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Solvation effects in near-critical binary mixtures
Akira Onuki and Hikaru Kitamura
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 8 April 2004; accepted 14 May 2004!

A Ginzburg-Landau theory is presented to investigate solvation effects in near-critical polar fluid
binary mixtures. Concentration dependence of the dielectric constant gives rise to a shell region
around a charged particle within which solvation occurs preferentially. As the critical point is
approached, the concentration has a long-range Ornstein-Zernike tail representing strong critical
electrostriction. If salt is added, strong coupling arises among the critical fluctuations and the ions.
The structure factors of the critical fluctuations and the charge density are calculated and the phase
transition behavior is discussed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1769357#

I. INTRODUCTION

Solvation effects are of great importance in understand-
ing the degree of solubility of ions in various polar
solvents.1,2 A large number of papers have been devoted on
this problem.3–6 The theoretical approaches range from solv-
ing phenomenological continuum models to performing
computer simulations on microscopic models. Originally,
Born used a simple continuum theory of electrostatics to
derive the solvation~polarization! free energy of a single ion
with chargeZe,1,7

DGB52~Z2e2/2RB!~121/«!, ~1.1!

where RB represents the ionic radius.1,8 In his theory the
solvent dielectric constant« is assumed to be homogeneous
and the contribution without polarization («51) or in
vacuum is subtracted. In the line of continuum models, con-
siderable efforts have been made to take into account the
dielectric saturation near the ion core~which are particularly
crucial for multivalent ions!.9,10 The Born theory also ne-
glects possible inhomogeneity of« in the vicinity of the
ion due to a change in the density for one-component fluids
or in the concentration for binary fluid mixtures
~electrostriction!.11–14

We point out that the previous theories have not yet
treated the physics on mesoscopic scales such as solvation
effects on phase transitions or collective phenomena at non-
dilute salt concentrations. In this paper we will show that
such effects can be conveniently studied within a scheme of
Ginzburg-Landau theory. First, we will apply this approach
to solvation around a charged particle in polar binary mix-
tures near the consolute critical point. Here important is the
gradient free energy well known in the field of critical
phenomena,15 which will reasonably accounts for the long-
range electrostriction around ions. In the previous
theories11–13 in the physical chemistry, the gradient free en-
ergy has been neglected. On the basis of these results we will
then discuss the effects of low-density salt in polar binary
mixtures in a Debye-Hu¨ckel-type approximation. This sec-
ond part is an extension of a previous paper by one of the
present authors.16 We also note that similar effects have re-

cently been discussed when the solvent is a liquid crystal,17

where the director field can be much deformed around a
charged particle over a long distance.

II. SOLVATION AROUND A SINGLE CHARGED
PARTICLE

A. Electrostatics

We place a charged particle in a near-critical binary mix-
ture in a one-phase state in equilibrium, in which the dielec-
tric constant«5«(f) depends strongly on the concentration.
This is the case when the two components have very differ-
ent dielectric constants,«A and «B , with «A considerably
larger than«B . There is no established theory of the dielec-
tric constant of such mixtures. However, empirically,« can
be expressed roughly as a linear function of the concentra-
tion in many relevant mixtures.2 In the present theory, for
simplicity, we assume the linear dependence,

«5«01«1f, ~2.1!

where «0 and «1 are constants~with «B5«0 and «A5«0

1«1) and f is the concentration or the volume fraction of
the preferred componentA. Debye and Kleboth18 performed
a light scattering experiment on a mixture of nitrobenzene
(NB)12,2,4-trimethylpentane in electric field, for which
«~f! increased from 2.1 to 34.2 with increasing NB with
]2«/]f2528.7 near the critical point. The measured curve
of «~f! versusf may be fairly fitted to the linear form~2.1!
~and fitting is better in the regionf*fc). In their experi-
ment the critical temperature was 29.16 °C and the critical
concentration was 51.7 wt % of NB~corresponding to a vol-
ume fraction of 0.381 of NB!. In this paper the dielectric
constant is assumed to be independent of electric field, al-
though this is a questionable assumption in the vicinity of
small ions.9,10

The electric fieldE52“F is induced by the electric
charges and the electric potentialF satisfies

“•«“F524pr~r !, ~2.2!

wherer~r ! is the charge density. In our problem the space
dependence of« is crucial.
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B. Ginzburg-Landau free energy

We construct a simple theory for a nearly incompressible
mixture near the consolute critical point at a given pressure.
Thenc5f2fc is the order parameter of liquid-liquid phase
transition, wherefc is the critical concentration. The total
Ginzburg-Landau free energy of the system is given by

F5E dr F f 1
C

2
u“fu21

«

8p
E2G . ~2.3!

The molecules of the two components have a common vol-
ume v05a3, although they can have different volumes in
general. The free-energy densityf 5 f (f) is given by the
Hildebrand19 ~or Bragg-Williams15! expression

f 5
kBT

v0
@f ln f1~12f!ln~12f!1xf~12f!#, ~2.4!

wherex is the interaction parameter dependent on the tem-
peratureT. The critical-point values off andx are

fc51/2, xc52, ~2.5!

respectively, in the mean field theory. The order parameter is
defined by

c5f21/2. ~2.6!

