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PHYSICS OF PLASMAS VOLUME 8, NUMBER 4 APRIL 2001

Effects of magnetic curvature on the lower-hybrid-drift instability

Genta Ueno
Department of Geophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho,
Sakyo, Kyoto 606-8502, Japan

(Received 24 August 2000; accepted 17 January 2001

A local dispersion relation is derived for the lower-hybrid-drift instability including the effects of
magnetic curvature associated with transverse electromagnetic perturbations. To account for the
curvature drift, an alternative method proposed by NakamBhys. Plasmad, 3765(1997)] is

applied to obtain the perturbed distribution function. It is found that the previous treatment, i.e.,
simulating the curvature drift by a virtual gravitational drift, is considerably inaccurate. When an
ambient magnetic field has a curvature so that the curvature drift is directed oppoW8 ttieft,

the maximum growth rate increases as long as the radius of curvature is larger than a certain value,
while the rate decreases for a sharper magnetic field curvature. At the same time, the wave number
giving the maximum growth decreases monotonically. The growth rate is increased by a curvature
drift coincident with theV B drift. The effects of the magnetic curvature become larger in high-beta
plasmas. ©2001 American Institute of Physic§DOI: 10.1063/1.1354646

I. INTRODUCTION resonance of an electrdviB drift and the wavé;® and was
_ . o ) treated comprehensively by Davidsenal.” including both
The lower-hybrid-drift instability is a high-frequency electromagnetic an¥ B drift effects.

(lo[>€) drift-wave instability driven by cross-field On the other hand, the lattémagnetic curvatupebrings
currents in the presence Of inhomogeneities in de_ms@tg) an electron curvature drift which cancels the effect of the
and magnetic fielBo(x) [Fig. 1@)]. Here,o=w,+iw; IS  yp giift so that the lower-hybrid-drift instability can be
the complex e!genfrequency of the wave _perturbat'ondestabilized agaif.Actually, when we observe the near-
0;=|+e|Bo/m 'S the ion La”‘.‘or fre.quencye is the el- Earth magnetotail, the normal field exists which gives curva-
emeqtqry electric charge, amq is th? ion mass. The char- ture to the reversed magnetic field. The magnetic curvature
aCt.e”St'C growth rates; and perp_endlcu_lar wave numbley was, however, treated insufficiently as explained below. His-
safisfy (assuming flute perturbations wikh B,=0) torically, Krall and McBrid€ included the effect of magnetic
field curvature in the theory of lower-hybrid-drift instability
in order to use the theory in a detailed way to model trans-
port, since real applicatior{e.g., tokamakmust include cur-
vature effects. Accordingly, when taking account of the mag-
for Te~T; and Vglvi=l. Here, Qu=w,/(1 netic field curvature, they replace the centrifugal force on
+ w;emg)m is the lower-hybrid frequency, .=v./Q iS  particles by a virtual gravitational force for simplicity. With
the thermal electron Larmor radiu§, and T; are the elec- this gravitational drift approximation, Shinohaeaal* de-
tron and ion temperature¥ is the EXB drift velocity, v,  rived the dispersion relation of the lower-hybrid-drift insta-
=2T./mg andv;= {2T;/m; are the electron and ion ther- bility in a finite plasma beta and examined whether the “cur-
mal speedsw,.= Jné?/egm, and wpi= Jné?/egm; are the vature drift” (i.e., the virtual gravitational driftcan modify
electron and ion plasma frequenci€k,=|—e€|By/m, is the  the electronV B drift effects.
electron Larmor frequency, angh, is the electron mass. For such a treatment of the curvature drift, however,
Since the lower-hybrid-drift instability requires fairly narrow Huba and Drak&pointed out that wave-particle resonances
sheaths and is favored By <T;, it appears to arise in high- cannot occur and only the nonresonant behavior of the par-
density magnetic compression devices such as reversed fidiidles due to the curvature drift is considered; they focused
theta pinches® and may also be found in a certain region of on curvature drift resonances while ignoriWp drift and
the Earth’s magnetotail Furthermore, recent space plasmanoted that the electron energized through the curvature drift
observations with high resolution revealed the lower-hybridalways leads to wave damping. Hence, the resonance mecha-
wave near the magnetic reconnection site and enabled us tasm by the curvature drift differs essentially from that by
compare the observation with the theory in detail. the virtual gravitational drift, but Huba and Drakeerely
When we construct the theory for the comparison, weindicated the qualitative importance of considering the cur-
should quantitatively account for the effects of finite beta andvature drift properly and did not derive the dispersion rela-
magnetic curvature. The former is because a high beta sudfon of the lower-hybrid-drift instability including the effects
as in the plasma sheet is known to act as a stabilizing factasf the curvature drift. This is because there has been diffi-
for the lower-hybrid-drift instability. It is explained by the culty in treating curvature drifts which appear when a linear-

w0~ Y, kirﬁe"'\"ly 1)
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() Straight Magnetic Field magnetic field by means of the alternative method. The local
z dispersion relation for the lower-hybrid-drift instability is ob-
tained in Sec. lll, including magnetic curvature effects with
By®) Vi’ transverse electromagnetic perturbations. In Sec. IV, the lo-
e cal dispersion relation is solved numerically in the parameter

regime of greatest interest for high density pinches, Tg.,
~T, and plasma betas on the order of unity. Finally, in Sec.
V, a summary of results and conclusions are presented.

P

/V'n,VT,_, 5,

(b) Curved Magnetic Field (R,>0) (¢) Curved Magnetic Field (R,<0) Il. PERTURBED DISTRIBUTION FUNCTION

The physical model and coordinate system in this paper
are taken to be similar to those in earlier publicatiofé!
The background plasma configuration and slab geometry em-
ployed in the present analysis are illustrated in Fig. 1. Figure
1(a) has a straight ambient magnetic fiddg(x) in the +z
direction, with an electric field, in the —x direction, and
density and temperature gradien®¥nandVT,) also in the
—x direction while the magnetic field gradien?By) is in
FIG. 1. Slab geometry and background plasma configuratnstraight ~ the +X direction. This is a traditional simplified situation for
magnetic field line,(b) curved magnetic field line witiR.>0, and (c) the lower-hybrid-drift instability, in whichEXB and VB
curved magnetic field line witiR,<0. drifts and wave resonances occur. In this case, the electron

drift motion consists of alEXB drift in the +y direction and
ized Vlasov equation is solved by the method of characterfjIVB drift in the Y direction. -
Now we consider the effect of magnetic field curvature

istics, also called “integration over unperturbed orbits.” . S .
. : . . ._~ by adding a new component of a magnetic fiBldz) in the
This method can give us a formal solution of the linearized S A .
—X or +x directions as shown in Figs(l) or 1(c). In Fig.

