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State space method for predicting the spike times of a neuron
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It has been established that a biological neuron reproduces the precise spike response to identical fluctuating
input currents. We wish to predict the firing times of a given neuron for any input current. For this purpose, a
mathematical model is introduced for mimicking the voltage response of the neuron to an input current. In
predicting the firing times of a target neuron for a novel input current, we propose here the method of
estimating the probability of spike occurrence, instead of naively thresholding an instantaneous value of the
model voltage. The assessment is carried out maximally utilizing the information about the state space of the
voltage and its time derivative�s� of the model, in advance of a possible spike, with a time lag that is
determined by maximizing the mutual information. The prediction is significantly improved by the present
method in comparison to the naive thresholding method.
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I. INTRODUCTION

The spike generation process of a neuron is a highly non-
linear transformation from the input into the output. Since
Hodgkin and Huxley �1� described the ionic flux across the
neuronal membrane with four nonlinear differential equa-
tions, continuous efforts have been made to construct realis-
tic models by including more ionic channels in the model.
User-friendly simulation platforms, such as NEURON �2�
and GENESIS �3�, enable experimental neurophysiologists
to reproduce casually their experimental results or to explore
potentially interesting phenomena.

In spite of such successful aspects, those realistic models
have rarely been used for quantitative reproduction as well as
prediction of spike times. The difficulty would be due to the
complexity of the model accompanied with a large number
of undetermined free parameters �4–7�. Even if a true model
of a particular neuron is included in the family of models, it
is difficult to find the correct set of parameters in the high-
dimensional space of parameters that dominate the nonlinear
dynamics.

In contrast to such efforts toward the reality, there have
been studies for extracting the essence of the nonlinear dy-
namics of neuronal spiking. A representative is the model
proposed by FitzHugh �8� and Nagumo et al. �9�, in which
the number of equations is reduced to two: the fast and slow
variables which minimally represent the excitable dynamics.
The leaky integrate-and-fire model �10�, originally proposed
far in advance of the Hodgkin-Huxley model, consists of
only one variable that corresponds to the membrane voltage,
with a supplementary mechanism of voltage resetting at the
firing. Those simplified models have been useful for not only
extracting the essence of the dynamics, but also reducing the
computational cost of studying the large-scale dynamics of
an assembly of neurons, but the reality had been abandoned
from the beginning.

Recently, Kistler et al. �11,12� suggested extending the
leaky integrate-and-fire model so that real dynamics of any

neuron are adopted. The so-called “spike response model”
has been successful in not only reproducing the data but also
in predicting the spike times for a novel input current
�11–15�. Due to the linearity of the model, the integration
kernel can be learned easily from sample data. The fact that
such a simple model could achieve a fairly precise prediction
indicates that the spike occurrence is determined principally
by the simple subthreshold dynamics. In other words, the
highly nonlinear dynamics of a neuron can be decomposed
into two predictable processes: a relatively simple subthresh-
old dynamics and an action potential of a nearly fixed shape
�Fig. 1�.

We propose in the present paper a framework of improv-
ing the prediction of spike times by paying close attention to
the transfer between the two predictable processes. It is as-
sumed in the original spike response model that a spike oc-
curs if the voltage exceeds a certain threshold �12�. We re-
vised this rule so as to utilize the information about not only
the instantaneous voltage, but also its time derivative�s�.
Such a subthreshold state can provide cues for the occur-
rence of a spike, with a certain time difference. The time
difference is chosen so that the mutual information between
the subthreshold state and the occurrence of a spike is maxi-
mized.

By adopting a simple linear filter model �LFM� �16� and
the spike response model �SRM� �12� for mimicking the sub-
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FIG. 1. �Color online� The highly nonlinear dynamics of a neu-
ron is decomposed into two simple, predictable processes.
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threshold voltage response of a neuron, we examine how
much the present framework may improve the prediction for
simulation data of a fast-spiking neuron model �17� and an
intrinsic bursting neuron model �18�.

