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Exact wave propagation in a spacetime with a cosmic string
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2Division of Theoretical Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
(Received 11 December 2005; published 31 January 2006)

We present exact solutions of the massless Klein-Gordon equation in a spacetime in which an infinite
straight cosmic string resides. The first solution represents a plane wave entering perpendicular to the
string direction. We also present and analyze a solution with a static pointlike source. In the short
wavelength limit these solutions approach the results obtained by using the geometrical optics approxi-
mation: magnification occurs if the observer lies in front of the string within a strip of angular width
8�G�, where � is the string tension. We find that when the distance from the observer to the string is less
than 10�3�G���2�� 150 Mpc��=AU��G�=10�8��2, where � is the wavelength, the magnification is
significantly reduced compared with the estimate based on the geometrical optics due to the diffraction
effect. For gravitational waves from neutron star (NS)-NS mergers the several lensing events per year may
be detected by DECihertz interferometer gravitational wave observatory (DECIGO)/big bang observer
(BBO).

DOI: 10.1103/PhysRevD.73.024026 PACS numbers: 04.30.Nk, 98.80.Cq

I. INTRODUCTION

Typical wavelength of gravitational waves from astro-
physical compact objects such as black hole (BH)-BH
binaries is in some cases very long so that wave optics
must be used instead of geometrical optics when we dis-
cuss gravitational lensing. More precisely, if the wave-
length becomes comparable or longer than the
Schwarzschild radius of the lens object, the diffraction
effect becomes important and as a result the magnification
factor approaches unity [1–5]. Mainly due to the possibil-
ity that the wave effects could be observed by future
gravitational wave observations, several authors [6–15]
have studied wave effects in gravitational lensing in recent
years.

In most of the works which studied gravitational lensing
phenomenon in the framework of wave optics, isolated and
normal astronomical objects such as galaxies are con-
cerned as lens objects. Recently Yamamoto and Tsunoda
[12] studied wave effects in gravitational lensing by an
infinite straight cosmic string. The metric around a cosmic
string is completely different from that around a usual
massive object.

Cosmic strings generically arise as solitons in a grand
unified theory and could be produced in the early Universe
as a result of symmetry breaking phase transition [16,17].
If symmetry breaking occurred after inflation, the strings
might survive until the present Universe. Recently, cosmic
strings attract a renewed interest partly because a variant of
their formation mechanism was proposed in the context of
the brane inflation scenario [18–24]. In this scenario in-
flation is driven by the attractive force between parallel D-
branes and parallel anti-D-branes in a higher-dimensional
spacetime. When those brane-antibrane pairs collide and
annihilate at the end of inflation, lower-dimensional D-
branes, which behave like monopoles, cosmic strings or

domain walls from the view point of four-dimensional
observers, are formed generically [25–29].

For some time, cosmic string was a candidate for the
seed of structure formation of our Universe, but this pos-
sibility was ruled out by the measurements of the spectrum
of cosmic microwave background (CMB) anisotropies
[30,31]. The current upper bound on the dimensionless
string tension G� is around 10�7 � 10�6, which comes
from the observations of CMB [32–35] and/or the pulsar
timing [36–39]. Although cosmic string cannot occupy
dominant fraction of the energy density of the Universe,
its non-negligible population is still allowed observatio-
nally [40,41]. In fact, Sazhin et al. [42,43] reported that
CSL-1, which is a double image of elliptical galaxies with
angular separation 1.9 arcsec, could be the first case of the
gravitational lensing by a cosmic string with G� � 4�
10�7.

We study in detail wave effects in the gravitational
lensing by an infinite straight cosmic string. In Ref. [12],
wave propagation around a cosmic string was studied but
they put the wave form around the string by hand.1 Their
prescription is correct only in the limit of geometrical
optics, which breaks down when the wavelength becomes
longer than a certain characteristic length. In this paper, we
present exact solutions of the (scalar) wave equation in a

1After submitting this paper, we have noticed a paper [44] in
which the solutions of the wave equations around the cosmic
string are given, though the apparent expressions are different
from those given in this paper. In [44] the author estimated the
amplitude of the diffracted wave to be suppressed by O�G��
compared with that corresponding to the geometrical optics. We
show that the importance of the diffraction effects are deter-
mined by the combination of three parameters, G�, the distance
from the string to the observer and the wavelength, and that the
relative amplitude of the diffracted wave can be O�1� for realistic
astrophysical situations.
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spacetime with a cosmic string. We analytically show that
our solutions reduce to the results of the geometrical optics
in the short wavelength limit. We derive a simple analytic
formula of the leading order corrections to the geometrical
optics due to the finite wavelength effects and also an
expression for the long wavelength limit. Interference
caused by the lensing remains due to the diffraction effects
even when only a single image can be seen in the geomet-
rical optics. This fact increases the lensing probability by
cosmic strings.

This paper is organized as follows. In Section II, we
construct a solution of the wave equation on a background
spacetime with an infinite straight cosmic string in the case
that a source of the wave is located infinitely far. An
extension to the case in which a point source is located at
a finite distance is given in Appendix B. In Section III, we
study properties of the solution obtained in Section II in
detail. In Section IV, we focus on compact binaries as the
sources of gravitational waves and discuss the possible
effects due to finiteness of the lifetime and the frequency
evolution of the binaries on the detection of the gravita-
tional waves which pass near a cosmic string. We also give
a rough estimate for the event rate of the lensing of
gravitational waves from neutron star (NS)-NS mergers
assuming DECihertz interferometer gravitational wave ob-
servatory (DECIGO)/big bang observer (BBO). Section V
is devoted to summary.

II. A SOLUTION OF THE WAVE EQUATION
AROUND AN INFINITE STRAIGHT COSMIC

STRING

A solution of Einstein equations around an infinite
straight cosmic string to first order in G� is given by [45]

d2s � �dt2 � dr2 � �1���2r2d�2 � dz2; (1)

where (r, z, �) is a cylindrical coordinate (0 	 � < 2�)
and 2�� � 8�G� is the deficit angle around the cosmic
string. Spatial part of the above metric describes the
Euclidean space with a wedge of angular size 2�� re-
moved. Because of the deficit angle around a string, double
images of the source are observed with an angular separa-
tion & 2�� when a source is located behind the string in
the limit of geometrical optics. In general for a wave with a
finite wavelength, some interference pattern appears. An
exact solution of Einstein equations around a finite thick-
ness string has been already obtained [46], but we use the
metric (1) as a background since the string thickness is
negligibly small compared with the Einstein radius, �
�D�, where D is the distance from the observer to the
string.

Throughout the paper, we consider waves of a massless
scalar field instead of gravitational waves for simplicity,
but the wave equations are essentially the same in these
two cases. An extension to the cosmological setup is
straightforwardly done by adding an overall scale factor.