Vlasov equation, but in practice, it is worth using only when 1(b), the total ambient magnetic fiel@y(x)+By(2) is

we can describe the equilibrium distribution function in . ) .
d curved with the radius of curvatur@; directed to the+ x

terms of the constants of motion: a differentiation of thedirection while the same witR, directed to the- x direction
equilibrium distribution function by a constant of motion is . ¢

also a constant of motion, so the term can be factored out 'P Fig. 1(c). Then, the curvature drift has the opposite direc-

the integral over the unperturbed orbit. In the presence g?.on to theve d”ft n F'.g' 1(b), while it has the same direc
; o tion as theV B drift in Fig. 1(c).
magnetic curvature, the method of characteristics does not . . . .
In the following calculation, we restrict our attention to

worl'< W(_ell due to the fluctuation of what was a constant Ofthez=0 olane, in whichB, vanishes and onl, should be
motion in the absence of curvature. . . S T

Recently. Nakamud proposed an alternative method considered. As shown later, thl_s restriction is justified as long

Ys prop

for solving the linearized Vlasov equation. With this method,as the curvature is small, that is,
we can obtain the solution by combining the perturbed orbits
and the differentiation of the equilibrium distribution func-
tion calculated separately, and can apply the problem tdt is the same magnetic field configuration as in the straight
where the method of characteristics does not work in a pracfield casgFig. 1(a)], but the curvature effects appear through
tical sense. In particular, this alternative method enables ua centrifugal force in the-x or —x directions[Figs. 1b) or
to treat curvature drifts properly and a dispersion relation hag(c)].
been derived for simple electrostatic perturbations by the We assume flute perturbations wkhBy=0, which has
lower-hybrid-drift instability including the case where both been shown to have the maximum growth rate by Gfgdd.

- By) + B,G)

y©
N B
Ve, ve

RZ>r2.. )

the VB drift and curvature drift are concurrent. Furthermore, it is assumed that
The purpose of this paper is to extend his work to a more
realistic situation, that is, to derive and analyze a local dis-  k’>k?> €2, €73, ()

persion relation for the lower-hybrid-drift instability includ- where e, = logn/dx, er=3logT./ax, and eg=d log By/dx.

ing magnetic curvature effects associated with transvers?his implies that the wavelength in tixedirection is small in
electromagnetic perturbations. It is shown that the previous

. : . ; : . “comparison with the gradient length scales and justifies the
calculations, in which curvature drifts were simulated by vir- use of the local approximatidi Moreover. in the present
tual gravitational drifts, are considerably inaccurate; curva- . PP LT P .
ture drifts must be treated precisely as in the present papeermalyﬂs, extraordinary-mode polarization is considered, with
The organization of this paper is as follows. In Sec. Il we€lectric  field perturba'ltiorT SE(x, t):‘?Ex(X’ e
derive perturbed distribution functions for the lower-hybrid- + 6E,(x, )&, and magnetic field perturbatiomB(x, t)
drift instability with a curved magnetic field as well as for = 6B,(x, t)e,, whereg,, g,, ande, are unit vectors in thg,

the traditional lower-hybrid-drift instability with a straight y, andz directions, respectively.
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We obtain the time-asymptotic results in the followin — i(l— —
way. First, we assume thai/alrperturbations have the forrg ofe=— - E )OI Pt = 72)]

. ’ me |Yp ky(VE+VB)+|Qe—w

SA(x, t)=sAexdi(kyy—ot)], w;>0. (4) W [ ky dfeg

X - +2(w— kVE) J/ () 6B,
We then obtain the solution fas;,>0, and also fow; <0 by w Q 9¢
analytic continuation. Finally, we calculate a dispersion rela- 1 9t o
tion that indicates nontransient responses of normal modes. —i| - Q—y ag +2(1Qe+k VB) } ,(M)ﬁEy],
y e

A. lon contribution (8)

In the lower-hybrid-drift instability, ions are treated as

unmagnetized:

lw|>Q;, Krg>1 (5)

wherer ;=

which is equal to the result in Ref.[Eq. (34) therein. Here,
we putp=tan [ (vy—Ve)/v ]~ Qet, Vg=—egW, /20 is
the VB drift velocity, J,(w) is the Bessel function of the first
kind of orderl, J/(u)=dJ(x)/du and p=ky\w, /Q, (a

v;/Q; is the thermal ion Larmor radius. Here, we detailed derivation is given in Appendix)A

assume that the ion equilibrium distribution function depends

onw, anduv;: fjp="Ffio(w,,v;), where we setw, =
+(vy— Iy)2 andV;, is the ion fluid velocity. By Nakamu-
ra’s method® we obtain the perturbed ion distribution func-
tion (see Appendix A

vx( 1-

. 2i(+e) 1
st -
I

5B,

w

KVig| .~
o=k,

dfio
+(vy—V; )5E } (6)

oW |

which is identical to the result by Davidsei al.” [Eq. (33)
therein.

B. Electron contribution
1. VB drift
We consider the lower-hybrid-drift instability with a

straight ambient magnetic field shown in Figall Electrons
are considered to be strongly magnetized:

Korfe~1, |rieen|<1. 7)

We set foE—fOQ(g W, ,v)), where é=x—(vy—Vg)/Q,,
W, =v +(vy VE)2, andVeg= —Ey /By is theEXB drift ve-

|w|<Qev

locity. The perturbed electron distribution function are then

expressed as

2. VB drift + curvature drift

Here, we add a curvature to the ambient magnetic field
as shown in Figs. (b) or 1(c). The effect of the magnetic
curvature is not only to cause a curvature drift of electrons,
but also to modify a plane on which electrons gyrate. That is,
the electron where the center of gyration is always onzthe
=0 plane moves only on that plane, while the electron where
the parallel velocity is zero and its center of gyration is
above or below the=0 plane hag-directional motion due
to the gyration yielding the current in ttedirection. How-
ever, we can ignore the contribution of the electrons above
and below thez=0 plane if the condition oR?>r?, [Eq.

