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Effects of magnetic curvature on the lower-hybrid-drift instability
Genta Ueno
Department of Geophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho,
Sakyo, Kyoto 606-8502, Japan

~Received 24 August 2000; accepted 17 January 2001!

A local dispersion relation is derived for the lower-hybrid-drift instability including the effects of
magnetic curvature associated with transverse electromagnetic perturbations. To account for the
curvature drift, an alternative method proposed by Nakamura@Phys. Plasmas4, 3765 ~1997!# is
applied to obtain the perturbed distribution function. It is found that the previous treatment, i.e.,
simulating the curvature drift by a virtual gravitational drift, is considerably inaccurate. When an
ambient magnetic field has a curvature so that the curvature drift is directed opposite the“B drift,
the maximum growth rate increases as long as the radius of curvature is larger than a certain value,
while the rate decreases for a sharper magnetic field curvature. At the same time, the wave number
giving the maximum growth decreases monotonically. The growth rate is increased by a curvature
drift coincident with the“B drift. The effects of the magnetic curvature become larger in high-beta
plasmas. ©2001 American Institute of Physics.@DOI: 10.1063/1.1354646#

I. INTRODUCTION

The lower-hybrid-drift instability is a high-frequency
(uvu@V i) drift-wave instability driven by cross-field
currents in the presence of inhomogeneities in densityn(x)
and magnetic fieldB0(x) @Fig. 1~a!#. Here,v5v r1 iv i is
the complex eigenfrequency of the wave perturbation,
V i5u1euB0 /mi is the ion Larmor frequency,e is the el-
ementary electric charge, andmi is the ion mass. The char-
acteristic growth ratev i and perpendicular wave numberky

satisfy ~assuming flute perturbations withk•B050)

v i'VLH , ky
2r Le

2 '1, ~1!

for Te'Ti and VE /v i*1. Here, VLH5vpi /(1
1vpe

2 /Ve
2)1/2 is the lower-hybrid frequency,r Le5ve /Ve is

the thermal electron Larmor radius,Te and Ti are the elec-
tron and ion temperatures,VE is theEÃB drift velocity, ve

5A2Te /me andv i5A2Ti /mi are the electron and ion ther-
mal speeds,vpe5Ane2/e0me and vpi5Ane2/e0mi are the
electron and ion plasma frequencies,Ve5u2euB0 /me is the
electron Larmor frequency, andme is the electron mass.
Since the lower-hybrid-drift instability requires fairly narrow
sheaths and is favored byTe,Ti , it appears to arise in high-
density magnetic compression devices such as reversed field
theta pinches1,2 and may also be found in a certain region of
the Earth’s magnetotail.3 Furthermore, recent space plasma
observations with high resolution revealed the lower-hybrid
wave near the magnetic reconnection site and enabled us to
compare the observation with the theory in detail.4

When we construct the theory for the comparison, we
should quantitatively account for the effects of finite beta and
magnetic curvature. The former is because a high beta such
as in the plasma sheet is known to act as a stabilizing factor
for the lower-hybrid-drift instability. It is explained by the

resonance of an electron“B drift and the wave,5,6 and was
treated comprehensively by Davidsonet al.7 including both
electromagnetic and“B drift effects.

On the other hand, the latter~magnetic curvature! brings
an electron curvature drift which cancels the effect of the
“B drift, so that the lower-hybrid-drift instability can be
destabilized again.4 Actually, when we observe the near-
Earth magnetotail, the normal field exists which gives curva-
ture to the reversed magnetic field. The magnetic curvature
was, however, treated insufficiently as explained below. His-
torically, Krall and McBride8 included the effect of magnetic
field curvature in the theory of lower-hybrid-drift instability
in order to use the theory in a detailed way to model trans-
port, since real applications~e.g., tokamak! must include cur-
vature effects. Accordingly, when taking account of the mag-
netic field curvature, they replace the centrifugal force on
particles by a virtual gravitational force for simplicity. With
this gravitational drift approximation, Shinoharaet al.4 de-
rived the dispersion relation of the lower-hybrid-drift insta-
bility in a finite plasma beta and examined whether the ‘‘cur-
vature drift’’ ~i.e., the virtual gravitational drift! can modify
the electron“B drift effects.

For such a treatment of the curvature drift, however,
Huba and Drake9 pointed out that wave-particle resonances
cannot occur and only the nonresonant behavior of the par-
ticles due to the curvature drift is considered; they focused
on curvature drift resonances while ignoring“B drift and
noted that the electron energized through the curvature drift
always leads to wave damping. Hence, the resonance mecha-
nism by the curvature drift differs essentially from that by
the virtual gravitational drift, but Huba and Drake9 merely
indicated the qualitative importance of considering the cur-
vature drift properly and did not derive the dispersion rela-
tion of the lower-hybrid-drift instability including the effects
of the curvature drift. This is because there has been diffi-
culty in treating curvature drifts which appear when a linear-
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ized Vlasov equation is solved by the method of character-
istics, also called ‘‘integration over unperturbed orbits.’’
This method can give us a formal solution of the linearized
Vlasov equation, but in practice, it is worth using only when
we can describe the equilibrium distribution function in
terms of the constants of motion: a differentiation of the
equilibrium distribution function by a constant of motion is
also a constant of motion, so the term can be factored out of
the integral over the unperturbed orbit. In the presence of
magnetic curvature, the method of characteristics does not
work well due to the fluctuation of what was a constant of
motion in the absence of curvature.

Recently, Nakamura10 proposed an alternative method
for solving the linearized Vlasov equation. With this method,
we can obtain the solution by combining the perturbed orbits
and the differentiation of the equilibrium distribution func-
tion calculated separately, and can apply the problem to
where the method of characteristics does not work in a prac-
tical sense. In particular, this alternative method enables us
to treat curvature drifts properly and a dispersion relation has
been derived for simple electrostatic perturbations by the
lower-hybrid-drift instability including the case where both
the“B drift and curvature drift are concurrent.