II. STATE SPACE METHOD

A. Deterministic feature of the spike generation

Biological neurons precisely reproduce the spike response
when presented with identical fluctuating input currents �19�.
This implies that the neuronal membrane potential V�t� is
uniquely determined by the past input current I�t�, or

V�t� = F�I�t�� , �1�

where F�I�t�� represents a functional of a time-dependent
current I�t�. The spike; the rapid swing in the polarity of the
membrane potential, could be defined practically by measur-
ing the membrane potential V�t� exceeding a certain thresh-
old,

V�t� � Vth. �2�

The time of each spike could be defined empirically either as
the first time the threshold is exceeded or as the peak of the
action potential that follows the crossing. We adopted the
latter definition in the present study.

We will denote in the following the output of a model �in
the lower case� as

vk�t� = fk�I�t�� , �3�

where k represents a set of model parameters. The model
parameters are learned by mimicking sample input-output
data. This is achieved by minimizing the integrated square
error,

Ek =� �V�t� − vk�t��2dt . �4�

B. The state space

No simplified threshold model is able to perfectly repro-
duce the output V�t� of a target neuron for a given input I�t�,
even in the learning stage. As the output of the model vk�t� is
not identical to the true membrane potential of the target
neuron V�t�, a spike occurrence cannot be obtained by sim-
ply applying the same threshold rule Eq. �2� to vk�t�. In this
paper, we suggest revising the prediction method so that a
spike occurrence is best predicted by observing the dynamics
of the model potential vk�t�.

Suppose that we have adjusted the parameters of the
model so that its output �vk�t�� best approximates the mem-
brane potential of a target neuron �V�t�� for a given set of
currents �I�t��. If the sample data set �I�t� ,V�t�� employed in
learning is large enough, the spike occurrence can be pre-
dicted by estimating an empirical probability of a spike being
generated at the time t, given a time-dependent orbit of an
estimated output, �vk�t��, as

pspike�t��vk�t��� . �5�

In a practical experiment, however, the amount of collect-
able data is insufficient for estimating the spiking probability
with respect to any orbit of vk�t�. In place of such exhaustive
examination, we suggest utilizing the state space information
such as the time derivatives of the model potential at a cer-
tain time. The spike occurrence at time t could be predicted
from the m-dimensional state space information v�
	�v ,v� , . . . ,v�m−1��, as observed at a time s before t, as

pspike�t�v� t−s� , �6�

where v� t−s	�v�t−s� ,v��t−s� , . . . ,v�m−1��t−s��.

C. The determination of the time shift

The time shift s introduced in the spike time prediction,
Eq. �6�, is chosen to make the prediction more reliable. We
propose optimizing the time shift s by maximizing the mu-
tual information between the state space information v� t−s and
the presence or absence of a spike at a time interval �t
−�t /2 , t+�t /2�, which is denoted as zt=1 or 0. The mutual
information �20� is given as

I�zt;v� t−s� = I�v� t−s;zt� = H�v� t−s� − H�v� t−s�zt� , �7�

where

H�v� t−s� = −� dv� t−sp�v� t−s�log p�v� t−s� , �8�

H�v� t−s�zt� = − 

zt��0,1�

� dv� t−sp�v� t−s�zt�p�zt�log p�v� t−s�zt� .

�9�

Here, p�v� t−s �zt� is the probability, given the presence or ab-
sence of a spike at time t � �t−�t /2 , t+�t /2�, of the state
being v� t−s, a time s before the spike.

The mutual information I�zt ;v� t−s� computed with sample
data according to Eq. �7� is depicted in Fig. 2, whose maxi-
mum position determines the optimal time shift s. With the

FIG. 2. The mutual information I�zt ;v� t−s� between the estimated
potential and the occurrence of a spike �computed for the fast spik-
ing neuron model with the current I�. �a� linear filter model �LFM�
and �b� spike response model �SRM�.
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time difference s optimized, we then obtain the empirical
probability of the spike occurrence at the time t, given the
state space information at the time t−s, using the Bayes theo-
rem,

pspike�t�v� t−s� � p�zt = 1�v� t−s� =
p�v� t−s�zt�p�zt�

p�v� t−s�
, �10�

with which we predicted the spike occurrence.

III. APPLICATION OF THE STATE SPACE METHOD

A. Target neurons

We evaluated our state space method of predicting spike
times by applying it to target data obtained for two neuron
models: a fast-spiking neuron model proposed by Erisir et al.
�17� which is adapted by Jolivet et al. �13� and an intrinsic
bursting neuron model proposed by Izhikevich �18�.