(2)] is satisfied. This can be derived as follows: If an electron
has a center of gyration on tlze= 6z, its displacement due to
the gyration is aboutr( ./R;) 6z. If this becomes consider-
ably small compared téz, i.e., R>>r?,, contribution from
such electrons can be ignored. Furthermore, we should note
that thez=0 is not a special case. We can also consider a
locally uniform finitez region if we transform the coordinate
such that the axis is tangential to the curved magnetic field.

We can then write the perturbed electron distribution
function as

. (me) o Jp(wexdi(l-p)(Qet+¢—m/2)][ W[ ky dfe o
e T % K(Ve+ VgtV +1Qe—w | o | Qo 0¢ +2(0—kyVe)7o=
ky < Tn()1g(»)i"" Texfi(n—a)(Qet+ @) I[Ky(Ve+Vp+Ve) +1Qe— w] [ dfe afeo) ,
R0 2 ! K (Vet Vot Vo + (14 M Qe o | o, 200w, | [ (w3
i[ ky dfe
k| Qe c)
vy Ky < In(@)1g(»)i" Texdi(n—g)(Qet+ @) J[ky(Ve+ Ve +Ve) +1Qc— ][ fe afeo)
R Qe i k,(Ve+Vg+Vo)+(1+n)Qe— o | o, 2w, | P SE L (O
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whereV = ecuﬁ/Qe is the curvature drifte,=1/R;, I4(») is  tron contributions from Eqg8) and(11) for VB drift, from

the modified Bessel function of the first kind of ordgrand  Eqgs.(8) and(12) for VB drift + gravitational drift, and from

v=1\w,/R.Q,. Also see Appendix A for the derivation of Egs.(9) and(11) for VB drift + curvature driff and substi-

Eq. (9). tute them into the linearized Maxwell equations, we obtain
the dispersion relation for perturbed electric fiéld:

I1l. DISPERSION RELATION

In this section, we give a concrete form of equilibrium 1— Zwrzne(q) —Cy)+ %[1+§_Z(§_)]
distribution and calculate the perturbed charge and current 2 22 e
density for ions and electrons from the perturbed distribution
functions obtained in the preceding section. With the linear-
ized Maxwell equations, we then derive the dispersion rela-
tions for the following three cases. The first case is when an
ambient magnetic field is straight so that only ®& drift ;‘;e 2

needs to be considered. The second case is when a virtual ~ 2 m (P, -C2)=0, (13
gravitational force is introduced to simulate the centrifugal . ) )

force which acts if the magnetic field has a curvature. NotgVNich determines the complex eigenfrequenay= o,
that the magnetic field is still straight even in the second® !®i- Here,

case. Finally, we consider the case when the magnetic field is

2.2
kjve Ui

X

c2k2 2 w2
1oy Peeq e[
2 2 73 k
w w WRyUj

kyViy
o )Z(ii)

really curved and the curvature drift is properly treated. C.— 1 fwdw [J (M)]ZGXF{ W (14
1= "5 LLY0 B RE
A. Equilibrium distribution valo va]
For ions, we assume an equilibrium distribution function 1 e W
as a drifting Maxwellian, C2:_3J dw, \/VV_J_JO(/'L)‘]l(M)eXp __ily (15)
0
1 3/2 i 2 Ve B Ve
fiow,  v)=n| —| exd - WL Ty (10) which are correctedlpreviously reported a€,=1 andC,
1R T 2 v | =0 (e.g., Ref. 7]. Z(¢) is the plasma dispersion functidf,

h o2 (b V)2 which is introduced for analytic continuation to the all com-
w eILeWLl_th (vy iy% : iibrium distributi plex w plane with¢;=(w—k,V,)/kyv; . The expressions of
or electrons, we choose an equilibrium distrioution asq)j (j=1,2,3) are given below in accordance with the situa-

feol W, ,0) ()( > )3/2 p[ et
W, =n expg —
ol e =R T v2(8)

wherew, =vi+ (v, —Vg)?, é=x—(vy—Vg)/Qe.

For reference, we derive the dispersion relation when we
simulate the effect of the magnetic curvature by the virtual cp:ifmdw E.(w, )exd — W,
gravitational force. Like befor&!® the gravitational forcey Fpzle T v2

= (2Te/meRC)éx is introduced, that is, the electron curvature

tion.

’

1. VB drift
We find

o - ; w
drift is a;sumed tq be an averaged vale= g/(_leey. Thl_s x| kyVat V' _;_1 +kVe— o
assumption seen in previous works agrees with ours in that v
the curvature effects appear through a centrifugal force in the
x direction 1 _[o—kVe—k\Vg ;
o . . o X lim —Z| ————|, (j=1,2,3. (16
On the basis of this assumption, the local electron distri- k0 Kz K,

bution function Eq(11) is modified into ) ) o )
The functionsF;(w, ) (j=1,2,3) appearing in the integrand

- ) (5)( 1 )3/2 F{ WL+U21 " are defined by
ol&W,v)=n - )
o () v2(€) w,
5 _ — Fi(w, )= Jo(p)Ja(p), (17)
wher_ewlzvar(vy—VE—Vc)z, E=x—(vy—Ve—Vo)/Qe, Ve
andV,= €02/, is the average curvature drift velocity. The Fo(w,)=[Jo(u)]?, (18
distribution(12) indicates that all electrons are drifting &g
) o W
in addition toVg. Fa(w,)= —2[31(,&)]2- (19)
Ue

B. Dispersion relation Here,V,= — ,02/2Q, andV1= — e;v2/2Q, are drifts asso-

Calculating directly the perturbed charge and currentiated with the density and temperature gradients, respec-
density[ion contributions are from Eq$6) and (10); elec- tively.
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2. VB drift + gravitational drift

We find
CDJ=—2 dw, F;(w, )ex -
ve Ue

W,
x| kyVo+kyVe| = —1

Ue

+k,Vet+k,Ve—

w—kyVe—k,Vg—k/V,
k, '

whereFj(w,) (j=1,2,3) are given in Eqg17)—(19).