The purpose of this paper is to extend his work to a more
realistic situation, that is, to derive and analyze a local dis-
persion relation for the lower-hybrid-drift instability includ-
ing magnetic curvature effects associated with transverse
electromagnetic perturbations. It is shown that the previous
calculations, in which curvature drifts were simulated by vir-
tual gravitational drifts, are considerably inaccurate; curva-
ture drifts must be treated precisely as in the present paper.
The organization of this paper is as follows. In Sec. II we
derive perturbed distribution functions for the lower-hybrid-
drift instability with a curved magnetic field as well as for
the traditional lower-hybrid-drift instability with a straight

magnetic field by means of the alternative method. The local
dispersion relation for the lower-hybrid-drift instability is ob-
tained in Sec. III, including magnetic curvature effects with
transverse electromagnetic perturbations. In Sec. IV, the lo-
cal dispersion relation is solved numerically in the parameter
regime of greatest interest for high density pinches, i.e.,Te

'Ti and plasma betas on the order of unity. Finally, in Sec.
V, a summary of results and conclusions are presented.

II. PERTURBED DISTRIBUTION FUNCTION

The physical model and coordinate system in this paper
are taken to be similar to those in earlier publications.2,3,7,11

The background plasma configuration and slab geometry em-
ployed in the present analysis are illustrated in Fig. 1. Figure
1~a! has a straight ambient magnetic fieldB0(x) in the 1z
direction, with an electric fieldE0 in the 2x direction, and
density and temperature gradients (“n and“Te) also in the
2x direction while the magnetic field gradient (“B0) is in
the1x direction. This is a traditional simplified situation for
the lower-hybrid-drift instability, in whichEÃB and “B
drifts and wave resonances occur. In this case, the electron
drift motion consists of anEÃB drift in the 1y direction and
a “B drift in the 2y direction.

Now we consider the effect of magnetic field curvature
by adding a new component of a magnetic fieldBx(z) in the
2x or 1x directions as shown in Figs. 1~b! or 1~c!. In Fig.
1~b!, the total ambient magnetic fieldB0(x)1Bx(z) is
curved with the radius of curvatureRc directed to the1x
direction while the same withRc directed to the2x direction
in Fig. 1~c!. Then, the curvature drift has the opposite direc-
tion to the“B drift in Fig. 1~b!, while it has the same direc-
tion as the“B drift in Fig. 1~c!.

In the following calculation, we restrict our attention to
the z50 plane, in whichBx vanishes and onlyB0 should be
considered. As shown later, this restriction is justified as long
as the curvature is small, that is,

Rc
2@r Le

2 . ~2!

It is the same magnetic field configuration as in the straight
field case@Fig. 1~a!#, but the curvature effects appear through
a centrifugal force in the1x or 2x directions@Figs. 1~b! or
1~c!#.

We assume flute perturbations withk•B050, which has
been shown to have the maximum growth rate by Gladd.12

Furthermore, it is assumed that

ky
2@kx

2@en
2 ,eT

2 ,eB
2 , ~3!

where en5] logn/]x, eT5] logTe/]x, and eB5] logB0 /]x.
This implies that the wavelength in thex direction is small in
comparison with the gradient length scales and justifies the
use of the local approximation.13 Moreover, in the present
analysis, extraordinary-mode polarization is considered, with
electric field perturbation dE(x, t)5dEx(x, t)êx

1dEy(x, t)êy , and magnetic field perturbationdB(x, t)
5dBz(x, t)êz , whereêx , êy , andêz are unit vectors in thex,
y, andz directions, respectively.

FIG. 1. Slab geometry and background plasma configuration:~a! straight
magnetic field line,~b! curved magnetic field line withRc.0, and ~c!
curved magnetic field line withRc,0.

1160 Phys. Plasmas, Vol. 8, No. 4, April 2001 Genta Ueno

Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



We obtain the time-asymptotic results in the following
way. First, we assume that all perturbations have the form

dA~x, t !5dÂ exp@ i ~kyy2vt !#, v i.0. ~4!

We then obtain the solution forv i.0, and also forv i<0 by
analytic continuation. Finally, we calculate a dispersion rela-
tion that indicates nontransient responses of normal modes.

A. Ion contribution

In the lower-hybrid-drift instability, ions are treated as
unmagnetized:

uvu@V i , ky
2r Li

2 @1, ~5!

wherer Li5v i /V i is the thermal ion Larmor radius. Here, we
assume that the ion equilibrium distribution function depends
on w' and v i : f i05 f i0(w' , v i), where we setw'5vx

2

1(vy2Viy)2, andViy is the ion fluid velocity. By Nakamu-
ra’s method,10 we obtain the perturbed ion distribution func-
tion ~see Appendix A!

d f̂ i52
2i ~1e!

mi

1

v2kyvy
FvxS 12

kyViy

v D dÊx

1~vy2Viy!dÊyG ] f i0

]w'

, ~6!

which is identical to the result by Davidsonet al.7 @Eq. ~33!
therein#.

B. Electron contribution

1. “B drift

We consider the lower-hybrid-drift instability with a
straight ambient magnetic field shown in Fig. 1~a!. Electrons
are considered to be strongly magnetized:

uvu!Ve , ky
2r Le

2 '1, ur Leenu!1. ~7!

We set f 0e5 f 0e(j, w' , v i), where j5x2(vy2VE)/Ve ,
w'5vx

21(vy2VE)2, andVE52E0 /B0 is theEÃB drift ve-
locity. The perturbed electron distribution function are then
expressed as

d f̂ e52
~2e!

me
(
l , p

Jp~m!exp@ i ~ l 2p!~Vet1f2p/2!#

ky~VE1VB!1 lVe2v

3H Aw'

v F2
ky

Ve

] f e0

]j
12~v2kyVE!

] f e0

]w'
GJl8~m!dÊx

2 i
1

ky
F2

ky

Ve

] f e0

]j
12~ lVe1kyVB!

] f e0

]w'
GJl~m!dÊyJ ,

~8!

which is equal to the result in Ref. 7@Eq. ~34! therein#. Here,
we putf5tan21@(vy2VE)/vx#2Vet, VB52eBw'/2Ve is
the“B drift velocity, Jl(m) is the Bessel function of the first
kind of order l, Jl8(m)5dJl(m)/dm and m5kyAw'/Ve ~a
detailed derivation is given in Appendix A!.

2. “B drift ¿ curvature drift

Here, we add a curvature to the ambient magnetic field
as shown in Figs. 1~b! or 1~c!. The effect of the magnetic
curvature is not only to cause a curvature drift of electrons,
but also to modify a plane on which electrons gyrate. That is,
the electron where the center of gyration is always on thez
50 plane moves only on that plane, while the electron where
the parallel velocity is zero and its center of gyration is
above or below thez50 plane hasz-directional motion due
to the gyration yielding the current in thez direction. How-
ever, we can ignore the contribution of the electrons above
and below thez50 plane if the condition ofRc

2@r Le
2 @Eq.