In that case the time coordinate t is to be understood as the
conformal time. The wave equation remains unchanged if
we consider a conformally coupled field, but it is modified
for the other cases due to curvature scattering. The correc-
tion due to curvature scattering of the Friedmann Universe
is suppressed by the square of the ratio between the wave-
length and the Hubble length, which can be neglected in
any situations of our interest.

Our goal of this section is to construct a solution of the
wave equation which corresponds to a plane wave injected
perpendicularly to and scattered by the cosmic string. This
situation occurs if the distance between the source and the
string is infinitely large. In order to construct such a
solution, we introduce a monochromatic source uniformly
extended in the z-direction and localized in r-� plane,

S �
B

�1� ��
��r� ro����� ��e

�i!t; (2)

where ! is the frequency and we have introduced B, a
constant independent of �, to adjust the overall normal-
ization when we later take the limit ro ! 1. The factor
�1� ���1 appears because �-coordinate used in the metric
(1) differs from the usual angle

’ 
 �1����: (3)

Here we consider a uniformly extended source instead of a
point source since the former is easier to handle. When the
limit ro ! 1 is taken, the answers are identical in these
two cases. The case with a pointlike source at a finite
distance is more complicated. This case is treated in
Appendix B.

Now the wave equation that we are to solve is�
@2

@r2 �
1

r
@
@r
�

1

�1� ��2r2

@2

@�2 �!
2

�
��r; ��

�
B

1� �
��r� ro����� ��: (4)

Since ��r;��� satisfies the same Eq. (4) as ��r; �� does,
��r; �� is even in �. Thus, it can be expanded as

��r; �� �
X1
m�0

fm�r� cosm�: (5)

From Eqs. (4) and (5), the equations for fm�r� are�
d2

dr2 �
1

r
d
dr
�!2 �

�2
m

r2

�
fm�r�

� �m
��1�m

1� �

B
2�

��r� ro�; (6)

where �o 
 1, �m 
 2�m � 1�, and �m 
 �1� ���1m.
The solution of Eq. (6) except for r � ro is a linear
combination of Bessel function and Hankel function. We
impose that the wave � is regular at r � 0 and pure out-
going at infinity. Further, imposing that the wave is con-
tinuous at r � ro, fm�r� becomes
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fm�r� � Nm�H
�1�
�m �!ro�J�m�!r���ro � r�

� J�m�!ro�H
�1�
�m �!r���r� ro��; (7)

where ��x� is the Heaviside step function. Substituting
Eq. (7) into Eq. (6), the normalization factor Nm is deter-
mined as

Nm �
B

1��

�m��1�m

2�!
�J�m�!ro�H

�1�0
�m �!ro�

�H�1��m �!ro�J
0
�m�!ro�

�1

�
Br0�m��1�m

4i�1� ��
; (8)

where 0 denotes a differentiation with respect to the argu-
ment. From Eqs. (7) and (8) with the aid of the asymptotic
formulae of the Bessel and Hankel functions, ��r; �� for
ro ! 1 can be written as

��r; �� �
�iB

2
���
2
p
�1� ��

��������
ro
�!

r
ei!ro�i��=4�

�
X1
m�0

�mi
me��im���=�2�1���J�m�!r� cosm�: (9)

We determine the overall normalization of the source
amplitude B, independently ofG�, so that Eq. (9) becomes
a plane wave ei!r cos� when G� � 0. This condition leads

to B � �2
��������
2�!
ro

q
e�i!ro�i�=4. Then, finally � becomes

��r; �� �
1

1� �

X1
m�0

�mime��im���=�2�1���J�m�!r�

� cosm�: (10)

III. LIMITING BEHAVIORS OF THE SOLUTION

A. Approximate wave form in the wave zone

The solution (10) describes the wave form propagating
around a cosmic string. But it is not easy to understand the
behavior of the solution because it is given by a series. In
fact, it takes much time to perform the summation in
Eq. (10) numerically for a realistic value of tension of
the string, say, G� & 10�6 because of slow convergence
of the series. In particular it is not manifest whether the
amplification of the solution in the short wavelength limit
coincides with the one which is obtained by the geometri-
cal optics approximation. Therefore it will be quite useful
if one can derive a simpler analytic expression. Here we
reduce the formula by assuming that the distance between
the string and the observer is much larger than the wave-
length,

	 
 !r� 1; (11)

which is valid in almost all interesting cases.

Using an integral representation of the Bessel function,

J��	� �
1

2i�

Z
C
dt e	 sinht��t; (12)

where the contour of the integral C is such as shown in
Fig. 1, Eq. (10) can be written as

��	; �� � �
J0�	�
1� �

�
1

1� �

1

2i�

Z
C
dt e	 sinht

�
X1
m�0

e��mt=�1�������=2�mi���im���=2�1���

� �eim� � e�im��: (13)

When t is in the segment of the integration contour C along
the imaginary axis, the summation over m does not con-
verge because the absolute value of each term in the
summation is all unity. In order to make the series to
converge, we need to think that the integration contour C
is not exactly on the imaginary axis but t always has a
positive real part. For bookkeeping purpose, we multiply
each term in the sum by a factor e��m (� is an infinitesi-
mally small positive real number). Then Eq. (13) becomes

��	; �� � �
J0�	�
1� �

�  �	; �� �  �	;���; (14)

where  �	; �� is defined by

 �	; �� :�
1

1��

1

2i�

Z
C
dt

e	 sinht

1� e��t�t��=�1���
; (15)

with

Re

Im

FIG. 1. Black, dotted, and dashed lines are contours of the
integral C, ~C, and CH, respectively. �i �2 are the saddle points of
e	 sinht.
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t� :� ��� i
�
2
� i


������
	
p ; (16)

and 
��� :� ���� �1�����
���
	
p

.
Now we find that all we need to evaluate is  �	; �� in

order to obtain an approximate formula for ��	; ��. This
integral will not be expressed by simple known functions in
general, but the integration can be performed by using the
method of steepest descent in the limit 	� 1.

The integrand of Eq. (15) has two saddle points located
at t � t� � i�=2 and t � t� � �i�=2 in the vicinity of
the integration contour C. We should also notice that the
integrand has a pole at t � t�, which is also infinitesimally
close to the contour of the integral C. This pole is located
near the saddle point at t � t� as far as � and � are small.
Hence the treatment of the saddle point at t � t� is much
more delicate than that of the saddle point at t � t�. We
only discuss the saddle point at t � t�, then the case at t �
t� is a trivial extension.

When <�t�> 0, =�t�< i�2 or <�t�< 0, =�t�> i �2 ,
which corresponds to shaded regions in Fig. 1, e	 sinht

diverges in the limit 	! 1. If 
���> 0, the pole at t �
t� is in the bottom-left unshaded region. In this case we
cannot deform the contour to the direction of the steepest
descent at t � t� without crossing the pole at t � t�. The
deformed contour which is convenient to apply the method
of the steepest descent is such that is shown as ~C in Fig. 1.
When we deform the integration contour fromC to ~C, there
arises an additional contribution corresponding to the resi-
due at t � t� when 
���> 0. On the other hand, if 
���<
0, the pole is in the top-left shaded region. In this case, we
can deform the contour of the integral to the direction of
the steepest descent without crossing the pole t�. Hence no
additional term arises.