1
X lim —z( (20

k,—0

3. VB drift + curvature drift
We find

1 (= W,
(DJ:_zf dw, Fj(w,)exg — —
VeJO v

e

V
ML
Ve

W,
kyVatkyVr| ——

e

= +kyVE—w

Vr
Ve

x i_ w— kyVE__ kyVB
kV, kyVe ’
whereFj(w, ) (j=1,2,3) are also given in Eq$17)—(19),

and we have introduced a new function nantlkd altered
plasma dispersion function @), which is defined by

6=~ [ a8 22
f = Xy

for 0<arg{< 2w and by the analytic continuation of this for
arg/=0 and 2r<arg{<4mw (see Appendix C

(21)

IV. NUMERICAL STUDIES ON DISPERSION RELATION

We now solve Eq.(13) numerically for the complex
eigenfrequencyw, +iw;. We first rewrite the equations by
the following eight dimensionless parameters/v;, r €, ,
rei€s, Bi, TelTi, ryier, Viy/v;, andR;/Lg, with normal-
izing o, and o to o = (Q0)2 (=Qy for w302
>1), andk, torL . Here, we pulLg=1/eg. These param-

eters are not independent, but have the following constraintgyhen ky=1. 7rLe

An equilibrium force balance on an ion fluid element in the
direction requires  V;,=Vg+Vy;, where  Vy;
= (v2/2() )dlog(nTy)/ox is the ion diamagnetic drift velocity.
This equation is equivalent to
Ve Vy 1
i SlLi€n;

where we assuméT;/dx=0. Moreover, the gradient prop-

(23

Effects of magnetic curvature . . . 1163
VB Drift
5 0.8
41 0.6
X
3 4
s 5 oa
g 2] g
11 0.2+
0 P ‘ ‘ 0.0 ‘ ‘ ‘ ‘
o 1 2 3 4 5 o 1 2 3 4 5

k1, kry,

FIG. 2. Plots ofw, /w 4 (left) and w; /w y (right) againstk,r . obtained
from numerical solutions to dispersion relations of the lower-hybrid-drift
instability under a straight ambient magnetic fi¢kgs. (13)—(19)]. The

system parameters arég/v;=1,T./T;=1, m/m;=1/1836, er=0, B
=0.5, w5/ Q5=125, andV,, /v;=0.
€g= — %en(lgi"'ﬂe)_%eﬂge- (24)
From Egs.(23) and (24), we obtain
Tel(VE Viy) 1 T
fLifs—Bi(lJr?i (U_|_U_| T Big TLier (29

In numerical studies, we typically specifyc/v;, Bi,
T/T;, rier, and Vi /vy, and then determiner e,
andr;eg consistently from Eqs(23) and (25). Note that

a variation inB; also involves a variation in other plasma
parameters. Here, expressimy= (wpe/Qe)x(ZT /mgc?),

we choose to varg; by varyingw; e/(22 (with constant‘l’)
Following Ref. 7, we takeT;= 102 keV, so thatB;=

x10 3wiJOZ. SinceR,/Lg is independent of the param—
eters, we can substitute an arbitrary value for it. Moreover,
we consider the case where the ions carry no current iy the
direction (V;,=0), so that the equilibrium electric field bal-
ances the ion pressure in thalirection.

Figure 2 shows the dispersion relation for the lower-
hybrid-drift instability under a straight magnetic field. We
plot o /w y (left) and w;/w y (right) againstk,r, ¢ which
satisfy Eqs(13)—(19) for the choice of local plasma param-
eters: Vglvi=1, T./T;=1, m./m;=1/1836, e;=0,
w5 J05=125, andB;=0.5, which are the same parameter
selections as Ref. 7.

The result is identical to that of previous works in that
the real frequencyw, is an increasing function of the wave
numberk, . The growth ratew achieves a maximum value

=0. 63w,_H for ky=2.6r o . This tendency can also be
seen in Ref. 7 but the maX|mum value was=0.18w, 4
. This difference is brought by the cor-
rectedC1 andC, [see Eqgs(14) and(15)].

Figure 3 showsw,/w y (left) and w;/w 4 (right)
againsk,r ¢ including the gravitational driftEgs.(13)—(15)
and(17)—(20)]. We choose the same parameters as in Fig. 2.
In the upper two panel&), we set the magnetic field posi-
tive curvatureR./Lg>0, in which the curvature drift has the
opposite sign to th& B drift. These panels show that both
o, andw; increase with the curvature. SettiRg/Lg=4 and

erties are related self-consistently to other parameter®, the maximum growth rates increase to @@ and

through Ampee’s law: — 9By /dx= uone(Viy—Vye), that is,

1‘6wLH .
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VB Drift + Gravitational Drift

Genta Ueno

VB Dirift + Curvature Drift

(@ R,/Lg>0 (@ R,/Lg>0
5 2.0 5 0.8
RJLy=+2
4 151 4
T 4] LI
§~1 3 35 Lo RiLy=+4 | §~1 3
32 > 32
0.5
14 RJLg=+ 14
0 ‘ ‘ ‘ ‘ 0.0 ‘ ‘ ‘ ‘ 0 ‘
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
kere kere
5 5
41 R/Ly=—c | 4] RfLy==c2
LR LI
& 3 & 3
g 2] g 2]
14 14
0 o Rlly=2 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0
kere kere kere kere

FIG. 3. Plots ofw, /w y (left) and w;/w y (right) againstk,r . obtained FIG. 4. Plots ofw, /w 4 (left) and w; /w y (right) againstk,r . obtained
from numerical solutions to dispersion relations of the lower-hybrid-drift from numerical solutions to dispersion relations of the lower-hybrid-drift
instability under a straight ambient magnetic field but including a virtual instability [Egs. (13)—(15), (17)—(19), and (21)] under a curved ambient
gravitational field for simulating the curvature effd&qgs. (13)—(15) and magnetic field. The top and bottom panels @efor R, /Lg= +x, +4, +2
(17)—(20)]. The top and bottom panels afa for R, /Lg=+, +4, +2 and (b) for R./Lg=—, —4, —2. The other plasma parameters are the
and (b) for R./Lg=—=, —4, —2. The other plasma parameters are the same as those in Figs. 2 and 3.

same as those in Fig. 2. Note that the rangedfw 4 in panel(a) is taken

wider than the othew; /w4 againstk,r, . plots shown in Figs. 2 and 4 as

llasi f this figure.
well as in pane(b) of this figure +4) as shown in the right-hand panel of Figay If the

curve becomes more sharpen&y (Lg= +2), however, the
maximumae; gets smaller. This is in contrast to the tendency