~2!# is satisfied. This can be derived as follows: If an electron
has a center of gyration on thez5dz, its displacement due to
the gyration is about (r Le /Rc)dz. If this becomes consider-
ably small compared todz, i.e., Rc

2@r Le
2 , contribution from

such electrons can be ignored. Furthermore, we should note
that thez50 is not a special case. We can also consider a
locally uniform finitez region if we transform the coordinate
such that thez axis is tangential to the curved magnetic field.

We can then write the perturbed electron distribution
function as

d f̂ e52
~2e!

me
(
l , p

Jp~m!exp@ i ~ l 2p!~Vet1f2p/2!#

ky~VE1VB1Vc!1 lVe2v H Aw'

v F2
ky

Ve

] f e0

]j
12~v2kyVE!

] f e0

]w'

2
v i

Rc

ky

Ve
(
n, q

I n~n!I q~n!i n1q exp@ i ~n2q!~Vet1f!#@ky~VE1VB1Vc!1 lVe2v#

ky~VE1VB1Vc!1~ l 1n!Ve2v S ] f e0

]v i
22v i

] f e0

]w'
D GJl8~m!dÊx

2
i

ky
F2

ky

Ve

] f e0

]j
12~ lVe1kyVB1kyVc!

] f e0

]w'

2
v i

Rc

ky

Ve
(
n, q

I n~n!I q~n!i n1q exp@ i ~n2q!~Vet1f!#@ky~VE1VB1Vc!1 lVe2v#

ky~VE1VB1Vc!1~ l 1n!Ve2v S ] f e0

]v i
22v i

] f e0

]w'
D GJl~m!dÊyJ , ~9!
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whereVc5ecv i
2/Ve is the curvature drift,ec51/Rc , I q(n) is

the modified Bessel function of the first kind of orderq, and
n5Aw'/RcVe . Also see Appendix A for the derivation of
Eq. ~9!.

III. DISPERSION RELATION

In this section, we give a concrete form of equilibrium
distribution and calculate the perturbed charge and current
density for ions and electrons from the perturbed distribution
functions obtained in the preceding section. With the linear-
ized Maxwell equations, we then derive the dispersion rela-
tions for the following three cases. The first case is when an
ambient magnetic field is straight so that only the“B drift
needs to be considered. The second case is when a virtual
gravitational force is introduced to simulate the centrifugal
force which acts if the magnetic field has a curvature. Note
that the magnetic field is still straight even in the second
case. Finally, we consider the case when the magnetic field is
really curved and the curvature drift is properly treated.

A. Equilibrium distribution

For ions, we assume an equilibrium distribution function
as a drifting Maxwellian,

f i0~w' , v i!5nS 1

pv i
2D 3/2

expF2
w'1v i

2

v i
2 G , ~10!

wherew'5vx
21(vy2Viy)2.

For electrons, we choose an equilibrium distribution as

f e0~j,w' , v i!5n~j!S 1

pve
2~j!

D 3/2

expF2
w'1v i

2

ve
2~j!

G ,

~11!

wherew'5vx
21(vy2VE)2, j5x2(vy2VE)/Ve .

For reference, we derive the dispersion relation when we
simulate the effect of the magnetic curvature by the virtual
gravitational force. Like before,4,13 the gravitational forceg
5(2Te /meRc)êx is introduced, that is, the electron curvature
drift is assumed to be an averaged valueV̄c5g/Veêy . This
assumption seen in previous works agrees with ours in that
the curvature effects appear through a centrifugal force in the
x direction.

On the basis of this assumption, the local electron distri-
bution function Eq.~11! is modified into

f e0~j,w' , v i!5n~j!S 1

pve
2~j!

D 3/2

expF2
w'1v i

2

ve
2~j!

G , ~12!

wherew'5vx
21(vy2VE2V̄c)

2, j5x2(vy2VE2V̄c)/Ve ,
andV̄c5ecve

2/Ve is the average curvature drift velocity. The
distribution~12! indicates that all electrons are drifting atV̄c

in addition toVE .

B. Dispersion relation

Calculating directly the perturbed charge and current
density@ion contributions are from Eqs.~6! and ~10!; elec-

tron contributions from Eqs.~8! and~11! for “B drift, from
Eqs.~8! and~12! for “B drift 1 gravitational drift, and from
Eqs.~9! and~11! for “B drift 1 curvature drift# and substi-
tute them into the linearized Maxwell equations, we obtain
the dispersion relation for perturbed electric fielddÊ:

F12
2vpe

2

ky
2ve

2 ~F22C1!1
2vpi

2

ky
2v i

2 @11z iZ~z i !#G
3F12

c2ky
2

v2
2

vpe
2

v2
F31

vpi
2

vkyv i
S 12

kyViy

v DZ~z i !G
22S vpe

2

vkyve
D 2

F1~F12C2!50, ~13!

which determines the complex eigenfrequencyv5v r

1 iv i . Here,

C15
1

ve
2E0

`

dw'@J0~m!#2 expF2
w'

ve
2 G , ~14!

C25
1

ve
3E0

`

dw'Aw'J0~m!J1~m!expF2
w'

ve
2 G , ~15!

which are corrected@previously reported asC151 andC2

50 ~e.g., Ref. 7!#. Z(z) is the plasma dispersion function,14

which is introduced for analytic continuation to the all com-
plex v plane withz i5(v2kyViy)/kyv i . The expressions of
F j ( j 51,2,3) are given below in accordance with the situa-
tion.

1. “B drift

We find

F j5
1

ve
2E0

`

dw' F j~w'!expF2
w'

ve
2 G

3F kyVn1kyVTS w'

ve
2

21D 1kyVE2vG
3 lim

kz→0

1

kz
ZS v2kyVE2kyVB

kz
D , ~ j 51,2,3!. ~16!

The functionsF j (w') ( j 51,2,3) appearing in the integrand
are defined by

F1~w'!5
Aw'

ve
J0~m!J1~m!, ~17!

F2~w'!5@J0~m!#2, ~18!

F3~w'!5
w'

ve
2 @J1~m!#2. ~19!

Here,Vn52enve
2/2Ve andVT52eTve

2/2Ve are drifts asso-
ciated with the density and temperature gradients, respec-
tively.
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2. “B drift ¿ gravitational drift

We find

F j5
1

ve
2E0

`

dw' F j~w'!expF2
w'

ve
2 G

3F kyVn1kyVTS w'

ve
2

21D 1kyVE1kyV̄c2vG
3 lim

kz→0

1

kz
ZS v2kyVE2kyVB2kyV̄c

kz
D , ~20!

whereF j (w') ( j 51,2,3) are given in Eqs.~17!–~19!.