In those virtual experiments, two independent fluctuating
currents characterized by the same mean and standard devia-
tion are injected to each model neuron to obtain two sets of
input-output data �I�t� ,V�t��. A prediction model was first
trained using one sample data set. Then, the model param-
etrized with the first sample data is used to predict the output
of the second input current that is independent of the first.

Predictive performance was evaluated with the bench-
mark of Kistler et al. �11�, the “coincidence factor,”

���� =
Ncoinc − �Ncoinc�
1

2
�Ndata + Nmodel�

1

1 − 2��
, �11�

where Ndata and Nmodel, respectively, represent the numbers
of spikes in the original data and prediction model, Ncoinc is
the number of coincident spikes with the precision of �, and
�Ncoinc�=2��Ndata is the expected number of coincidences of
the data and the Poisson spikes of the same rate �. � is
chosen as 2 �ms� in accordance with Jolivet et al. �13�.

B. Prediction models

In the present study, we adopted a linear filter model �16�
and the spike response model �12� as prediction models. The
linear filter model, which we refer to as LFM here, simply
filters the input current in the manner

fk�I�t�� = �
0

�

K�t��I�t − t��dt� + v0, �12�

whose parameters consist of the shape of the kernel K�t� and
the constant v0. This LFM does not assume resetting the
potential.

Contrastingly, the spike response model, which is referred
to as SRM, resets the potential on some presumed condition
of firing and restarts integrating the input current in the man-
ner

fk�I�t�� = �
0

t−tf

K�t��I�t − t��dt� + 

j=1

f

H�t − tj� , �13�

where �t1 , t2 , . . . , tf� represent the times of �presumed� firings.
The parameters of the SRM include the shapes of the kernel

K�t� and a postspike hyperpolarizing potential H�t�, and a
threshold in determining the firing �resetting� time.

The parameters of these models are adjusted while mim-
icking the input and output so that the integrated square
error, Eq. �4�, is minimized in the nonparametrical fashion.
Figures 3�a� and 3�b� depict K�t� and vk�t� of the LFM;
�C�–�E� depict K�t�, H�t�, and vk�t� of the SRM.

C. Predicting the spike times

Based on the estimated voltage vk�t� with respect to
sample data, we compute the empirical probabilities, p�v� t−s�,
p�v� t−s �zt�, and p�zt� for two-dimensional state space informa-
tion v� t−s	�v�t−s� ,v��t−s��.

In computing empirical probabilities, we quantized the
two-dimensional phase space v� 	�v ,v�� and the time. In the
discretized time, we counted the occurrence of a spike, zt
=1, for the bins in which the true membrane potential V�t�
exceeds a threshold Vth. We confirmed that the results were
robust against the choice of the threshold over a fairly wide
range, and fixed the threshold as Vth=20 �mV�.

With a sufficiently small time step �we adopted �t
=0.1 �ms��, a single spike is transformed into a succession of
spike occurrences zt=1. In the case of the fast spiking neu-
ron, the number of zt=1 in each spike was about 20 �2 �ms��
and 40 �4 �ms�� for the current I and current II, whose char-
acteristics will be described later. The time shift s is deter-
mined so that the mutual information I�zt ;v� t−s� given by Eq.
�7� is maximized with respect to training data.

In computing the empirical spiking probability, we further
smoothed out the raw p�zt �v� t−s� with the Gaussian kernel in
time with the variance of 	p

2 �we adopted 	p=4 �ms� for the
LFM and 1 �ms� for the SRM� as

FIG. 3. �Color online� �a� The kernel K�t� estimated with LFM.
�b� The estimated voltage vk�t� �dashed line�, in reference to the
target voltage V�t� produced by the fast-spiking neuron model �solid
line�. �c�–�e� The kernel K�t�, postspike hyperpolarizing potential
H�t�, and the voltage vk�t� estimated with SRM.
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pspike�t� 	 

j

1

2
	p
2

exp�−
�j�t�2

2	p
2 �p�zt+j = 1�v� t+j−s��t

�14�

and presumed that a spike would be present when pspike�t� is
greater than a certain threshold pspike

* . Though a theoretical
method for searching the threshold parameter is suggested
�21�, in this paper we employed the empirical method; i.e.,
the threshold parameter was searched for to maximize the
coincidence factor �.