On the other hand, we plot the dispersion for the magfor the gravitational drift in that a larger curvature directly
netic field with the opposite curvaturdr{/Lg<<0) in Fig.  brings a larger growth rate. The values of maximwmdo
3(b), in which the curvature drift has the same direction asnot enlarge as in the gravitational drift approximatias:
the VB drift. The growth ratew; decreases monotonically as =0.68w, y and 0.67w, 4 for R./Lg=+4 and+2.
the curvature becomes larger as shown in the right-hand The difference from the gravitational drift is also seen in
panel of Fig. 80). The real frequencw, , however, does not the shape ofv;—k, curves[also see the right-hand panel of
always change monotonically with respectRg/Lg. While  Fig. 3@]. The wave numbers giving the maximum growth
w, decreases under the small curvature [Lg= —> and rates shift to smaller values in accordance with the curvature,
—4), a larger curvature increases as seen in the graph for while they shift to larger values for the gravitational drift
R./Lg=—2. approximation. Furthermore, the curvature drift strongly re-

These characteristics are for the gravitational drift, inducesw; compared with the gravitational drift at largly .
which a centrifugal force is simulated as a gravitational = As can be seen in the gravitational drift, the real fre-
force. If we consider the curvature drift, we obtain differentquencyw, gets larger wheiR./Lg decreases, but the varia-
results. Figure 4 presenis, /w  (left) andw;/w y (right)  tion is small compared with the gravitational case.
againstk,r ¢ including the curvature driffEgs. (13)—(15), On the other hand, when we set the magnetic field line
(17)—(19), and(21)]. The parameters are also the same as iron an opposite curvaturdR(/Lg<0), we find similar results
Fig. 2. Since theG({) function appearing in Eqg21) is a on w, and w; as in the gravitational drift approximation as
two-valued function with a single branch point 5£0, we  shown in Fig. 4b).
obtain the contributions of poles in both of two sheets. Here, As we have seen in Fig.(d), o; has one peak for each
we adopt the mode that is connected with the physicallyR./Lg, whose value maximizes &./Lg~ +4. Searching
meaningful mode under an ambient magnetic field with ndor the R./Lg that maximizes the peak value by the quasi-
curvature. Newton method, we find th&./Lg= +3.595--, in which

First, we consider the case when an ambient magnetithe most effective resonances are expected to execute. In Fig.
field has a curvature such that/Lg>0. The maximumw; 5, we demonstrate the effects of tNe3 drift and the curva-
becomes larger for a smaller curvatui.(Lg=+0o and ture drift with a fixedR./Lg= +3.595. The four curves ap-
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Lg/r,; =1, R./Ly = +3.595 VB Drift + Gravitational / Curvature Drift
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FIG. 5. Plots ofw, /ey (left) and w;/w y (right) againstk,r : (1) the ; Gravitational
dotted line is without bothVB drift and curvature drift,(2) the dotted— 49
dashed line is wittW B drift but without curvature drift(3) the dashed line K ;
is with curvature drift but withou¥ B drift, and (4) the solid line is with %34
both drifts. The normalized radius of curvatuRg/Lg is +3.595, which j, RRETEE T ‘
gives the maximum value for the peak of the/w y—k,r ¢ curve for the 2] \ [
parameter selections of Fig. 4. Curvature
1 . —
-1 -10+100 10 1 0.1
R,/Lg

pearing in both panels ard) neglecting both thé&/ B and FIG. 6. Plots of normalized maximum growth rate;(yax /@y, in the

curvature drifts(2) including theV B drift but neglecting the ~ ©P-left panel, normalized phase velocity at maximum growth
. . . . (@r,max /Ky, maxvi » in the top-right pang) and normalized wave number at

curvature drift,(3) including the curvature drift but neglect- | ~c growth K, st Lo, in the bottom panglagainstR, /Lg . The

ing the VB drift, and (4) including both drifts. These cases plasma parameters are the same as in Figs. 3 and 4.

are executed arbitrarily by puttingg andV. equal to zero,

which may be inconsistent with the definitions\g§ andV,

and Eq.(25), and this is done to understand the roles of thesénave similar effects that reduae; yax gradually and then

drifts. rapidly; the turning point ifR./Lg=—10.

The VB drift decreasesw,, while the curvature drift The top-right panel of Fig. 6 shows phase velocities nor-
increasesw, as shown in the left-hand panel of Fig[$§ee malized to the ion thermal speed at maximum growth rates
the curves of1), (2), and(3)]. This tendency corresponds to (o, max /Ky maxvi). In the case of the curvature drift,
a decrease of the phase velocity by V@& drift and an  w; yax /K, max gradually increases when the magnetic field
increase by the curvature drift. When both effects are conhas a curvature d®./Lg>0 and gradually decreases when it
current[case(4)], the VB effect on w, becomes stronger has the opposite curvature. The value reached for a strongly
than the curvature effect for a smal) (sl.8r[el) while the  curved magnetic field (04R./Lg<<1) is found to be less
curvature effect onw, exceeds th&/ B effect for a largek,  than 1v;, i.e., the value oW . The gravitational drift, how-
(=1.8r ). ever, does not bring such an upper limé; yax /Ky max

The growth rate decreases by about one-half byMBe increases rapidly and reaches 3u;4This is because the in-
effect shown in the right-hand panel of Fig. 5: the peak val-creasing gravitational drift practically enlarges .
ues arew;=1.13w 4 in case(l), andw;=0.63w, , in case In the bottom panel of Fig. 6, we can see variations of
(2). On the other hand, the magnetic curvature shifts the peakormalized wave numbers at the maximum growth rate
to the smallerk,, and decreases; for the largerk, [case  (ky umaxlLe) @gainstR./Lg. When the magnetic field has
(3)]. Moreover, the magnetic curvature raises the peak valueurvature,k, yax decreases regardless of the curved mag-
only when theVB effect is considered: the peak value of netic field direction(except for the case of a strong negative
w;=0.63w 4 in case(2) increases taw;=0.68w 4 in case curvaturg. On the other hand, yax increases for the gravi-
(4), while w;=1.13w 4 in case(l) remains unchanged in tational drift approximation, and a rapid increasekpfyax
case(3). can be seen &, /Lg==*1.