3. “B drift ¿ curvature drift

We find

F j5
1

ve
2E0

`

dw' F j~w'!expF2
w'

ve
2 G

3H VT

V̄c

1F kyVn1kyVTS w'

ve
2

2
3

2D 1kyVE2v

2
VT

V̄c

~kyVE1kyVB2v!G
3

1

kV̄c

GS v2kyVE2kyVB

kyV̄c
D J , ~21!

whereF j (w') ( j 51,2,3) are also given in Eqs.~17!–~19!,
and we have introduced a new function namedthe altered
plasma dispersion function G(z), which is defined by

G~z!5
1

Ap
E

2`

`

dx
exp~2x2!

x22z
~22!

for 0,argz,2p and by the analytic continuation of this for
argz50 and 2p<argz,4p ~see Appendix C!.

IV. NUMERICAL STUDIES ON DISPERSION RELATION

We now solve Eq.~13! numerically for the complex
eigenfrequencyv r1 iv i . We first rewrite the equations by
the following eight dimensionless parameters:VE /v i , r Lien ,
r LieB , b i , Te /Ti , r LieT , Viy /v i , andRc /LB , with normal-
izing v r and v i to vLH5(VeV i)

1/2 (.VLH for vpe
2 /Ve

2

@1), andky to r Le
21 . Here, we putLB51/eB . These param-

eters are not independent, but have the following constraints.
An equilibrium force balance on an ion fluid element in thex
direction requires Viy5VE1Vdi , where Vdi

5(v i
2/2V i)] log(nTi)/]x is the ion diamagnetic drift velocity.

This equation is equivalent to

VE

v i
5

Viy

v i
2

1

2
r Lien , ~23!

where we assume]Ti /]x50. Moreover, the gradient prop-
erties are related self-consistently to other parameters
through Ampe`re’s law:2]B0 /]x5m0ne(Viy2Vye), that is,

eB52 1
2 en~b i1be!2 1

2 eTbe . ~24!

From Eqs.~23! and ~24!, we obtain

r LieB5b i S 11
Te

Ti
D S VE

v i
2

Viy

v i
D2

1

2
b i

Te

Ti
r LieT . ~25!

In numerical studies, we typically specifyVE /v i , b i ,
Te /Ti , r LieT , and Viy /v i , and then determiner Lien

and r LieB consistently from Eqs.~23! and ~25!. Note that
a variation inb i also involves a variation in other plasma
parameters. Here, expressingb i5(vpe

2 /Ve
2)3(2Ti /mec

2),
we choose to varyb i by varyingvpe

2 /Ve
2 ~with constantTi).

Following Ref. 7, we takeTi51.02 keV, so thatb i54
31023vpe

2 /Ve
2 . SinceRc /LB is independent of the param-

eters, we can substitute an arbitrary value for it. Moreover,
we consider the case where the ions carry no current in they
direction (Viy50), so that the equilibrium electric field bal-
ances the ion pressure in thex direction.

Figure 2 shows the dispersion relation for the lower-
hybrid-drift instability under a straight magnetic field. We
plot v r /vLH ~left! and v i /vLH ~right! againstkyr Le which
satisfy Eqs.~13!–~19! for the choice of local plasma param-
eters: VE /v i51, Te /Ti51, me /mi51/1836, eT50,
vpe

2 /Ve
25125, andb i50.5, which are the same parameter

selections as Ref. 7.
The result is identical to that of previous works in that

the real frequencyv r is an increasing function of the wave
numberky . The growth ratev i achieves a maximum value
v i.0.63vLH for ky.2.6r Le

21 . This tendency can also be
seen in Ref. 7 but the maximum value wasv i.0.18vLH

when ky.1.7r Le
21 . This difference is brought by the cor-

rectedC1 andC2 @see Eqs.~14! and ~15!#.
Figure 3 showsv r /vLH ~left! and v i /vLH ~right!

againstkyr Le including the gravitational drift@Eqs.~13!–~15!
and~17!–~20!#. We choose the same parameters as in Fig. 2.
In the upper two panels~a!, we set the magnetic field posi-
tive curvatureRc /LB.0, in which the curvature drift has the
opposite sign to the“B drift. These panels show that both
v r andv i increase with the curvature. SettingRc /LB54 and
2, the maximum growth rates increase to 1.0vLH and
1.6vLH .

FIG. 2. Plots ofv r /vLH ~left! and v i /vLH ~right! againstkyr Le obtained
from numerical solutions to dispersion relations of the lower-hybrid-drift
instability under a straight ambient magnetic field@Eqs. ~13!–~19!#. The
system parameters areVE /v i51, Te /Ti51, me /mi51/1836, eT50, b i

50.5, vpe
2 /Ve

25125, andViy /v i50.
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On the other hand, we plot the dispersion for the mag-
netic field with the opposite curvature (Rc /LB,0) in Fig.
3~b!, in which the curvature drift has the same direction as
the“B drift. The growth ratev i decreases monotonically as
the curvature becomes larger as shown in the right-hand
panel of Fig. 3~b!. The real frequencyv r , however, does not
always change monotonically with respect toRc /LB . While
v r decreases under the small curvature (Rc /LB52` and
24), a larger curvature increasesv r as seen in the graph for
Rc /LB522.

These characteristics are for the gravitational drift, in
which a centrifugal force is simulated as a gravitational
force. If we consider the curvature drift, we obtain different
results. Figure 4 presentsv r /vLH ~left! andv i /vLH ~right!
againstkyr Le including the curvature drift@Eqs. ~13!–~15!,
~17!–~19!, and~21!#. The parameters are also the same as in
Fig. 2. Since theG(z) function appearing in Eq.~21! is a
two-valued function with a single branch point ofz50, we
obtain the contributions of poles in both of two sheets. Here,
we adopt the mode that is connected with the physically
meaningful mode under an ambient magnetic field with no
curvature.