From these observations, we find that it is necessary to
evaluate the integral (15) separately depending on the
signature of 
���. Though the calculation itself can be
done straightforwardly, it is somewhat complicated be-
cause the saddle point and the pole are close to each other.
When the pole is located inside the region around the
saddle point that contributes dominantly to the integral, a
simple Gaussian integral does not give a good approxima-
tion. Detailed discussions about this point are given in
Appendix A. Here we only quote the final result which
keeps terms up to O�1=

���
	
p
�,

 �	; �� � exp
�
i	 cos


������
	
p

�
��
���� �

��������
�
p

� exp
�
i	�

i
���

�1���
���
	
p �

i
2

~
2���
�

� Erfc
�
����

~
������
2
p e�i�=4

�

�
1����������

2�	
p

1

1��

e�i	�i�=4

1� e
i

1�����
���=
���
	
p
�
; (17)

where

~
��� :� i�1���
���
	

p �
1� exp

�
i


���

�1���
���
	
p

��
; (18)

���� :� sign�
����; (19)

and

Erfc �x� :�
Z �1
x

dt e�t
2
: (20)

We are mostly interested in the cases with �; �� 1.
Then, we have 
���=

���
	
p
� 1, and therefore ~
��� reduces

to 
���. The second term in Eq. (17) is the contribution
from the integral around the saddle point at t � t� along
the contour ~C. This term is not manifestly suppressed by
1=

���
	
p

. As far as 
��� is fixed, this term does not vanish in
the limit 	! 1. Of course, if we fix � and � first, and take
the limit 	! 1, the argument of the error function goes to
�1 and the function itself vanishes. However, 
��� van-
ishes at � � ��=�1� ��. Hence even for a very large
value of 	 there is always a region of � in which this
second term cannot be neglected. However, for � in such
a region, 
��� cannot be very large. Therefore, we can
safely drop the second term in the exponent. On the other
hand, the last term in Eq. (17), which is the contribution
from the saddle point at t � t�, is always suppressed by
1=

���
	
p

. Hence, this term does not give any significant con-
tribution for 	� 1. The first term in Eq. (14) can be
dropped in the same manner for 	� 1. Keeping only
the terms which possibly remain in the limit 	! 1, we
finally obtain

��	; �� � exp
�
i	 cos


������
	
p

�
��
���� �

��������
�
p ei	��i=2�
2���

� Erfc
�
j
���j���

2
p e�i�=4

�
� ��! ���: (21)

For illustrative purpose, we compared the estimate given
in Eq. (17) with the exact solution Eq. (10) in Fig. 2. They
agree quite well at 	� 1. The deficit angle and the ob-
server’s direction are chosen to be � � 0:0025 and � � 0,
respectively.

B. Geometrical optics limit

Geometrical optics limit corresponds to the limit 	! 1
with � and � fixed. In this limit 
��� also goes to�1, and
hence the error function in Eq. (21) vanishes. Hence the
wave form in the geometrical optics limit, which we denote
as �go, becomes

�go�	; �� � ei	 cos����’������ ’�

� ei	 cos����’������ ’�; (22)

where ’ is defined by Eq. (3).
Since � and hence �go are even in �, it is sufficient to

consider the case with � > 0. In Fig. 3, the configuration of
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the source, the lense, and the observer are drawn in the
coordinates in which the deficit angle 2�� is manifest, i.e.,
the wedge AOB is removed from the spacetime. Both points
A and B indicate the location of the source. The lines OA
and OB are to be identified. The angle made by these two
lines is the deficit angle. The locations of the string and the
observer are represented by O and P, respectively. In our
current setup the distance between O and A ( � ro) is taken
to be infinite. When’>��, only the source A can be seen
from the observer. This corresponds to the fact that only the
first term remains for’>�� in Eq. (22). For’>��, we
have

�go�	; �� � ei	 cos�’����: (23)

This is a plane wave whose traveling direction is ’ �
���, which is the direction of ~AP in Fig. 3 in the limit
ro � j ~AOj ! 1.

For j’j<��, �go is

�go�	; �� � ei	 cos�’���� � ei	 cos�’����: (24)

This is the superposition of two plane waves whose trav-
eling directions are different by the deficit angle 2��.
Hence amplification of the images and interference occur
for j’j<�� as expected.

As we shall explain below, Eq. (22) coincides with the
one derived under the geometrical optics. In geometrical
optics, wave form is given by [11]

�go �
X
j

ju� ~xj�j
1=2 exp�i!T� ~xj� � i�nj; (25)

where ~x represents a two-dimensional vector on the lens
plane and T� ~x� represents the summation of time of flight
of the light ray from the source to the point ~x on the lens
plane and that from the point ~x to the observer. ~xj is a
stationary point of T� ~x�, and nj � 0, 1=2, 1 when ~xj is a
minimum, saddle, and maximum point of T� ~x�, respec-
tively. The amplitude ratio ju� ~x�j1=2 is written as

u� ~x� � 1= det��ab � @a@b � ~x�; (26)

where  � ~x� in Eq. (26) is the deflection potential [47]
which is the integral of the gravitational potential of the
lens along the trajectory between the source and the ob-
server. Equation (25) represents that the wave form is
obtained by taking the sum of the amplitude ratio
ju� ~xj�j

1=2 of each image with the phase factor
ei!T� ~xj��i�nj . If the lens is the straight string, the spacetime
is locally flat everywhere except for right on the string.
This means that the deflection potential  � ~x� is zero and
hence the amplitude ratio is unity for all images [47] and
the trajectory where the time of flight T� ~x� takes the
extremal value is a geodesic in the conical space, and
T� ~x� of any geodesic takes minimum, which means nj �
0. There are two geodesics if the observer is in the shaded
region in Fig. 3. The time of flight along the trajectory AP is

TA � lim
ro!1
j ~APj � ro � r cos���� ’�; (27)

where r 
 j ~OPj. The time of flight along the trajectory BP
is obtained by just replacing ’ with �’. Hence, substitut-
ing (27) into (25), we find that the wave form in the
geometrical optics is the same as Eq. (24) except for an

FIG. 2 (color online). Comparison between the exact solution Eq. (10) and the approximate one Eq. (17). �� is 0.0025. The black
line and dotted line correspond to the exact solution and the approximate one, respectively. We see that except for small 	 the dotted
line overlaps the black one. In the right panel, the relative error is about 10�3.

observer

FIG. 3. Configuration of the source, the cosmic string, and the
observer. A and B are the positions of a source. O and P are the
positions of the cosmic string and the observer, respectively. In
this figure, the wedge AOB is removed and thus A and B must be
identified.
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overall phase eiro	. This factor has been already absorbed
in the choice of the normalization factor B in our formula
(10).