We directly compare the effects of the curvature drift Finally, we examine the dependence on plasma beta in
and the gravitational drift for any radius of curvature in Fig. Fig. 7. In the top-left panel, we plab; yax /w y as a func-

6. The other parameters are the same as in the previous ploten of R./Lg, for several values of loca@; . The remaining

In the top-left panel of Fig. 6, we plot maximum growth rates parameters are the same as in Fig. 4. In the course of setting
normalized tow y (w; yax/w y, Maximized with respect the magnetic field to have curvature such tfit/Lg=

to k,) againstR;/Lg. When the ambient magnetic field has +100 to +0.1, w; yax for each g; increases slowly to

a curvature ofR;/Lg>0, w; yax increases gradually up to achieve the maximum at a certain valueRyf/Lg, then de-
R./Lg=+3.595 and then decreases rapidly by the curvaturereases rapidly. The values Bf /Lg giving the maximum
drift, while the gravitational drift brings a rapid and continu- w; yax depend ong;, and are+10.7, +3.6, +1.18, and

ous increase ol yax - On the other hand, when the mag- +0.759 for 8;=0.75, 0.50, 0.25, and 0.10, respectively.
netic field has the opposite curvatue.(Lg<0), both drifts  That is, the turning point of; yax from a slow increase to
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1.0 ‘ e of the decreasing curve becomes sharper for a lgBgeso
that the order ok, yax changes aR./Lg~3: a wave num-
ber is larger for a largeB; in 100>R;/Lg=3, while all
wave numbers are nearly the same Ry/Lg=3. With the
opposite curvatureR./Lg<<0), we see slowly decreasing
Ky max against R./Lg, which have their minimum at
./ R./Lg=—9.5, —5.2, and —1.4 for 3;=0.75, 0.50, and

04 : — 0.25, respectively. As before, the curve @=0.10 behaves
-1 -10+100 10 1 0.1  in a slightly different way.
R./L,
V. CONCLUSION

We have presented a linear study on the effects of mag-

netic curvature on the lower-hybrid-drift instability. In Sec.

B,=0.75 Il we derived perturbed distribution functions by Nakamu-

Ezgi‘s’ ra’s method® for an ambient magnetic field having curva-
' ture as well as for a straight magnetic field dealt with in past

1. o literature?=3°71112|n this derivation, we assumed that the

-1 -10+100 10 1 0.1 curvature is small RZ>r?,), so that the curvature effects
R./Ly appear only as a centrifugal force on electrons. The local

FIG. 7. Plots of normalized maximum growth raie, (e /o,y . top-lefo, dlspersu_)n relation _for th(_—} lower-hybrid-drift instability was

phase velocity at maximum growtof yya /K, waxv . top-right, and wave derived in Sec. Ill, including effects from both electron cur-

number at maximum growthk( yaxfi ., bottom, againstR./Lg for ~ Vvature drift andV B drift. For comparison, we also gave the

(Bi, 05J0%)=(0.1,25), (0.25,62.5), (0.50,125), and (0.75, 187.5). The dispersion relation with a virtual gravitational drift approxi-

other plasma parameters are the same as in Fig. 4. mation of the curvature drift. In Sec. IV, local dispersion
relations were solved numerically in the parameter regime of
greatest interest for high-density pinches, i'B.~T; and

a rapid decrease appears at a magnetic field with a smallptasma betas on the order of unity. In calculations on the

curvature when the ion beta is higher. In other words, theesonance of curvature drift, we introduced the altered dis-

effect of a magnetic curvature becomes larger in higher betpersion function defined in Appendix C.

environments. Furthermore, the peak valuesvpf;ax also We summarize several important conclusions in the
depend ong;. These values get larger with decreasjpg present analysis.

i uax=0.771w  y, 0.756w , 0.681w, , and 0.606Gy, (1) When an ambient magnetic field has curvature so
for B;=0.75, 0.50, 0.25, and 0.10, respectively. that the curvature drift is directed opposite to & drift,

On the other hand, let us give the magnetic field thethe maximum growth rate increases as long as the radius of
opposite curvatur®;/Lg<<0. In this casew; yax decrease curvature is larger than a certain value, while it decreases for
slowly and then rapidly for allg;. The points where the a more curved magnetic field.
slopes change depend ¢gh: they areR./Lg=—30, — 20, (2) In addition, when the magnetic field has the same
—10, and—3 for B;=0.75, 0.50, 0.25, and 0.10, respec- curvature, the wave number giving the maximum growth de-
tively. This finding also suggests that the magnetic curvaturereases monotonically.
affects the maximum growth rate more significantly in a (3) On the other hand, when the magnetic field has the
higher ion beta. On the whole, a lower ion beta provides apposite curvature so that the curvature &h drift have
higher maximum growth rate, with the exception of thethe same direction, the growth rate decreases monotonically.
curvesB;=0.50 andB;=0.25 aroundr./Lg~50. Characteristics(1) and (2) cannot be revived by the

In the top-right panel of Fig. 7, we plot gravitational drift approximation, though conclusid®d) is
o max /Ky maxvi for the same selections of local plasma pa-compatible with the result by the approximation. The differ-
rameters. These plots show thaf wax /Ky max increases ence between the curvature drift and the gravitational drift
monotonically when an ambient magnetic field has a curvawere summarized in Fig. 6.
ture of R./Lg>0, while they decrease under the opposite  (4) The growth rate is increased by the curvature drift
curvature R;/Lg<0). If the magnetic field has a further coincident with theVB drift.
negative curvature, phase velocities reach a minimum, and (5) The effect of the magnetic curvature becomes larger
then begin to increase again, although the minimum does nah high-beta plasmas. The curvature effect is, therefore, also
appear in the displayed range ofLl>R./Lg>—100 when important when dealing with the lower-hybrid-drift instabil-
Bi=0.10. The value ofv, yax /Ky max at a fixedR:/Lg is ity in the plasma sheet of the Earth’s magnetotail, which is a
larger with increasingB; as seen for3;=0.25, 0.50, and high-beta region.