First, we consider the case when an ambient magnetic
field has a curvature such thatRc /LB.0. The maximumv i

becomes larger for a smaller curvature (Rc /LB51` and

14) as shown in the right-hand panel of Fig. 4~a!. If the
curve becomes more sharpened (Rc /LB512), however, the
maximumv i gets smaller. This is in contrast to the tendency
for the gravitational drift in that a larger curvature directly
brings a larger growth rate. The values of maximumv i do
not enlarge as in the gravitational drift approximation:v i

50.68vLH and 0.67vLH for Rc /LB514 and12.
The difference from the gravitational drift is also seen in

the shape ofv i –ky curves@also see the right-hand panel of
Fig. 3~a!#. The wave numbers giving the maximum growth
rates shift to smaller values in accordance with the curvature,
while they shift to larger values for the gravitational drift
approximation. Furthermore, the curvature drift strongly re-
ducesv i compared with the gravitational drift at largerky .

As can be seen in the gravitational drift, the real fre-
quencyv r gets larger whenRc /LB decreases, but the varia-
tion is small compared with the gravitational case.

On the other hand, when we set the magnetic field line
on an opposite curvature (Rc /LB,0), we find similar results
on v r and v i as in the gravitational drift approximation as
shown in Fig. 4~b!.

As we have seen in Fig. 4~a!, v i has one peak for each
Rc /LB , whose value maximizes atRc /LB'14. Searching
for the Rc /LB that maximizes the peak value by the quasi-
Newton method, we find thatRc /LB513.595•••, in which
the most effective resonances are expected to execute. In Fig.
5, we demonstrate the effects of the“B drift and the curva-
ture drift with a fixedRc /LB513.595. The four curves ap-

FIG. 3. Plots ofv r /vLH ~left! and v i /vLH ~right! againstkyr Le obtained
from numerical solutions to dispersion relations of the lower-hybrid-drift
instability under a straight ambient magnetic field but including a virtual
gravitational field for simulating the curvature effect@Eqs. ~13!–~15! and
~17!–~20!#. The top and bottom panels are~a! for Rc /LB51`, 14, 12
and ~b! for Rc /LB52`, 24, 22. The other plasma parameters are the
same as those in Fig. 2. Note that the range ofv i /vLH in panel~a! is taken
wider than the otherv i /vLH againstkyr Le plots shown in Figs. 2 and 4 as
well as in panel~b! of this figure.

FIG. 4. Plots ofv r /vLH ~left! and v i /vLH ~right! againstkyr Le obtained
from numerical solutions to dispersion relations of the lower-hybrid-drift
instability @Eqs. ~13!–~15!, ~17!–~19!, and ~21!# under a curved ambient
magnetic field. The top and bottom panels are~a! for Rc /LB51`, 14, 12
and ~b! for Rc /LB52`, 24, 22. The other plasma parameters are the
same as those in Figs. 2 and 3.
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pearing in both panels are~1! neglecting both the“B and
curvature drifts,~2! including the“B drift but neglecting the
curvature drift,~3! including the curvature drift but neglect-
ing the“B drift, and ~4! including both drifts. These cases
are executed arbitrarily by puttingVB andVc equal to zero,
which may be inconsistent with the definitions ofVB andVc

and Eq.~25!, and this is done to understand the roles of these
drifts.

The “B drift decreasesv r , while the curvature drift
increasesv r as shown in the left-hand panel of Fig. 5@see
the curves of~1!, ~2!, and~3!#. This tendency corresponds to
a decrease of the phase velocity by the“B drift and an
increase by the curvature drift. When both effects are con-
current @case~4!#, the “B effect on v r becomes stronger
than the curvature effect for a smallky (&1.8r Le

21) while the
curvature effect onv r exceeds the“B effect for a largeky

(*1.8r Le
21).

The growth rate decreases by about one-half by the“B
effect shown in the right-hand panel of Fig. 5: the peak val-
ues arev i51.13vLH in case~1!, andv i50.63vLH in case
~2!. On the other hand, the magnetic curvature shifts the peak
to the smallerky , and decreasesv i for the largerky @case
~3!#. Moreover, the magnetic curvature raises the peak value
only when the“B effect is considered: the peak value of
v i50.63vLH in case~2! increases tov i50.68vLH in case
~4!, while v i51.13vLH in case~1! remains unchanged in
case~3!.

We directly compare the effects of the curvature drift
and the gravitational drift for any radius of curvature in Fig.
6. The other parameters are the same as in the previous plots.
In the top-left panel of Fig. 6, we plot maximum growth rates
normalized tovLH (v i ,MAX /vLH , maximized with respect
to ky! againstRc /LB . When the ambient magnetic field has
a curvature ofRc /LB.0, v i ,MAX increases gradually up to
Rc /LB513.595 and then decreases rapidly by the curvature
drift, while the gravitational drift brings a rapid and continu-
ous increase ofv i ,MAX . On the other hand, when the mag-
netic field has the opposite curvature (Rc /LB,0), both drifts

have similar effects that reducev i ,MAX gradually and then
rapidly; the turning point isRc /LB.210.

The top-right panel of Fig. 6 shows phase velocities nor-
malized to the ion thermal speed at maximum growth rates
(v r ,MAX /ky,MAXv i). In the case of the curvature drift,
v r ,MAX /ky,MAX gradually increases when the magnetic field
has a curvature ofRc /LB.0 and gradually decreases when it
has the opposite curvature. The value reached for a strongly
curved magnetic field (0.1,Rc /LB,1) is found to be less
than 1v i , i.e., the value ofVE . The gravitational drift, how-
ever, does not bring such an upper limit:v r ,MAX /ky,MAX

increases rapidly and reaches 3 –4v i This is because the in-
creasing gravitational drift practically enlargesVE .

In the bottom panel of Fig. 6, we can see variations of
normalized wave numbers at the maximum growth rate
(ky,MAXr Le) againstRc /LB . When the magnetic field has
curvature,ky,MAX decreases regardless of the curved mag-
netic field direction~except for the case of a strong negative
curvature!. On the other hand,ky,MAX increases for the gravi-
tational drift approximation, and a rapid increase ofky,MAX

can be seen atRc /LB.61.
Finally, we examine the dependence on plasma beta in

Fig. 7. In the top-left panel, we plotv i ,MAX /vLH as a func-
tion of Rc /LB , for several values of localb i . The remaining
parameters are the same as in Fig. 4. In the course of setting
the magnetic field to have curvature such thatRc /LB5
1100 to 10.1, v i ,MAX for each b i increases slowly to
achieve the maximum at a certain value ofRc /LB , then de-
creases rapidly. The values ofRc /LB giving the maximum
v i ,MAX depend onb i , and are110.7, 13.6, 11.18, and
10.759 for b i50.75, 0.50, 0.25, and 0.10, respectively.
That is, the turning point ofv i ,MAX from a slow increase to

FIG. 5. Plots ofv r /vLH ~left! and v i /vLH ~right! againstkyr Le : ~1! the
dotted line is without both“B drift and curvature drift,~2! the dotted–
dashed line is with“B drift but without curvature drift,~3! the dashed line
is with curvature drift but without“B drift, and ~4! the solid line is with
both drifts. The normalized radius of curvatureRc /LB is 13.595, which
gives the maximum value for the peak of thev i /vLH –kyr Le curve for the
parameter selections of Fig. 4.