IV. THE PERFORMANCE OF THE PREDICTION
METHOD

In this section, we show the performance of our state-
space method by applying it to target data produced by the
fast spiking neuron model �13,17� and the intrinsic bursting
neuron model �18�. The details of the neuron models are
described in the Appendixes.

A. Fast-spiking neuron model

For the fast-spiking neuron model, we examined two
kinds of fluctuating currents characterized with different
means and standard deviations generated by the Ornstein-
Uhlenbeck process: �current I� the mean �=3.0 ��A�, the
standard deviation 	=1.0 ��A�, and the time scale of the
fluctuation �=2 �ms�; �current II� the mean �=1.0 ��A�, the
standard deviation 	=3.0 ��A�, and the time scale of the
fluctuation �=2 �ms�. For each current statistic, either I or II,
we generated two independent realizations of currents; one
for the training and the other for testing the generalization
ability.

Table I summarizes the values of maximum mutual infor-
mation computed according to Eq. �7� and the optimal time
shift computed for the two types of currents I and II, using
the LFM and the SRM. For each current, the optimal time
shifts determined with two models were similar, but the mu-
tual information is larger for SRM.

Figure 4 compares the results of spike time prediction
achieved by a naive thresholding method and our state space
method, in reference to the original spike times, respectively,
using the LFM and the SRM. It is observed from this figure
that the prediction based on the state space method is more
accurate and robust than that of the thresholding method.
Figure 5 depicts a state space orbit of a target neuron for an
instance of the spike generation, and compares orbits of the

LFM and the SRM that try to mimic it. The prediction model
can mimic the target orbit in the subthreshold region but fails
to catch the spiking orbit in the suprathreshold region. The
spike occurrence is predicted by estimating the conditional
probability, Eq. �10�, given the state �v ,v�� of the prediction
model. In the present framework, the state space information
about the probability of spiking is effectively used for pre-

TABLE I. The values of maximum mutual information and the
optimal time shift computed for the fast spiking neuron model with
two types of currents I and II.

Current Model Imax s �ms�

Current I LFM 2.710−2 2.0

Current I SRM 1.310−1 1.8

Current II LFM 5.410−2 1.2

Current II SRM 1.010−1 0.9

FIG. 4. �Color online� Comparison of the spike time predictions
obtained with the LFM and the SRM for the fast-spiking neuron. �a�
The target membrane potential V�t�. �b� and �d� Spikes predicted
�vertical arrows� by naively thresholding the model potential of the
LFM and the SRM. �c� and �e� Spikes predicted by the present state
space method.

FIG. 5. �Color online� �a� An orbit of a target fast spiking neu-
ron for an instance of the spike generation in the state space of
�V ,V�� �from 17 810 to 17 840 �ms� of Fig. 4�. �b� Magnified view.
�c� and �d� The orbits of the prediction models LFM and SRM that
try to mimic the target orbit. Contours represent the probability of
spike occurrence computed with the Bayes formula, Eq. �10�. Three
points a, b, and c in the spaces of �V ,V�� and �v ,v�� represent the
states of identical times, respectively, t=17 810, 17 818, and
17 822 �ms�.

RYOTA KOBAYASHI AND SHIGERU SHINOMOTO PHYSICAL REVIEW E 75, 011925 �2007�

011925-4



dicting spike times. The contour lines for higher probabilities
of spiking for the LFM resemble an ad hoc “dynamic spike
threshold” introduced by Azouz and Gray �22�, in which v
drops with dv /dt along the contour lines. However, it is
noteworthy that the contour lines for lower probabilities for
the LFM, as well as all the contour lines for the SRM are
inversely curved: v increases with dv /dt along the contour
lines.

The coincidence factors � evaluated for a naive threshold-
ing method and the state space method based on the LFM
and the SRM are summarized in Table II. The prediction is
significantly improved by our method, due to not only exam-
ining the state space but also introducing the time shift.

B. Intrinsic bursting neuron model

For the intrinsic bursting neuron model, we also examined
two kinds of fluctuating currents: �current III� the mean �
=7.5 ��A�, the standard deviation 	=2.5 ��A�, and the time
scale of the fluctuation �=2 �ms�; �current IV� the mean �
=2.5 ��A�, the standard deviation 	=7.5 ��A�, and the time
scale of the fluctuation �=2 �ms�. Due to the significant dif-
ference between the model neurons, we had to adopt here the
currents different from those applied to the fast spiking neu-
rons. For each current statistic, either III or IV, we also gen-
erated two independent realizations of currents; one for the
training and the other for testing the generalization ability.