We define the amplification factor

F�	; �� �
��	; ��
�UL�	; ��

; (28)

where �UL is the unlensed wave form. Using Eq. (24), the
amplification factor of �go for j’j<�� is given by

Fgo�	; �� � 2e�i
	
2����2 cos���	’�; (29)

where we have assumed ’ and � are small and dropped
terms higher than quadratic order. It might be more sug-
gestive to rewrite the above formula into

jFgo�	; ��j � 2 cos���!y�; (30)

where y � r sin’. The distance from a node to the next of
when the observer is moved in y-direction is �=��, where
� is a wavelength. This oscillation is seen in the right panel
of Fig. 2.

C. Quasigeometrical optics approximation

In the previous subsection, we have derived the wave
form in the limit 	; j
����j ! 1which corresponds to the
geometrical optics approximation. Here we expand the
wave form (21) to the lowest order in 1=
����. This
includes the leading order corrections to the geometrical
optics approximation due to the finite wavelength effects.

For the same reason as we explained in the previous
subsection, we assume that � and ’ are small. Using the
asymptotic formula for the error function Eq. (A6), the
leading order correction due to the finite wavelength,
which we denote as ��qgo, is obtained as

��qgo�	; �� � �
ei	�i�=4�������

2�
p

�
1


���
�

1


����

�

� �
ei	�i�=4����������

2�	
p

2��

����2 � ’2 : (31)

As is expected, the correction blows up for j’j � ��,
where 
��� or 
���� vanishes, irrespective of the value
of 	. In such cases, we have to evaluate the error function
directly, going back to Eq. (21).

The expression on the first line in Eq. (31) manifestly
depends only on 
���� aside from the common phase
factor ei	. This feature remains true even if we consider
a small value of 
����. This can be seen by rewriting
Eq. (21) as

��	; �� �
ei	��i=2�
2�������

�
p Erfc

�
�
��������

2i
p

�
� ��! ���: (32)

The common phase ei	 does not affect the absolute mag-

nitude of the wave. Except for this unimportant overall
phase, the wave form is completely determined by 
����.

The geometrical meaning of these parameters 
���� is
the ratio of two length scales defined on the lens plane. To
explain this, let us take the picture that a wave is composed
of a superposition of waves which go through various
points on the lens plane. In the geometrical optics limit
the paths passing through stationary points of T� ~x�, which
we call the image points, contribute to the wave form. The
first length scale is rs � j
����j=

���
	
p
� r which is defined

as the separation between an image point and the string on
the lens plane. In this picture we expect that paths whose
pathlength is longer or shorter than the value at an image
point by about one wavelength will not give a significant
contribution because of the phase cancellation. Namely,
only the paths which pass within a certain radius from an
image point need to be taken into account. Then such a
radius will be given by rF �

������
�r
p

, which we call Fresnel
radius. Namely, a wave with a finite wavelength can be
recognized as an extended beam whose transverse size is
given by rF. The ratio of these two scales gives 
����:

j
����j �

�������
2�
p

rs
rF

:

When rs � rF , i.e., 
���� � 1, the beam width is
smaller than the separation. In this case the beam image
is not shadowed by the string, and therefore the geometri-
cal optics becomes a good approximation. When rs & rF,
i.e.,


���� & 1; (33)

we cannot see the whole image of the beam, truncated at
the location of the string. Then the diffraction effect be-
comes important. The ratio of the beam image eclipsed by
the string determines the phase shift and the amplification
of the wave coming from each image. If we substitute
j’j � 0 as a typical value, we obtain a rough criterion
that the diffraction effect becomes important when

� * 2�����2r; (34)

or 	 & �����2 in terms of 	.
The same logic applies for a usual compact lens object.

In this case the Fresnel radius does not change but the
typical separation of the image from the lens is given by the
Einstein radius rE �

��������������
4GMr
p

, where M is the mass of the
lens. Then the ratio between rE and rF is given by rE=rF ���������������
GM=�

p
, which leads to the usual criterion that the dif-

fraction effect becomes important when � * GM [1–5].
From the above formula (31), we can read that the

leading order corrections scales like /
��������
�=r

p
. This depen-

dence on � and r differs from the cases that the lens is
composed of a normal localized object, in which the lead-
ing order correction due to the finite wavelength is
O��=M� [15].
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The condition for the diffraction effect to be important
(33) can be also derived directly from Eq. (31). In order
that the current expansion is a good approximation, �qgo

must be smaller than �go. This requires that 1=
���� �
1, which is identical to (33).

We plot the absolute value of the amplification factor
under the quasigeometrical optics approximation as a
dashed line in Fig. 4. We find that the quasigeometrical
optics approximation is a good approximation for 	 *

��2. For 	 & ��2, the quasigeometrical optics approxi-
mation gives a larger amplification factor than the exact
one.

In the quasigeometrical optics approximation, we find
from Eqs. (24) and (31) the absolute value of the amplifi-
cation factor for ’ � 0 is

jF�	; 0�j � 2
�

1�

��������������������
2

�	����2

s
cos

�
	
2
����2 �

�
4

��
1=2
:

(35)

From this expression, we find that the position of the first
peak of the amplification factor lies at 	 � 4:25� �����2,
which can be also verified from Fig. 4. For 	 & ��2 the
present approximation is not valid, but we know that the
amplification factor should converge to unity in the limit
	! 0, where rF is much larger than rs.

We show in Fig. 5 the absolute value of the amplification
factor as a function of ’ for four cases of 	 around ��2.
Top left, top right, bottom left, and bottom right panels
correspond to 	����2 � 0:5, 1, 2, and 4, respectively.
Black curves are plots for Eq. (21) and the dotted ones
are plots for the quasigeometrical optics approximation. As
is expected, the error of the quasigeometrical optics ap-
proximation becomes very large near’ � ��, where
���
vanishes. As the value of 	 increases, the angular region in
which the quasigeometrical optics breaks down is reduced.

Interestingly, the absolute value of the amplification
factor deviates from unity even for ’ * �� which is not
observed in the geometrical optics limit. This is a conse-
quence of diffraction of waves, the amplitude of oscillation
of the interference pattern becomes smaller as � becomes
larger, which is a typical diffraction pattern formed when a
wave passes through a single slit. The broadening of the
interference pattern due to the diffraction effect means that
the observers even in the region j’j>�� can detect
signatures of the presence of a cosmic string.

But the deviation of the amplification from unity outside
the wedge ’>�� is rather small except for the special
case 	����2 � 1: for 	����2 � 1 the magnification is

FIG. 5. The black line and dotted line correspond to Eq. (21) and the quasigeometrical optics approximation, respectively. The string
tension is chosen to be G� � 10�3.