FIG. 6. Plots of normalized maximum growth rate (v i ,MAX /vLH , in the
top-left panel!, normalized phase velocity at maximum growth
(v r ,MAX /ky,MAXv i , in the top-right panel!, and normalized wave number at
maximum growth (ky,MAXr Le , in the bottom panel! againstRc /LB . The
plasma parameters are the same as in Figs. 3 and 4.
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a rapid decrease appears at a magnetic field with a smaller
curvature when the ion beta is higher. In other words, the
effect of a magnetic curvature becomes larger in higher beta
environments. Furthermore, the peak values ofv i ,MAX also
depend onb i . These values get larger with decreasingb i :
v i ,MAX50.771vLH , 0.756vLH , 0.681vLH , and 0.606vLH

for b i50.75, 0.50, 0.25, and 0.10, respectively.
On the other hand, let us give the magnetic field the

opposite curvatureRc /LB,0. In this case,v i ,MAX decrease
slowly and then rapidly for allb i . The points where the
slopes change depend onb i : they areRc /LB.230, 220,
210, and23 for b i50.75, 0.50, 0.25, and 0.10, respec-
tively. This finding also suggests that the magnetic curvature
affects the maximum growth rate more significantly in a
higher ion beta. On the whole, a lower ion beta provides a
higher maximum growth rate, with the exception of the
curvesb i50.50 andb i50.25 aroundRc /LB'50.

In the top-right panel of Fig. 7, we plot
v r ,MAX /ky,MAXv i for the same selections of local plasma pa-
rameters. These plots show thatv r ,MAX /ky,MAX increases
monotonically when an ambient magnetic field has a curva-
ture of Rc /LB.0, while they decrease under the opposite
curvature (Rc /LB,0). If the magnetic field has a further
negative curvature, phase velocities reach a minimum, and
then begin to increase again, although the minimum does not
appear in the displayed range of21.Rc /LB.2100 when
b i50.10. The value ofv r ,MAX /ky,MAX at a fixedRc /LB is
larger with increasingb i as seen forb i50.25, 0.50, and
0.75, but behaves in a different way forb i50.10.

In the bottom panel of Fig. 7, we plotky,MAXr Le against
Rc /LB . When we curve the ambient magnetic field posi-
tively (Rc /LB.0), ky,MAX decreases for eachb i . The slope

of the decreasing curve becomes sharper for a largerb i , so
that the order ofky,MAX changes atRc /LB'3: a wave num-
ber is larger for a largerb i in 100.Rc /LB*3, while all
wave numbers are nearly the same forRc /LB&3. With the
opposite curvature (Rc /LB,0), we see slowly decreasing
ky,MAX against Rc /LB , which have their minimum at
Rc /LB529.5, 25.2, and 21.4 for b i50.75, 0.50, and
0.25, respectively. As before, the curve forb i50.10 behaves
in a slightly different way.

V. CONCLUSION

We have presented a linear study on the effects of mag-
netic curvature on the lower-hybrid-drift instability. In Sec.
II we derived perturbed distribution functions by Nakamu-
ra’s method,10 for an ambient magnetic field having curva-
ture as well as for a straight magnetic field dealt with in past
literature.1–3,5,7,11,12In this derivation, we assumed that the
curvature is small (Rc

2@r Le
2 ), so that the curvature effects

appear only as a centrifugal force on electrons. The local
dispersion relation for the lower-hybrid-drift instability was
derived in Sec. III, including effects from both electron cur-
vature drift and“B drift. For comparison, we also gave the
dispersion relation with a virtual gravitational drift approxi-
mation of the curvature drift. In Sec. IV, local dispersion
relations were solved numerically in the parameter regime of
greatest interest for high-density pinches, i.e.,Te'Ti and
plasma betas on the order of unity. In calculations on the
resonance of curvature drift, we introduced the altered dis-
persion function defined in Appendix C.

We summarize several important conclusions in the
present analysis.

~1! When an ambient magnetic field has curvature so
that the curvature drift is directed opposite to the“B drift,
the maximum growth rate increases as long as the radius of
curvature is larger than a certain value, while it decreases for
a more curved magnetic field.

~2! In addition, when the magnetic field has the same
curvature, the wave number giving the maximum growth de-
creases monotonically.

~3! On the other hand, when the magnetic field has the
opposite curvature so that the curvature and“B drift have
the same direction, the growth rate decreases monotonically.

Characteristics~1! and ~2! cannot be revived by the
gravitational drift approximation, though conclusion~3! is
compatible with the result by the approximation. The differ-
ence between the curvature drift and the gravitational drift
were summarized in Fig. 6.

~4! The growth rate is increased by the curvature drift
coincident with the“B drift.

~5! The effect of the magnetic curvature becomes larger
in high-beta plasmas. The curvature effect is, therefore, also
important when dealing with the lower-hybrid-drift instabil-
ity in the plasma sheet of the Earth’s magnetotail, which is a
high-beta region.

Several basic properties were clarified, but a substantial
amount of work remains to be done to understand effects on
this instability. For instance, we should explain the meaning
of the deformation of dispersion due to magnetic curvature

FIG. 7. Plots of normalized maximum growth rate (v i ,MAX /vLH , top-left!,
phase velocity at maximum growth (v r ,MAX /ky,MAXv i , top-right!, and wave
number at maximum growth (ky,MAXr Le , bottom!, against Rc /LB for
(b i , vpe

2 /Ve
2)5(0.1, 25), (0.25, 62.5), (0.50, 125), and (0.75, 187.5). The

other plasma parameters are the same as in Fig. 4.
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from a physical viewpoint. Furthermore, the change in the
property in a low-beta plasma, which can be seen in Fig. 7,
needs to be clarified. For such purposes, we will need de-
tailed parameter studies or analytical surveys with some ap-
proximation limit.