Table III summarizes the values of maximum mutual in-
formation and the optimal time shift computed for the two
types of currents III and IV, using the LFM and the SRM.
Interestingly, the optimal time shift s is crucially dependent
on the prediction model �LFM, SRM� in this case.

Figure 6 compares the results of spike time prediction
achieved by a naive thresholding method and our state space
method. As in the case of the fast-spiking neuron, the pre-
diction based on the state space method is more accurate and
robust than that of the naive thresholding method. It is note-
worthy that the detailed feature of the bursting was precisely
predicted by applying our state space method to SRM. Fig-
ure 7 depicts a state space orbit of a target neuron for an
instance of the spike generation and compares orbits of the
LFM and the SRM that try to mimic it. In the case of the
SRM, the contour lines for the probability of spiking is sig-
nificantly curved. This indicates the possibility that the pre-

TABLE II. The coincidence factors evaluated for the fast-
spiking neuron with various methods of prediction; naive threshold-
ing method, the state space method without a time shift, and the
state space method with the time shift optimized.

Model Method Current I Current II

LFM Naive thresholding 0.15 0.49

LFM State space �s=0� 0.27 0.58

LFM State space �s: optimized� 0.30 0.59

SRM Naive thresholding 0.42 0.74

SRM State space �s=0� 0.48 0.75

SRM State space �s: optimized� 0.57 0.77

TABLE III. The values of maximum mutual information and the
optimal time shift computed for the intrinsic bursting neuron with
two types of currents III and IV.

Current Model Imax s �ms�

Current III LFM 3.110−2 0.6

Current III SRM 6.010−2 2.2

Current IV LFM 5.810−2 0.7

Current IV SRM 7.210−2 1.2

FIG. 6. �Color online� Comparison of the spike time predictions
obtained with the LFM and the SRM for the intrinsic bursting neu-
ron. �a�–�e� are the same as in Fig. 4.

FIG. 7. �Color online� �a� An orbit of a target intrinsic bursting
neuron for an instance of the spike generation in the state space of
�V ,V�� �from 6520 to 6530 �ms� of Fig. 6�. �b�–�d� are the same as
in Fig. 5. Three points a, b, and c represent the states of identical
times, respectively, t=6522, 6525, and 6527 �ms�.
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diction is improved significantly with our state space method
in which the information of dv /dt is utilized. The improve-
ment is actually more significant in the SRM case than in the
LFM case, as seen in Table IV.

V. DISCUSSION

We proposed a method of evaluating the probability of the
spike occurrence by observing the state space of the voltage
and its time derivative�s� in advance of the possible spike
time. The prediction was significantly improved by the state
space method compared to the prediction obtained by na-
ively thresholding an instantaneous value of the estimated
potential.

The state space examined in this paper was two-
dimensional, v� = �v ,v��. Possible extension to the higher di-
mensional space constitutes an interesting issue, especially,
the exploration of the optimal spatial dimension for predic-
tion, for a given set of data. The application of the present
method to the real data is the most interesting problem. We
recently started to work in this direction and categorize neu-
rons based on their spiking mechanisms.

The state space method developed here is a rather general
framework that may be applicable to any nonlinear phenom-
ena composed of locally predictable dynamics, and there are
studies that bear some similarity to ours. In the following, we
would like to discuss the relationships of the existing meth-
ods to the present method.

A. The escape rate model

Biological neurons reproduce the spike response for iden-
tical fluctuating input currents fairly precisely, but there still
remains a certain variability. The “escape rate model”
�12,23� tries to represent such variability by replacing the
deterministic thresholding principle with the following sto-
chastic principle: By assuming the “voltage dependent in-
stantaneous probability of firing” to be of the form of

f„v�t� − vth… = exp�v�t� − vth

�v
� , �15�

the firing probability is explicitly obtained as

pspike�t� = 1 − exp�− �tf„v�t� − vth…� , �16�

where �t is a time bin. Jolivet et al. estimated this probability
from experimental data �15�.