FIG. 4. The absolute value of the amplification factor as a
function of 	 for � � 0. The black line and dashed line corre-
spond to Eq. (21) and the quasigeometrical optics approxima-
tion, respectively. The string tension is chosen to be G� � 10�2.
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inefficient and for 	����2 � 1 the magnification itself
does not occur. Hence the increase of the event rates of
lensing by cosmic strings compared with the estimate
under the geometrical optics approximation could be im-
portant only when the relation 	����2 � 1 is satisfied. If
we take D � 1028 cm and ! � 10�3 Hz which is in the
frequency band of laser interferometer space sntenna
(LISA) [48], we find that the typical value of G� is �
2� 10�9.

So far, we have considered the stringy source rather than
a point source. Extension to a point source can be done in a
similar manner to the case of the stringy source and is
treated in Appendix B. The result is

��r; �; z� � �
1

4�D
ei!DF

�
!rro
D

; �
�
; (36)

where D �
������������������������������
�r� ro�2 � z2

p
is the distance between the

source and the observer. F , which is defined by Eq. (B14),
is related to  as

F �x; �� � �e�i	 �	; ��j	!x � ��! ���: (37)

Hence � for the point source is similar to that for the
stringy source. In particular, assuming that �; ’� 1,
and keeping terms which could remain for !r;!ro � 1,
we have

F
�
!rro
D

;�
�
�e��i=2���!rro�=D����’�2 1����

�
p

�Erfc
�
’��������

2i
p

�����������
!rro
D

r �
���!���: (38)

D. Simpler derivation of Eq. (32).

We have derived an approximate wave form (32) which
is valid in the wave zone from the exact solution of the
wave equation Eq. (10). Here we show that Eq. (32) can be
obtained by a more intuitive and simpler method. In the
path integral formalism [11], the wave form is given by the
sum of the amplitude exp�i!T�s�� for all possible paths
which connect the source and the observer. Here T�s� is the
time of flight along the path s. If the cosmic string resides
between the source and the observer, the wave form will be
given by the sum of two terms one of which is obtained by
the path integral over the paths which pass through the
upper side of the string (y > 0) in Fig. 3, and the other
through the lower side of it (y < 0). The wave form coming
from the former contribution will be given by

A
Z 1
�1

dzQ
Z 1

0
dyQei!�j

~AQj�j ~QPj�; (39)

where Q � �0; yQ; zQ� is a point on the lens plane specified
by x � 0. One can determine the normalization constant A
by a little more detailed analysis, but we do not pursue it
further here. By integrating Eq. (39), we recover the first
term in Eq. (32).

E. Long wavelength limit

For completeness, we consider the case in which the
wavelength is longer than the distance from the string 	 &

1. In this limit, the first few terms in Eq. (10) dominate, and
we find

��	; �� �
1

1� �
� i

e�� log2���=2i

��1� ��
	1�� cos�: (40)

In particular, for 	! 0 Eq. (40) becomes �1� ���1 which
is larger than unity. This differs from the cases of gravita-
tional lensing by a normal compact object, where the
amplification becomes unity in the long wavelength limit.
The reason why the amplification differs from unity even in
the long wavelength limit is that the space has a deficit
angle and hence the structure at the spatial infinity is
different from the usual Euclidean space. Waves with
very long wavelengths do not feel the local structure of
string. However, uniform amplification of waves should
occur as a result of total energy flux conservation because
the area of the asymptotic region at a constant distance
from the source is reduced due to the deficit angle. In this
sense such modes feel the existence of a string.

IV. CONNECTIONS TO OBSERVATIONS

A. Compact binary as a source

In this section, we consider compact binaries as sources
of gravitational waves. Gravitational waves from compact
binaries are clean in the sense that the waves are almost
monochromatic: the time scale for the frequency to change
is much longer than the orbital period of the binary except
for the phase just before plunge. Hence interference be-
tween two waves coming from both sides of the cosmic
string could be observed by future detectors.

Since each compact binary has a finite lifetime, lensing
events can be classified roughly into two cases. If the
difference between the times of flight along two geodesics
is larger than the lifetime of the binary, we will observe two
independent waves separately at different times. On the
other hand, if the time delay is shorter than the lifetime,
what we observe is the superposition of two waves.

The remaining lifetime of the binary Tlife when the
period of the gravitational waves measured by an observer
is PGW is estimated as

Tlife � 9:2� 10�4 1

�1� zS�5=3

�1� ��1=3

�

�
PGW
GM

�
5=3
PGW;

(41)

where � is the mass ratio of the binary (� 	 1), M is the
mass of the more massive star in the binary, and zS is the
source redshift.

The time delay Tdelay is

Tdelay � 2
rro
D
’��: (42)
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Taking the typical values of parameters as rro=D � 1 Gpc
and ’ � ��, the condition Tlife � Tdelay gives the upper
bound on the mass M,

M� 8� 103 �1� ��
1=5

�3=5

�
��

10�5

�
�6=5

�
PGW

103 sec

�
8=5
M�:

(43)

The time scale for the orbital frequency of the binary to
change is the same order as Tlife. Hence the condition
Tlife � Tdelay implies that the frequencies of two waves
are almost the same. The left and right panels in Fig. 6
which correspond to different frequencies of gravitational
waves show the region where the condition Eq. (43) is
satisfied for three different values of string parameter �.
The shaded area represents the parameter region beyond
the detector’s sensitivities. In the left and right panels we
assumed, respectively, that the threshold value for detec-
tion in strain amplitude for LISA and DECIGO [49]/BBO
[50], which are given by 10�20 Hz�1=2 and 10�23 Hz�1=2.
We find that both cases Tlife � Tdelay and Tlife � Tdelay can
occur both for LISA and BBO/DECIGO.

B. Wave form

We can easily extend our wave form (10) to the case that
the frequency of the source changes in time. Let us write
the source as 1

1��S�t���r� ro����� ����z�. The Fourier
transformation of S�t� is defined by

S�t� �
Z 1
�1

d! e�i!tS!: (44)

Denoting the solution ��t; ~x� for a monochromatic source
obtained in the previous sections by �!� ~x�, � can be
written as

��t; ~x� �
Z 1

0
d! e�i!tS!�!� ~x� � c:c:; (45)

where we assumed that S�t� is real. Substituting Eq. (36) to

the above expression, we have

��t; ~x� � �
1

4�D

Z 1
0
d! e�i!�t�D�F

�
!rro
D

; �
�
S! � c:c:

(46)

Equation (46) is a general formula which applies to any
time dependent source. Here we consider the special case
in which S�t� takes the form

S�t� � cos
�Z t

0
dt0��t0�

�
; (47)

with

��t� � !o � _!ot; (48)

where _!o=!2
o � 1 and !o > 0 are assumed. This repre-

sents a quasimonochromatic source with its frequency
slowly changing. Then S! is

S! �
1�������������

2� _!o
p �e�i��!�!o�

2=�2 _!o��i�=4

� ei��!�!o�
2=�2 _!o��i�=4�: (49)

Substituting Eqs. (38) and (49) into Eq. (46), and using the
method of the steepest descent, we have

��t; ~x��
1

4�
����
�
p

D
Erfc

�
’��������

2i
p

�������������������������
��T�’��rro

D

s �
�e�iT�’��!o��1=2� _!oT�’�� �c:c:��’!�’�; (50)

with

T�’� � t�D�
rro
2D
���� ’�2: (51)

This represents a superposition of two waves coming from
both sides of the string whose arrival times differ by
jT�’� � T��’�j � ��2rro�=D��j’j. In the preceding
subsections, we study the wave forms observed in two
cases with Tlife � Tdelay and Tlife � Tdelay.