On the basis of the three-dimensional particle simula-
tions on a thin current sheet, Pritchettet al.15 reported that
the normal magnetic field produces a mode having a wave
vector of oblique angles to the main straight field and that
lower-hybrid-drift modes are not excited due to the parallel
component of the wave vector as pointed out by Gladd.12

The normal field is, of course, necessary to form an ambient
magnetic field having a curvature, and can increase the
growth rate of lower-hybrid-drift instability as presented in
this paper. Moreover, the lower-hybrid-drift wave is not al-
ways reduced according to Ref. 11. It then might also be
worthwhile to include a component of a wave vector parallel
to the ambient magnetic field in order to evaluate the effects
of the magnetic curvature and the parallel component wave
vector.

The resonance of curvature drift and wave would also
modify the saturation level of the field fluctuations.16,17 A
preliminary analysis in theTe→0 limit shows that the satu-
ration level is modified in the first order ofVB1Vc and
increases whenRc /LB.0, which will cause an increase of
anomalous resistivity. These studies will be addressed in a
future paper.
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APPENDIX A: DERIVATION OF PERTURBED
DISTRIBUTION FUNCTIONS

Using the method by Nakamura,10 the perturbed distri-
bution functiond f is written as

d f ~q; t !52FdJ~q; t !
]

]j
1dW'~q; t !

]

]w'

1dVi~q; t !
]

]v i
G

3 f 0~j, w' , v i!1g~j, w' , v i!, ~A1!

whereq5(j, y, w' , v i , t) is a parameter set determining a
particle orbit,j5x2(vy2Vd)/V, w'5vx

21(vy2Vd)2, v i

5vz , Vd is the fluid velocity,V is the Larmor frequency,
f 0(j, w' , v i) is an unperturbed distribution function. The
last termg(j, w' , v i) is the initial perturbation, which is put
equal to zero in the present derivation. We denote parameters
to specify the phase space position by small letters and the
corresponding physical quantities on the particle orbit by
capital letters.

1. Ion contribution

The unperturbed velocity and position of an ion, which
is regarded as moving at a constant velocity, are

Vx0~q; t8!5vx , ~A2!

Vy0~q; t8!5vy , ~A3!

Y0~q; t8!5y1vy~ t82t !. ~A4!

Since we assumef i05 f i0(w' , v i), we need to obtain the
perturbationsdW'(q; t8) and dVi(q; t8). First, from thez
component of the equation of motion:

mi

d

dt8
dVi~q; t8!50, ~A5!

we obtaindVi(q; t8)50 under the initial conditiondVi(t8
52`)50. We then consider the time variation of the ki-
netic energy in the moving coordinate with the velocity of
V iy5Viyêy relative to the rest frame. SincedVi50,

d

dt8
dW'~q; t8!5

2~1e!

mi
F S 12

kyViy

v D dEx~Y0~q; t8!, t8!

3Vx0~q; t8!1dEy~Y0~q; t8!, t8!

3~Vy0~q; t8!2Viy!G , ~A6!

where Faraday’s lawdBz5(2ky /v)dEx was used to elimi-
nate dBz . Substituting the unperturbed orbit@Eqs. ~A2!–
~A4!# into Eq.~A6! and integrating byt8 from 2` to t, then
we obtain

dŴ' exp@ i ~kyy2vt !#

5
2i ~1e!

mi
FvxS 12

kyViy

v D dÊx1~vy2Viy!dÊyG
3

exp@ i ~kyy2vt !#

v2kyvy
. ~A7!

Hence, the perturbed ion distribution function@Eq. ~6!# is
derived by calculatingd f̂ i52dŴ'(] f i0 /]w').

2. Electron contribution

a. “B drift

Under a straight ambient magnetic field shown in Fig.
1~a!, the unperturbed orbits are a gyro-motion plus guiding
center drifts (EÃB and“B drifts!:

Vx0~q; t8!5Aw'cos~Vet81f!, ~A8!

Vy0~q; t8!5Aw'sin~Vet81f!1VE1VB , ~A9!

Y0~q; t8!5y1~VE1VB!~ t82t !

2
Aw'

Ve
@cos~Vet81f!2cos~Vet1f!#. ~A10!

When f e05 f e0(j, w' , v i), we need to obtain the perturba-
tions dJ(q; t8), dW'(q; t8), and dVi(q; t8). In a similar
manner as for ions, we finddVi(q; t8)50 by the force-free
in the parallel direction. Also after a similar procedure as for
ions, we obtain
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dŴ' exp@ i ~kyy2vt !#

5
2~2e!

me
(
l , p

Jp~m!exp@ i ~ l 2p!~Vet1f2p/2!#

ky~VE1VB!1 lVe2v

3FAw'Jl8~m!S 12
kyVE

v D dÊx2 i S lVe

ky
1VBD

3Jl~m!dÊyGexp@ i ~kyy2vt !# ~A11!

from the time variation of the kinetic energy in the moving
frame with the velocity ofVE5VEêy .

Next, we calculate the perturbed quantitydJ(q; t8).
Utilizing the y component of the equation of motion, we
obtain

d

dt8
dJ~q; t8!5

dEy~Y0~q; t8!, t8!

B0~X0~q; t8!!
2Vx0~q; t8!

3
dBz~Y0~q; t8!, t8!

B0~X0~q; t8!!
, ~A12!

where we evaluate the magnetic field value by
B0(X0(q; t8)).B0(x0)5B0. Substituting the unperturbed
orbit @Eqs. ~A8!–~A10!# and integrating~A12! with respect
to t8, we obtain

dĴexp@ i ~kyy2vt !#

5
1

B0
(
l , p

Jp~m!exp@ i ~ l 2p!~Vet1f2p/2!#

ky~VE1VB!1 lVe2v

3FkyAw'

v
Jl8~m!dÊx2 iJ l~m!dÊyGexp@ i ~kyy2vt !#.

~A13!

From Eqs.~A11! and ~A13!, we can express the perturbed
electron distribution function@Eq. ~8!# by calculatingd f̂ e5

2@dĴ(]/]j)1dŴ'(]/]w')# f e0.

b. “B drift ¿ curvature drift

When we add a curvature to the ambient magnetic field
as shown in Fig. 1~b! or 1~c!, the curvature drift participates
in the unperturbed electron orbit

Vx0~q; t8!5Aw' cos~Vet81f!, ~A14!

Vy0~q; t8!5Aw' sin~Vet81f!1VE1VB1Vc , ~A15!

Vi0~q; t8!5v i , ~A16!

Y0~q; t8!5y1~VE1VB1Vc!~ t82t !