Our state space method can be viewed as giving the
deeper foundation of this stochastic principle, by deriving the
firing probability from the Bayes theorem, as Eq. �10�. The
firing rule similar to Eq. �16� can be obtained with our state
space method, by reducing the state space v�
	�v ,v� , . . . ,v�m−1�� to be one-dimensional, m=1, and ignor-
ing the time shift, s=0. Figure 8 compares the firing prob-
abilities of our state space method and the escape rate model,
estimated for the fast-spiking neuron using the SRM. It is
observed that the above escape rate model �solid line� can be
fitted to the probability computed by our method �crosses�.

B. The generalized spike triggered average

Agüera y Arcas et al. �24� proposed a method for estimat-
ing kernel�s� for predicting spike times, based on the linear-
nonlinear-Poisson �LNP� framework �25,26�. They assumed
that the firing probability can be represented as

pspike�t� = g�x1,x2, . . . ,xD� , �17�

xi =� f i�s�I�t − s�ds �i = 1,2, . . . ,D� , �18�

and proposed the method to determine f i�s� and g��xi�� from
the input current I�t� and the observed spike times tj�j
=1,2 , . . . ,n�.

Our method applied to the LFM can be mapped to their
framework by regarding as fm�t�=K�m��t� in Eq. �18� and

v�m��t� =� K�m��s�I�t − s�ds �m = 0,1,2, . . . � . �19�

In our framework, the kernel was directly determined from
the input-output data �I�t� ,V�t��. It would be interesting to
compare our kernel with the kernel estimated from I�t� and
spike times according to the method of Agüera y Arcas et al.
�24�.

Our method applied to the SRM can be rewritten as

v�m��t� =� K�m��s�I�t − s�ds + 

j

H�m��t − tj�

�m = 0,1,2, . . . � . �20�

In this case, the effects of the past spikes are taken into
account by the term of H�m��t− tf�, and the model is beyond

TABLE IV. The coincidence factors evaluated for the intrinsic
bursting neuron.

Model Method Current III Current IV

LFM Naive thresholding 0.32 0.52

LFM State space �s=0� 0.40 0.55

LFM State space �s: optimized� 0.40 0.56

SRM Naive thresholding 0.26 0.56

SRM State space �s=0� 0.27 0.59

SRM State space �s: optimized� 0.44 0.76
FIG. 8. Crosses: the firing probability p�zt=1 �vt−s� for predict-

ing the fast-spiking neuron with the SRM computed using the
Bayes theorem Eq. �10� ��t=0.1 �ms��. Solid line: the escape rate
model Eq. �16� fitted to the Bayes probability ��v=1.15, vth=12.7�.
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the simple projection operation of their suggestion. It would
be nevertheless interesting to extend the present analysis to a
higher dimensional state space, or to a curved space, as was
suggested by them.
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APPENDIX A: FAST-SPIKING NEURON MODEL

The fast-spiking neuron model proposed by Erisir et al.
�17� was used in this contribution as a �virtual� target experi-
ment. The details of the model were adapted here to Jolivet
et al. �13� to allow the direct comparison of the perfor-
mances. Specifically, the model is described as

C
du�t�

dt
= − �INa + IK1

+ IK2
+ IL� + Iext�t� , �A1�

INa = gNam
3h�u − ENa� , �A2�

IK1
= gK1

n1
4�u − EK�, IK2

= gK2
n2

2�u − EK� , �A3�

IL = gL�u − EL� , �A4�

where the gate variables x	n1, n2, m, and h obey the differ-
ential equations of the form

dx

dt
= �x�u��1 − x� − �x�u�x , �A5�

whose parameters �x�u� and �x�u� are functions of u, as
listed in Table V.

APPENDIX B: INTRINSIC BURSTING NEURON MODEL

Another target neuron we adopted is the Izhikevich model
that exhibits intrinsic bursting �18�. Specifically, the model is
described as

du�t�
dt

= 0.04u2 + 5u + 140 − w + I , �B1�

dw�t�
dt

= a�bu − w� , �B2�

where u and w represent the membrane potential and a mem-
brane recovery variable, respectively, with auxiliary after-
spike resetting mechanisms,

if v � 30�mV�, then �u → c ,

w → w + d .
� �B3�

The parameters were chosen as a=0.02, b=0.2, c=−55, and
d=4.
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