FIG. 6. Plots of regions where Eq. (43) is satisfied for three different values of the string parameter. Left and right panels are for
10�3 Hz and 0.1 Hz which are the frequency bands LISA and DECIGO have best sensitivities. Shaded regions are plotted under the
assumptions that the signals satisfy SN > 10, the redshift of the source is 1 and 3 yr observations.
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1. Tlife � Tdelay

As we have explained in the preceding subsection, what
we observe is a superposition of two waves in this case.
Because the relative phase difference of these waves
slowly increases or decreases in time due to the frequency
change of the binary source and the optical path difference
between two geodesics, we will observe the beat if the
amplitude of the integrated relative phase difference over
observation time is larger than O�1�.

The condition that the beat is observed can be derived as
follows. If we denote the total observation period by Tobs,
then from Eq. (50) the integrated relative phase difference
is 2��’D _!oTobs, where both r and ro are assumed to be
O�D�. Hence we can observe the beat if

Tobs *
1

2��’D _!o
: (52)

Because Tlife is roughly the same as the time scale for the
frequency of the binary to change, i.e. Tlife �!o= _!o,
Eq. (52) can be written as

Tobs *
Tlife

2��’D!o
: (53)

If Tobs is fixed, e.g. Tobs � 3 yr for LISA, Eq. (53) is
written as an lower bound on M. For Tobs � 3 yr and
PGW � 103 sec , Eq. (53) becomes

M* 2:6�
�1���1=5

�3=5

�
��

10�5

�
�6=5

�
PGW

103 sec

�
13=5

M�: (54)

We show in Fig. 7 the region where Eq. (54) is satisfied for
LISA with Tobs � 3 yr. We find that if G� & 2:8� 10�8

which is about 1 order of magnitude below the current
upper bound, LISA will detect the beat of gravitational
waves for all observable ranges in (�, M) space as long as
Tlife � Tdely.2

2. Tlife � Tdelay

If Tdelay � Tlife, we observe the wave form of either the
first term or the second one in Eq. (50) at a given time. We
show in Fig. 8 the amplification of the wave corresponding
to the first term in Eq. (50) as a function of ’���
normalized by 1=

�����������������
!rro=D

p
, which is nothing but �
���

in the case discussed in Sec. III. We find that the amplifi-
cation approaches zero more slowly for ’� ��> 0 and
oscillates around unity for ’� ��< 0 and the angular
size in which nontrivial oscillations due to the diffraction
effect can be observed is given by 1=

�����������������
!rro=D

p
. Since

Tdelay � �rro=D�’��< Tlife � !�1 in the present case,

we have �rro=D�����2 * �rro=D���’� 1. Therefore
this angular size of oscillation is much smaller than ��.
Hence it will be very difficult to detect a lensing event in
which this diffraction effect is relevant.

C. Estimation of the event rate

In this section, we estimate the detection rate of the
gravitational lensing caused by cosmic strings for planned
gravitational wave detectors such as LISA, DECIGO, and
BBO.

It is well known that string network obeys the scaling
solution where the appearance of the string network at any
time looks alike if it is scaled by the horizon size. There are
a few dozen strings spread crossing the horizon volume and
a number of string loops [51–53]. Since the horizon scale
increases in the comoving coordinates as time goes, the
number of strings increase if there is no interaction be-
tween them. However, since strings are typically moving at
a relativistic speed, they frequently intersect with each
other. As a result reconnection between strings occurs,
reducing the number of long strings which extend over
the horizon scale. During the process of reduction of the
number of long strings a large number of string loops are
formed, but they shrink and decay via gravitational radia-
tion. Due to the balance of two effects, the number of long
strings in a horizon volume remains almost constant in
time.

The reconnection probability p is essentially 1 for gauge
theory solitons [54] because reconnection allows the flux
inside the string to take an energetically favorable shortcut.
For F-strings, the reconnection is a quantum process and its
probability is roughly estimated as p� g2

s , where gs is the
string coupling and is predicted in [55] that

10�3 & p & 1: (55)

For D-strings, the reconnection probability might be 0:1 &

p & 1 [55]. If the reconnection probability is less than 1,
the number of long strings is expected to be p�1 times
larger than that in the case with p � 1. Therefore it is

FIG. 7. Plot of the region where Eq. (54) is satisfied. The
frequency of the gravitational waves is assumed to be 10�3 Hz.

2Since the lensing probability is not expected to be high, we
need a large number of events to detect a lensing event. In such a
situation, what gravitational wave detectors can detect is a
superposition of various waves. Hence, signal will almost always
have beat even if we ignore the lensing effect.
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expected that in the context of cosmic strings motivated by
superstring theory the number of long strings in a horizon
volume can be 103 or more.

To estimate the event rate for the gravitational lensing,
here we consider a compact binary (such as binary neutron
stars and/or black holes) as a source of gravitational waves.
There are large uncertainties about the event rate of mas-
sive black hole (MBH) merger detected by LISA or
DECIGO/BBO. Several authors [56–58] employed a
model in which MBH mergers are associated with the
mergers of host dark matter halos to estimate the event
rate of MBH-MBH mergers. In this model, the event rate is
dominated by halos with the minimum mass Mmin above
which halos have a central MBH and some scenarios
predict that the event rate could reach �104 events=yr.
For DECIGO/BBO, the binary neutron stars will be ob-
served �105 events=yr.

The probability of lensing for a single source by an
infinite straight cosmic string both at cosmological dis-
tances is

P ’ 3� 10�6

�
��

10�5

�
: (56)

Equation (56) is derived under the geometrical optics
approximation. In Section III, we found that the signal of
lensing by cosmic strings (the interference pattern of gravi-
tational waves at detectors) extends over angular scales
larger than the deficit angle 2�� when the diffraction
effect is marginally important. This is a well-known fact
for the gravitational lensing by usual stellar objects [6,59].
As we estimated in Section III, the critical distance Dc
below which the diffraction effect becomes important is

Dc � 50
�
PGW

103 sec

��
��

10�5

�
�2

kpc: (57)

Therefore the probability of lensing by cosmic strings may
be enhanced due to the diffraction effect for �� � 10�7 at
LISA band (PGW � 103 sec) and for �� � 10�8 at
DECIGO/BBO band (PGW � 10 sec).