2
Aw'

Ve
@cos~Vet81f!2cos~Vet1f!#. ~A17!

In this case, we can also use the result ofdJ when only“B
exists given by Eq.~A13!.

As noted in Appendix B,dVi develops temporally gov-
erned by the differential equation

d

dt8
dVi~q; t8!5

1

Rc
@Vx0~q; t8!dVi~q; t8!

1Vi0~q; t8!dVx~q; t8!#. ~A18!

From Eq.~A18!, we obtain

dV̂i exp@ i ~kyy2vt !#5
v i

RcB0
(

l , p, n, q

Jp~m!I n~n!I q~n!i n1q exp@ i ~ l 2p!~Vet1f2p/2!#exp@ i ~n2q!~Vet1f!#

ky~VE1VB1Vc!1~ l 1n!Ve2v

3FJl8~m!
kyAw'

v
dÊx2 iJ l~m!dÊyGexp@ i ~kyy2vt !# ~A19!

under the initial conditiondVi(t852`)50, where we used
the unperturbed orbit~A14!–~A17! and the perturbed term

dVx~q; t8!5
1

B0
FkyAw'

v
cos~Vet81f!dEx1dEyG .

Finally, we can obtaindW' by considering the variation
of the kinetic energy in the moving frame with the velocity

of VE5VEêy :

d

dt8
dW'~q; t8!12

d

dt8
@Vi0~q; t8!dVi~q; t8!#

5
2~2e!

m F S 12
kyVE

v D dEx~Y0~q; t8!, t8!Vx0~q; t8!

1dEy~Y0~q; t8!, t8!~Vy0~q; t8!2VE!G . ~A20!

Substituting the unperturbed electron orbit~A14!–~A17! and
integrating with respect tot8 from 2` to t, we obtain
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dŴ' exp@ i ~kyy2vt !#

5
2~2e!

m (
l , p

Jp~m!exp@ i ~ l 2p!~Vet1f2p/2!#

ky~VE1VB1Vc!1 lVe2v

3exp@ i ~kyy2vt !#FAw'Jl8~m!S 12
kyVE

v D dÊx

2 i S lVe

ky
1VB1VcD Jl~m!dÊyG

22v idV̂i exp@ i ~kyy2vt !#. ~A21!

From Eqs.~A13!, ~A19!, and~A21!, we can write down
the perturbed electron distribution function@Eq. ~9!# by d f̂ e

52@dĴ(]/]j)1dŴ'(]/]w')1dV̂i(]/]v i)# f e0 .

APPENDIX B: TREATMENT OF MAGNETIC
CURVATURE

We take a cylindrical coordinate system (r , w, z), where
êw is the direction of the magnetic field, with the electric field
perpendicular to it. The equations of motion of electrons are

meS dv r

dt
2

vw
2

r D 5~2e!~Er2Bwvz!, ~B1!

meS dvw

dt
1

vwv r

r D50, ~B2!

me

dvz

dt
5~2e!~Ez1Bwv r !. ~B3!

When we take the first perturbation of Eq.~B2!, we obtain

ddvw

dt
52

1

r
~v r0dvw1vw0dv r !. ~B4!

For the Cartesian coordinate system, we letv r→2vx , vw

→v i , vz→vy , andr→Rc .

APPENDIX C: THE ALTERED PLASMA DISPERSION
FUNCTION

In the theory of linearized waves in a hot plasma with a
zeroth order curved magnetic field, a certain function of
complex argument, which we will callthe altered plasma
dispersion function, occurs when the unperturbed velocity
distribution is taken to be Maxwellian. We define this func-
tion by

G~z!5
1

Ap
E

2`

`

dx
exp~2x2!

x22z
~C1!

for 0,argz,2p and by the analytic continuation of this for
argz50 and 2p<argz,4p. G(z) is a periodic function of
period 4p and has a Riemann surface consisting of two
sheets with a single branch point ofz50. The difference
from the usual plasma dispersion function14 is thex2 appear-
ing in the denominator of the integrand instead ofx.

We obtain the concrete expression ofG(z) as follows.
When we denotez5r exp(iu), we find the two poles of
1Az5Ar exp(iu/2) and 2Az52(1Az). Taking account
of the positions of these poles, we carry out integration such
that the contour does not cross the poles.

Figure 8 shows integral contours for evaluatingG(z) for
five different values of argz. For 0,argz,2p shown in
Fig. 8~b!, the contour is defined simply along the realz axis,
which is below the pole1Az and above the pole2Az. At
argz50, we deform the contour such that1Az and 2Az
are located above and below the contour, respectively. The
deformed contour is shown in Fig. 8~a!, andG(z) is defined
by

G~z!5
1

Ap
PE

2`

`

dx
exp~2x2!

x22z
1 iAp

exp~2z!

1Az
, ~C2!

FIG. 8. Integral contour for evaluating (1/Ap) *2`
` dx@exp(2x2)/(x22z)# for

five different values of argz. This set of contours guarantees that thex
integral is a continuous function ofz.
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whereP* is the Cauchy principal value. Whenz makes one
rotation from ~a! through ~b! and reaches~c!, the contour
should be deformed again such as~a!. Different from~a!, the
contour passes under the pole at Re(z),0 and the pole at
Re(z).0, but this is reasonable in view of the idea that the
poles1Az and 2Az are above and below the contour, re-
spectively. Therefore, at argz52p, G(z) is defined by

G~z!5
1

Ap
PE

2`

`

dx
exp~2x2!

x22z
1 iAp

exp~2z!

1Az
. ~C3!

When z rotates further and has the argument of 2p,argz
,4p, the contour is more deformed by a down-going1Az
and an up-going2Az as shown in Fig. 8~d!. G(z) is defined
by

G~z!5
1

Ap
E

2`

`

dx
exp~2x2!

x22z
12iAp

exp~2z!

1Az
~C4!

for 2p,argz,4p. Finally, whenz makes two rotations,
the contour is shown in Fig. 8~e! which is equivalent to the
argz50 case shown in Fig. 8~a!.

When we calculate the integral appearing in theG func-
tion, we deform the integral

1

Ap
E

2`

`

dx
exp~2x2!

x22z
5

I ~1Az!

1Az
, ~C5!

where

I ~z!5
1

Ap
E

2`

`

dx
exp~2x2!

x2z
5 iApw~z! ~C6!

and w(z) is the complex error function. We then need to
evaluate w(z), which is computed following Refs. 18
and 19.
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