0.75, but behaves in a different way f8f=0.10. Several basic properties were clarified, but a substantial

In the bottom panel of Fig. 7, we plét, yaxr e @gainst  amount of work remains to be done to understand effects on
R./Lg. When we curve the ambient magnetic field posi-this instability. For instance, we should explain the meaning
tively (R./Lg>0), ky max decreases for eagh; . The slope of the deformation of dispersion due to magnetic curvature
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from a physical viewpoint. Furthermore, the change in the v, (qg;t")=uv,, (A2)
property in a low-beta plasma, which can be seen in Fig. 7,

needs to be clarified. For such purposes, we will need de- Vyo(a; 1) =vy, (A3)
tailed parameter studies or analytical surveys with some ap- Yo(g; t)=y+oy(t' —1). (A%)

proximation limit.

On the basis of the three-dimensional particle simula-Since we assumeé;o=fio(w, ,v;), we need to obtain the
tions on a thin current sheet, Pritchettal® reported that PerturbationsoW, (q; t') and 6V,(q; t'). First, from thez
the normal magnetic field produces a mode having a wav€omponent of the equation of motion:
vector of oblique angles to the main straight field and that
lower-hybrid-drift modes are not excited due to the parallel ~ m,—sV,(q;t’)=0, (A5)
component of the wave vector as pointed out by Gikdd. dt’

The nor_mal_ field is, _of course, necessary to form an ambienfe optain 8V,(q;')=0 under the initial conditionsV,(t’
magnetic field having a curvature, and can increase thg_w)zo' We then consider the time variation of the ki-

growth rate of lower-hybrid-drift instability as presented in netic energy in the moving coordinate with the velocity of
this paper. Moreover, the lower-hybrid-drift wave is not aI—V :Viyéy relative to the rest frame. Sin®/,=0,

ways reduced according to Ref. 11. It then might also be y

worthwhile to include a component of a wave vector parallel d . 2(+e) kyViy L
to the ambient magnetic field in order to evaluate the effects oW, (q;t")= i 1-— )5Ex(Yo(q;t ), )
of the magnetic curvature and the parallel component wave
vector. XVyo(Q; t")+ 0E(Yo(q; t'), t')
The resonance of curvature drift and wave Wou7ld also
mod_lfy the saturat_lor_1 level of th_e _fleld fluctuatiotfs'’ A X (Vyo(al t,)_viy):|: (A6)
preliminary analysis in th&.—0 limit shows that the satu-

ration level is modified in the first order d¥fz+V,. and where Faraday’s lawB,= (—k,/w) 5E, was used to elimi-

increases wheiR./Lg>0, which will cause an increase of nate 8B,. Substituting the unperturbed ordiEgs. (A2)—
anomalous resistivity. These studies will be addressed in BA4)] into Eq.(A6) and integrating by’ from —= tot, then

future paper. we obtain
W, exdi(k,y—wt)]
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sions. exdi(kyy— ot
XAy wt)] VIZ )]. (A7)
W= KyUy
APPENDIX A: DERIVATION OF PERTURBED Hence, the perturbed ion distribution functipBg. (6)] is
DISTRIBUTION FUNCTIONS derived by calculating’f; = — sW, (f;o/ow, ).

Using the method by Nakamut&the perturbed distri-

bution functionsf is written as 2. Electron contribution

P 9 P
6f(q; t)=—| 62(q; t)a—ngé\NL(q;t)MwLﬁVu(Ol;t)EH a. VB drift

Under a straight ambient magnetic field shown in Fig.
Xfo(&, Wy, o) +9(& W, vy), (A1) 1(a), the unperturbed orbits are a gyro-motion plus guiding

) . center drifts EXB and VB drifts):
whereq=(¢,y,w, ,v,t) is a parameter set determining a

particle orbit, é=x—(vy—Vg)/Q, W, =vi+(v,—Vg? v, Vi@ t)=yw cogQet’'+ ¢), (A8)
=v,, Vq is the fluid velocity,Q) is the Larmor frequency, ey — : ,

fo(§, W, ,v,) is an unperturbed distribution function. The Vo 1) = VW, SI(Qet” + )+ Ve + Ve, (A9)
last termg (¢, w, , v)) is the initial perturbation, which is put  Y(q; t")=y+ (Vg+Vg)(t'—1)
equal to zero in the present derivation. We denote parameters G
to specify the phase space position by small letters and the Wy "y b)— "
corresponding physical quantities on the particle orbit by Q. [cog Qet’ +¢) —cod Qe+ ¢)].  (ALD)
capital letters.

When fgo="fg(&, W, ,v)), we need to obtain the perturba-
tions 2 (q; t’), SW, (q;t’), and 6V (qg;t’'). In a similar
manner as for ions, we findV,(q; t')=0 by the force-free

The unperturbed velocity and position of an ion, whichin the parallel direction. Also after a similar procedure as for
is regarded as moving at a constant velocity, are ions, we obtain

1. lon contribution
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SW, extli(k,y— t)] From Egs.(Al1l) and (A13), we can express the pe[turbed
. electron distribution functiofEq. (8)] by calculatingsf.=
_2=9® > Jp(p)expli(1 =p) (Qel ¢ = m/2)] —[6Z(a10&)+ SW, (3] aw, ) If eo-
me I, p ky(VE+VB)+|Qe_ w
, KWVe| ~ . [1Q¢
X[ W, (M)(l— > 5Ex—'(k—y+VB b. VB drift + curvature drift

When we add a curvature to the ambient magnetic field
exdi(kyy—ot)] (Al11) as shown in Fig. (b) or 1(c), the curvature drift participates
in the unperturbed electron orbit

X J)(u) SE,

from the time variation of the kinetic energy in the moving

frame with the velocity 01VE=VEéy. Vyo(a; t')=vw, cogQt’'+ @), (A14)
Next, we calculate the perturbed quantig (q;t’).
Utilizing the y component of the equation of motion, we

obtain Vyo(Gi t') =W, Sin(Qet' + ) +Ve+Vg+Ve,  (ALD)

4 oy B Yo@ ), )
dt’ Bo(Xo(q; t"))

oB,(Yo(q; t'), t
% z( 0(q ? )’ (A12)
Bo(Xo(g;t')) -
where we evaluate the magnetic field value by

Bo(Xo(q; t')) =Bo(xo) =Bo. Substituting the unperturbed |, this case, we can also use the resulsaf when onlyV B
orbit [Egs. (A8)—(A10)] and integrating/A12) with respect  qyists given by Eq(A13).

tot’, we obtain As noted in Appendix BSV, develops temporally gov-

Vio(g; t")=vy, (A16)

