sin2

�
�
n

�
!
�2

9
�n! 1�;

(3.20)

 

n : odd f�n� �
n2

27

sin2��n�

cos��n�

�
1� 2 cos

�
�
n

��
!
�2

9

�n! 1�: (3.21)

Thus it does not become so large even if we increase the
number of vertices. Its range is

 

8

9
� f�n�<

�2

9
� 1:096 62: (3.22)

The minimum value is attained when n � 4, i.e. T1;1.
We summarized all of the previous examples in this

section in the Tables I and II. We also added a nontoric
example dP4 and compared it with the toric counterpart
PdP4, whose central charges were computed in [32]. We
also examined a new example whose toric diagram is
described by a symmetric octagon.

IV. COMPARISON WITH N � 1 SQCD

The function f can be calculated only from the gauge
theoretic data, i.e. the central charge and the number of
bosons as is clear from (2.4). Therefore it will be useful to
compare our previous analysis for the N � 1 quiver
gauge theories which have AdS duals, with the one for
the N � 1 SQCDs whose AdS duals have not been

[0, p]

[0, −p]

[q, −r]

[q, r][−q, r]

[−q, −r]

FIG. 7. Toric diagram of a symmetric hexagon.
[1, 0] [2, 0]

[2, 1]

[1, p]

[0, p−q+1]

[0, p−q]

FIG. 6. Toric diagram of Zp;q.

8Notice that as in the symmetric pentagon, the corresponding
manifolds will have orbifold singularities and the same footnote
as in Sec. III B 2 applies.
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known. Since we are interested in SCFTs, we concentrate
on the conformal window 3

2Nc � Nf � 3Nc of the SQCD
with the SU�Nc� gauge group and SU�Nf� flavor group. It
is well known that at the IR fixed point 2NfNc quarks  q,
 ~q and N2

c 
 1 gauginos � have R charge R� q� �

R� ~q� � 

Nc
Nf

and R��� � 1, respectively. Thus the central

charge [33,34] in the IR fixed point is given by

 aIR �
3

32
�3 TrR3 
 TrR� �

3

16

�
2N2

c 
 1

3N4

c

N2
f

�
: (4.1)

Then we find the function f is given by

 f �
2NfNc � N2

c 
 1

6N2
c 
 3
 9N4

c

N2
f

: (4.2)

In the planar limit Nc � 1 setting x � Nf
Nc

finite, the func-
tion f�x� is expressed by

 f�x� �
x2�1� 2x�

6x2 
 9
: (4.3)

In the conformal window 3
2 � x � 3, this takes

 1:302 48 � f�x� � 2: (4.4)

The maximum and minimum values are taken for x � 3=2
and x � 2:271 63, respectively.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have studied the ratio Sfree

Sstrong
� 4

3 f of the

free Yang-Mills entropy to the entropy in the strongly
coupled N � 1 SCFTs via the AdS/CFT correspondence.
We mainly considered N � 1 SCFTs dual to toric Sasaki-
Einstein manifolds X5. Since they are classified by toric
diagrams, we could compute the ratio rather systematically
for infinitely many examples, though we could not exhaust
all toric Sasaki-Einstein manifolds. We checked that in all
examples the ratio takes the finite values within a rather
narrow range (for a standard choice of the toric phase)

 

8
9 � f � fmax: (5.1)

For example, the values of f for Yp;q and Lp;q;r are included
in the range 8

9 � f � 1:024 59. We can think remarkable
even the fact that the ratio takes a finite value of order 1.
Even though the central charge a is often used to character-
ize a given SCFT, it can take any arbitrary large values.

From the infinitely many examples which we explicitly
examined in this paper, we can find the maximal value
four max � 1:096 62. This maximal value, however, seems
to increase if we include other examples of toric diagrams
which we did not consider in this paper. We would like to
conjecture that the true upper bound fmax is only slightly
larger than four max, say fmax � 1:2. We gave an evidence
for this behavior by presenting an explicit analysis when
the toric diagram is the regular n polygon. On the other

hand, the lowest bound f � 8
9 is realized when X5 is (an

orbifold of) T1;1. Also notice that since Sfree

Sstrong
� 4

3 f is al-

ways greater than 1, the degrees of freedom in a strongly
coupled Yang-Mills theory is smaller than those in the free
Yang-Mills theory. This is natural since the interactions
generally give masses to the off-diagonal elements of
massless fields.

In most of the computations, we assumed a particular
choice (3.1) of the toric phase. The ratio f takes slightly
different values when we employ different phases. We
checked that this ambiguity does not spoil our semiquanti-
tative argument in the explicit example of Yp;q. To under-
stand this issue in detail we need to develop a systematical
way to analyze various toric phases and we left it as an
important future problem.

Our result strongly suggests that the entropy ratios for all
such N � 1 SCFTs deviate from the ones for the N � 4
super Yang-Mills theory (i.e. fN�4 � 1) only by a small
amount (�	20%). This means that the degrees of free-
dom of the strongly coupled SCFTs are not so different
from the ones obtained in their free Yang-Mills counter-
parts. This may be a bit surprising since we know that such
a N � 1 SCFT is realized as a nontrivial IR fixed point of
an interacting N � 1 quiver gauge theory [5]. Indeed, we
have seen that in the conformal window of N � 1 SQCD,
f takes slightly larger values than the range (5.1).

We would like to mention a possibility that our result
(5.1) may be a special property which is common to all
N � 1 SCFTs with AdS duals. Our analysis of the ratio f
may be regarded as a first step to explore an index which
gives the criterion of the existence of AdS dual. Thus an
interesting future problem is to compute fmax for all toric
diagrams, and also to see if the situation does not change
when we extend the examples to nontoric ones.

We would also like to stress that the ratio f is mathe-
matically well defined for all toric Sasaki-Einstein mani-
folds in that it takes a unique value corresponding to a toric
diagram. Thus, even the fact that the ratio f is always finite
for any toric Sasaki-Einstein manifold is already a non-
trivial mathematical result.

Finally we would like to point out that we can define
other ratios which are computable from the central charges
and field contents of N � 1 SCFTs. One such example is
the ratio g � Ngauge

4a using the number Ngauge of vector mul-
tiplets, instead of our previous ratio f � NB

16a . We can again
show g � 1 for orbifold quiver gauge theories. For ex-
ample, in the N � 1 SCFTs dual to Yp;q this new ratio g
takes the values within the range 1 � g � 32

27 , where the
maximum is taken when X5 is (an orbifold of) T1;1. We
generally expect the range 1 � g � gmax (gmax �O�1�)
for all N � 1 SCFTs dual to toric Sasaki-Einstein
manifolds.

Two more interesting quantities will be ha �
afree

aSCFT
and

hc �
cfree

cSCFT
, which are the ratios of the central charges a and
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c of the free Yang-Mills theory to the ones for the interact-
ing SCFT. It is trivial to see that ha � hc � 1 for any
orbifold quiver gauge theories. For Yp;q we find the values
1 � ha � 1:103 52 and 80

81 � hc � 1:053 21. Notice that ha
is always greater than 1 while hc is not in this example.
This suggests that there exist RG flows9 from orbifold
theories to the interacting SCFTs since the central charge
a always decreases under the RG flow, while c does not.
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