Assuming the prospective values of the parameters that
determines the rate of lensing events _n, we obtain

_n� 3f
�
p

0:1

�
�1
�
��

10�5

��
_nS

105 yr�1

�
yr�1; (58)

where f�>1� denotes the numerical factor arising from the
enhancement of the lensing probability due to the diffrac-
tion effect. _nS � 105 is almost upper bound on the total
event rate of neutron star mergers detectable by DECIGO/
BBO. If the event rate is even higher, the number of events
becomes comparable to or larger than the number of fre-
quency bins. Then we will not be able to distinguish each
event, and undistinguishable signals become confusion
noise. In the case of LISA, this bound on _nS is even lower.
Unfortunately, a large number of lensing events by cosmic
strings can be expected only for marginally large ����
G�=4� with a small reconnection probability p.

Finally we briefly comment on the validity of the as-
sumption that most cosmic strings can be treated as straight
ones in studying gravitational lensing by them. In geomet-
rical optics approximation, only light paths which satisfy
the Fermat’s principle contribute to the amplification fac-
tor. If we take into account the finiteness of the wavelength,
the trajectories whose optical path differences are less than
a few times of its wavelength will dominantly contribute to
the amplification factor. In terms of the distance on the lens
plane (x � 0-plane in Fig. 3), the optical paths within &�������
�D
p

from the intersection of the geodesic will give a
dominant part of the amplification factor.

In the standard literature, the typical size of small-scale
structure of a long string is given by the gravitational
backreaction scale �50G�t, where t is a cosmic time
[60]. But this is not an established argument and some
recent studies suggest that the smallest size of the wiggles
could be much smaller than 50G�t [61,62]. If we assume
here that the smallest size of the wiggles is 50G�t, then the
condition that the straight string approximation is good is�������
�D
p

& 50G�t. Substituting the appropriate values of the
parameters, it gives the condition,

1 *

�������
�D
p

50G�t

� 8� 10�5

�
��

10�5

�
�1
�

�

1013 cm

�
1=2
�

D

1026 cm

�
1=2
: (59)

FIG. 8. The absolute value of the amplification factor for Tlife � Tdelay as a function of ’. Left and right panels correspond to
	 � 0:2�����2 and �����2, respectively.
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Hence approximating a cosmic string by a straight one is
good for a wide range of possible values of the parameters.

V. SUMMARY

We have constructed a solution of the Klein-Gordon
equation for a massless scalar field in the flat spacetime
with a deficit angle 2�� � 8�G� caused by an infinite
straight cosmic string. We showed analytically that the
solution in the short wavelength limit reduces to the geo-
metrical optics limit. We have also derived the correction
to the amplification factor obtained in the geometrical
optics approximation due to the finite wavelength effect
and the expression in the long wavelength limit.

The wave form is characterized by a ratio of two differ-
ent length scales. One length scale rs is defined as the
separation between the image position on the lens plane in
the geometrical optics and the string. We have two rs since
there are two images corresponding to which side of the
string the ray travels. (When the image cannot be seen
directly, we assign a negative number to rs.) The other
length scale rF, which is called Fresnel radius, is the
geometrical mean of the wavelength and the typical sepa-
ration among the source, the lens, and the observer. The
wave form is characterized by the ratios between rs and rF.
If rF > rs, the diffraction effect becomes important and the
interference patterns are formed. Even when the image in
the geometrical optics is not directly seen by the observer,
the interference patterns remain. In contrast, in the geo-
metrical optics magnification and interference occur only
when the observer can see two images which travel both
sides of the string. Namely, the angular range where lens-
ing signals exist is broadened by the diffraction effect. This
broadening may increase the lensing probability by an
order of magnitude compared with that estimated by using
the geometrical optics when the distance to the source is
around the critical distance Dc given in Eq. (57).

We finally estimated the rate of lensing events which can
be detected by LISA and DECIGO/BBO assuming BH-BH
or NS-NS mergers as a source of gravitational waves. For
possible values of the parameters that determines the event
rate such as string reconnection rate, string tension, and the
event rate of the unlensed mergers, the lensing event rate
could reach several per year.

ACKNOWLEDGMENTS

T. S. thanks Kunihito Ioka, Takashi Nakamura, and
Hiroyuki Tashiro for useful comments. This work is sup-
ported in part by Grant-in-Aid for Scientific Research,
No. 14047212 and No. 16740141, and by that for the
21st Century COE ‘‘Center for Diversity and Universality
in Physics’’ at Kyoto university, both from the Ministry of
Education, Culture, Sports, Science, and Technology of
Japan.

APPENDIX A: DERIVATION OF EQ. (21)

Here we derive a formula Eq. (21) from the integral
representation of the solution Eqs. (14) and (15). As we
explained in the Sec. III, we have to calculate the integral
for 
���> 0 and 
���< 0 separately.

1. ���� < 0

In this case, there are no contributions from the pole t�.
Since 	� 1, the integral

 �	; �� �
1

1��

1

2i�

�
Z
C
dt

e	 sinht

1� e�1=�1����t�i��=2��i
���=
���
	
p
���

;

(A1)

is dominated from the two regions jt� i �2 j & 1=
���
	
p

,
where �i �2 is the saddle points of e	 sinht.

Let us first calculate the integral around i�=2. We
cannot apply the method of steepest descent where the
denominator of the integrated function is replaced with
the value at t � i�=2 because the pole t� of the integrand
can lie in the region jt� � i�=2j & 1=

���
	
p

and the denomi-
nator is no longer constant around i�=2.

Fortunately the integral can be approximated written by
the special function which can be evaluated easily. We first
do the transformation of variable such that t� i�=2 �
ei�=4u (u:real number) which corresponds to the deforma-
tion of the contour of the integral from C to ~C as shown in
Fig. 1. Expanding e	 sinht around i�=2 to second order in u
and the denominator of the integral to the first order in u
gives the integral

1

2i�
exp

�
i	�

i
���

�1� ��
���
	
p

�Z 1
�1

du
e��u

2=2�

u� ei�=4 ~
���
;

(A2)

where ~
��� is defined by Eq. (18). Hence we need to
evaluate the integral

I�x� :�
Z 1
�1

du
e��u

2=2�

u� x
�
Z 1
1
du
e���u�x�

2=2

u� i�
; (A3)

where � was introduced to remember that the imaginary
part of x � �ei�=4 ~
��� is positive when ~
���< 0. This
integral is given by an error function as

I�x� � 2i
����
�
p

e�x
2=2Erfc

�
�i

x
2

�

 2i

����
�
p

e�x
2=2
Z 1
�ix2

dte�t
2
:

(A4)

This can be derived by solving a differential equation

d
dx
I�x� � �

�������
2�
p

� xI�x�; (A5)
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which follows from the definition of I�x�, with the bound-
ary condition that I�0� � i�.