_on(q; t,)
Yo(q; t")=y+(Ve+Ve+V)(t'—t)

\/y[coiﬂet’ +¢)—cogQt+p)]. (AL7)

5éexp[i(kyy—wt)] erned by the differential equation
_ L Bwexdid—p)(Qd+ ¢ m/2)] d 1
B ip Ky(Ve+Vg)+1Qe¢—w E5V”(q;t')=R—C[on(q;t')éV”(q;t’)
kW ~ A ’ '
X yEJ|’(M)5EX—iJ|(M)6Ey exfi(kyy—ot)]. +Vio(g; t") oVy(q; t')]. (A18)

w

(A13) From Eq.(A18), we obtain

v Ip() 1 n(0)1g(»)i™ Yexdi(l = p)(Qet + ¢— 7/2) Jexpi (n— ) (Qet + ¢)]
ReBo 1, 57 ky(Ve+Vg+ Vo) +(1+n)Qe—w

8V, exdi(ky— ot)]=

x|/ () kyiw_iaéx—ia,(ﬂ)aéy exli(kyy—wt)] (A19)

under the initial conditior5V(t' = —»)=0, where we used d
the unperturbed orbitA14)—(A17) and the perturbed term H5Wl(q: t')+2§[Vuo(Q; t") oV (q;t')]

_A=9 _kyVE) g ¢
1 ky /WJ_ - m (1 ® 5EX(YO(q1t )1t )VXO(q1t )
V(i) = 5| = oSt + ) 5B+ OF, |
+5Ey(Yo(Q:t’),t’)(Vyo(q;t’)—VE)}- (A20)

Finally, we can obtairW, by considering the variation

of the klneAtlc energy in the moving frame with the velocity Substituting the unperturbed electron ort#itl4)—(A17) and
of VE=Veey: integrating with respect tt’ from —< to t, we obtain
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oW, exdi(k,y—wt)] (a) arg{=0 e
miz
L 2(—e) @ Jp(wexdi(l—p)(Qet+p—m/2)] I &
B m I, p ky(VE+VB+Vc)+|Qe_w > I;\ @ >

7\/* ¢ Re(z):
xexdi(ky—owt)]

k ~
JwTJ((m( 1- y;/E) SE,

(b) O<arg{<2m

Ju(u)ﬁfiy} o e I T

_'(_l VotV
i Q@
ky BT Tc ¢

— 20,68V, exdi (kyy — t)]. (A21) > >
From Egs.(A13), (A19), and(A21), we can write down _
the perturbed electron distribution functipiaqg. (9)] by 5fe 7\/(; °
=—[62(3la&)+ oW, (dlaw, )+ 8V, (8l dv ;) feo- (c)arg{=2m

Re (z)'

Im(2)
APPENDIX B: TREATMENT OF MAGNETIC +\/Z
CURVATURE

. - - " W :
We take a cylindrical coordinate system ¢, z), where T f\/z g Re (z)

&, is the direction of the magnetic field, with the electric field
perpendicular to it. The equations of motion of electrons are
(d) 2n<argl<4m

g r 2 X Im(z) e
me<d_vt_ﬁ):(_e)(Er_B<pvz)! (B1) g o Zﬁ \]Z

r

d ] ] - " Re@
et I
+ [ J

dv () argl=4mn
Me—r = (—©)(E;+Byoy). (83) Im (2

When we take the first perturbation of E&2), we obtain

& >
dso, 1 JZT ¢ Re@

T ——F(vroév(P-Fv(Po&;r). (B4)

For the Cartesian coordinate system, weugt: —v,, v,

—vy, vy, andr—>Rc. FIG. 8. Integral contour for evaluating (@) [ dx exp(x3)/(x2—)] for

five different values of ardg. This set of contours guarantees that the
integral is a continuous function df

APPENDIX C: THE ALTERED PLASMA DISPERSION

FUNCTION

In the theory of linearized waves in a hot plasma with a ~ We obtain the concrete expression®({) as follows.
zeroth order curved magnetic field, a certain function ofWhen we denote/=r exp(6), we find the two poles of
complex argument, which we will cathe altered plasma +{=r exp(6/2) and —\{=—(+/{). Taking account
dispersion functionoccurs when the unperturbed velocity of the positions of these poles, we carry out integration such
distribution is taken to be Maxwellian. We define this func- that the contour does not cross the poles.

tion by Figure 8 shows integral contours for evaluat®&@() for
five different values of arg. For O<arg{<2s shown in
1 (=  exp—x?) Fig. 8b), the contour is defined simply along the realxis,
G({)= N dXW (C1)  which is below the polet /¢ and above the pole- \/Z. At
mJ - —

arg{=0, we deform the contour such that\/¢ and — /¢

for 0<argZ< 2 and by the analytic continuation of this for are located above and below the contour, respectively. The
arg{=0 and 2r<sarg{<4mw. G({) is a periodic function of deformed contour is shown in Fig(a8, andG(¢) is defined
period 47 and has a Riemann surface consisting of twoby

sheets with a single branch point ¢&=0. The difference

from the usual plasma dispersion functiis thex? appear- G({)= i pjw dx
ing in the denominator of the integrand insteadxof \/; —o

exp(—x?)  —exp—{)
ey Vg ©
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whereP [ is the Cauchy principal value. Whehmakes one 1 (= exp(—
rotation from (a) through (b) and reachegc), the contour ()= dx —|\/_ w({) (C6)
should be deformed again such(as Different from(a), the N

contour passes under the pole at §e{0 and the pole at andw(¢) is the complex error function. We then need to
Re(z) >0, but this is reasonable in view of the idea that theevamate W(§) which is Computed fo||0W|ng Refs. 18
poles + /¢ and — /¢ are above and below the contour, re- and 19.

spectively. Therefore, at alg=2m, G(¢) is defined by A Keall and P G L ohys. Rev. A 20941971
. A. Krall an . C. Lilewer, yS. ReVv. .

exp(—x?) exp(— ) °R. C. Davidson and N. T. Gladd, Phys. Fluitig 1327(1975.
G()=—= Pf dx———+iJ7 . (C3 3J. D. Huba, N. T. Gladd, and K. Papadopoulos, J. Geophys.&¢§217
x*=¢ +¢ (1978.
4]. Shinohara, T. Nagai, M. Fujimoto, T. Terasawa, T. Mukai, K. Tsuruda,
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