Asymptotic formulas for the error function are

Erfc�z� � e�z
2

�
1

2z
�

1

4z3 � � � �

�
;�

for�
�
4
< arg z <

�
4

and jzj ! 1
�
;

�
����
�
p
� e�z

2

�
1

2z
�

1

4z3 � � � �

�
;�

for
3�
4
< arg z <

5�
4

and jzj ! 1
�
;

�
����
�
p
�

����
�
p

2
� z�

1

3
z3 � � � � ; �for jzj � 1�:

(A6)

Using Eq. (A3), the integral Eq. (A2) becomes

1����
�
p exp

�
i	�

i
���

�1���
���
	
p �

i
2

~
2���
�

Erfc
�

~
������
2
p e3i�=4

�
:

(A7)

Next let us calculate the integral Eq. (A1) around
�i�=2. Since the pole t� is far from �i�=2, we can
approximate the denominator of the integrated function
as a constant and apply the usual saddle point method.
This gives

1����������
2�	
p

1

1��

e�i	�i�=4

1� e�i=�1������
���=
���
	
p
�
: (A8)

The sum of Eqs. (A7) and (A8) gives  �	; �� for 
���< 0.

2. ���� > 0

In this case, there is a contribution from the pole t�.
Hence the integral is divided into the integral around the
pole and the one whose circuit of integration is ~C.

The integral around the pole gives

exp
�
i	 cos


������
	
p

�
: (A9)

The integral around i�=2 along the trajectory ~C is the
same as for 
���< 0 and is given by Eq. (A2). The only
difference is the signature of ~
���. By changing the inte-
gration variable from u to�u, ~
��� is replaced with�~
���
and the overall signature flips. As a result we find that the
integration along ~C gives

�
1����
�
p exp

�
i	�

i
���

�1���
���
	
p �

i
2

~
2���
�
Erfc

�
�

~
������
2
p e3i�=4

�
:

(A10)

Integral Eq. (A1) around�i�=2 is also given by Eq. (A8).
Combining the results of subsections A1 and A2, adding

the similar terms  �	;���, and also using the asymptotic
form of J0�	�, we have Eq. (21).

APPENDIX B: SOURCE AT A FINITE DISTANCE

Here we consider a point source at a finite distance. For a
point source,

S �
1

�1� 4G��ro
��r� ro����� ����z�e�i!t; (B1)

where �1� 4G��ro �
�������
�g
p

. We consider a solution writ-
ten in the form of the following expansion,

��r; �; z� �
X1
m�0

Z 1
�1

dk fm;k�r� cosm�eikz: (B2)

The solution for fk;m�r� is the same as fm�r� in (7) but !
contained in 	 and 	o are here replaced with

�����������������
!2 � k2
p

,
and

Nm �
1

1� �

�m��1�m

8i�
: (B3)

First we compute �k�r; �� :�
P
1
m fm;k�r� cosm� for r <

ro. As in the case of Bessel function, we also use the
integral representation for Hankel function

H�1�� �z� �
1

i�

Z
CH
dsez sinhs��s: (B4)

Here the integration is to be performed along the path CH
presented in Fig. 1. Using the above formula and (12), we
have

�k�r; �� �
X1
m

i�m��1�m

32�3�1���

Z 1�i�
1�i�

dt e	 sinht��mt

�
Z 1�i�
�1

ds e	o sinhs��ms�eim� � e�im��

�
i

16�3�1���

Z 1�i�
1�i�

dt e	 sinht
Z 1�i�
�1

ds

� e	o sinhs
�

1

1� e���t�s�=�1����i���

� ��! ���
�
: (B5)

We introduce a new variable t0 
 t� s� i�=2. Under the
assumption that 	o � 1, the integration over s is domi-
nated by the contribution around s � i�=2. Hence, the
integration contour for t is unaltered even if we change
the integration variable from t to t0. After this change of the
variable, we have

�k�r; �� �
i

16�3�1���

Z 1�i�
1�i�

dt0
Z 1�i�
�1

ds

� ef�t
0;s�
�

1

1� e�
1

1���t
0�i�=2��i���

� ��! ���
�
;

(B6)

where

f�t0; s� :� 	 sinh�t0 � s� i�=2� � 	o sinhs: (B7)
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We expand the exponent around a zero of its derivative.
The derivative vanishes at s � s0, and s0 is given by

tanhs0 �
	 cosh�t0 � i�=2� � 	o
	 sinh�t0 � i�=2�

: (B8)

Taylor expansion of f�t0; s� around s � s0 becomes

f�t0; s� � i
�������������������������������������������������������������������
	2 � 	2

o � 2		o cosh�t0 � i�=2�
q
� �1� 1

2�s� s0�
2 � � � ��: (B9)

We truncate this expansion at the quadratic order because
the higher order terms are suppressed by 1=	 or 1=	o.
Performing Gaussian integral, we obtain

�k�r; �� �

�������
2�
p

i

16�3�1� ��

Z 1�i�
1�i�

dt0
ef�t

0;s0���������������������
�f�t0; s0�

p
�

�
1

1� e�1=�1����t0�i�=2��i���
� ��! ���

�
:

(B10)

Further, we expand f�t0; s0� around an approximate sta-
tional point at t0 � i�=2. Then we have

f�t0; s0� � i�	� 	o� �
i		o

2�	� 	o�

�
t0 � i

�
2

�
2
� � � � :

(B11)

Again we truncate this expansion at the quadratic order for
the same reason as before. Then one finds that �k�r; �� is
approximately given by

�k�r; �� � �

�������
2�
p

ei�=4

8�2
���������������
	� 	o
p ~�k�r; ��; (B12)

where

~� k�r; �� � ei�	�	o�F
�
		o
	� 	o

; �
�
; (B13)

and

F �x; �� :�
1

2i��1� ��

Z 1�i�
1�i�

dt0e�ix=2��t0�i��=2�2

�

�
1

1� e�
1

1���t
0�i�=2��i���

� ��! ���
�
:

(B14)

The function ~��r; �� is almost identical to ��r; �� dis-
cussed in Sec. III, except that ei	 and other 	 are replaced
with ei�	�	o� and 		o

	�	o
, respectively.

Finally, we perform the integration over k. From (B14),
we have

��r;�; z� � �

�������
2�
p

ei�=4

8�2

Z
dk

ei�	�	o���������������
	� 	o
p eikzF

�
		o
	� 	o

;�
�
:

(B15)

Since 	� 	o �
�����������������
!2 � k2
p

�r� ro�, we can invoke the
saddle point method again to perform k-integral when r�
ro is large. Evaluating the contribution from the saddle

point at k � !z=D with D 

������������������������������
z2 � �r� ro�2

p
, we obtain

��r; �; z� � �
1

4�D
ei!DF

�
!rro
D

; �
�
: (B16)

The calculation for r > ro can be done in a completely
parallel way, and the final result becomes identical to the
case with r < ro.
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