The coefficientC of the gradient term is of orderkBT/a and
we will use a simple form20,21

C5kBTx/a. ~2.7!

The last term inF is the electrostatic contribution. The free-
energy functional~2.3! supplemented with Eq.~2.2! can be
used generally in the presence of ions in polar near-critical
fluids.

C. Preferential solvation

We consider a single charged particle at the origin of the
reference frame. The charged particle has a radiusR. It is
convenient to assume that the charge density is homogeneous
within the sphere as

r5Ze/~4pR3/3! ~r ,R! ~2.8!

and vanishes outside the spherer .R. The total charge is
given byZe. In our theoryR is a phenomenological param-
eter. Then the volume fractionf and the electric potentialF
can be defined even within the sphere and, for the single
charge case, all the quantities may be assumed to depend
only on space as

f5f~r !, F5F~r !, E52F8~r !r 21r , ~2.9!

where r 5ur u and F85dF/dr. The concentrationf(r )
decrease fromf(0) to f` with increasingr ~see Fig. 1 to be
presented below!. In this case Eq.~2.2! is solved to give

2«~f!F8~r !5
4p

r 2 E
0

r

dr1r 1
2r~r 1!5

Ze

r 2 u~r !, ~2.10!

whereu(r )51 for r .R and

u~r !5~r /R!3 ~r ,R! ~2.11!

under the assumption~2.8!. The electrostatic free energy is
now simply of the form

E dr
1

8p
«E25

1

2
Z2e2E

0

`

dr
1

«r 2 u~r !2. ~2.12!

If « is replaced by the dielectric constant far from the ion
«` , the above quantity is integrated to become a Born con-
tribution @see Eq.~1.1!#,7

FB`5Z2e2/2«`RB . ~2.13!

In terms of the critical-point dielectric constant«c5«0

1«1/2 and the order parameterc`5f`21/2 far from the
ion, we have

«`5«01«1f`5«c1«1c` . ~2.14!

The Born radius is given by

RB55R/6. ~2.15!

In the integral~2.12! the contribution from the ion interior
r ,R is 1/5 of that from the ion exterior, resulting in the
factor 1/(111/5)55/6 in Eq.~2.15!. However, if we replace
« by its value at the ion«(0)5«01«1f(0), we obtain an-
other estimate,

FB05Z2e2/2«~0!RB5FB`«c /@«01«1f~0!#. ~2.16!

As will be calculated in the Appendix, the equilibrium free
energy of a single ion accounting for the inhomogeneousf
and« in the mean field theory reads

Fsol54pE
0

`

drr 2@ f̂ 1C~f8!2/21«E2/8p#

5
4p

3 E
0

`

drFCr2~f8!21
Z2e2u2

8pr 4

d

dr S r 3

« D G , ~2.17!

where

f̂ ~f!5 f ~f!2 f ~f`!2m~f2f`!, ~2.18!

with m5 f 8(f`) being the chemical potential difference. As
shown in the second line of Eq.~2.17!, Fsol consists of the
gradient contribution (}C) and the electrostatic contribution

FIG. 1. Concentration profilef(r ) around an ion for variousA at x
51.99 wherej510a andf→f`51/2 far from the ion.
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(}e2). The latter becomes the Born contribution~2.13! or
~2.16! if « is replaced by«` or «(0). In Fig. 7 below we
shall see the relationFB0,Fsol,FB` .

With the aid of Eq.~2.11! the minimization condition
dF/df5m5const in equilibrium is rewritten as

lnF112c

122cG22xc2xa2¹2c2n5A
a4u2

«̂2r 4 , ~2.19!

where«̂ is the normalized dielectric constant,

«̂5«/«c511~«1 /«c!c. ~2.20!

The dimensionless chemical potential differencen
5v0m/kBT is written in terms ofc`5c(`) as

n5 ln@~112c`!/~122c`!#22xc` . ~2.21!

The coefficientA on the right-hand side of Eq.~2.19! repre-
sents the strength of solvation defined by

A5«1Z2e2/8p«c
2kBTa5«1Z2,B/8p«ca. ~2.22!

In the second line the Bjerrum length

,B5e2/«ckBT ~2.23!

at the critical concentration is introduced. For example, if we
set,B;14 Å, a;2 Å, «1 /«0;2, we obtainA;Z2/5. In the
vicinity of the ion the right-hand side of Eq.~2.19! takes a
maximum of orderAa4/R4 ~because«̂;1). If this maximum
is much larger than 1, there arises a solvation shell around
the ion within which preferential solvation is strong andf
>1. Thus the condition of strong solvation may be expressed
as

A.~R/a!4. ~2.24!

The solvation is stronger for smallerR/a, which is a well-
known result in the literature.1

It is worth noting that Padova presented an equation
similar to Eq.~2.19! for the concentration in the vicinity of
an ion using thermodynamic arguments,11 where C50 and
the gradient term}¹2C did not appear (C50). Even far
from the critical point, as can be seen in Fig. 8 below, the
result withC50 is considerably different from that with the
gradient term in the strong solvation case.

D. Relations near the critical point

If the system is near the critical point far from the
charged particle, we havex>2 andf`>1/2. Then the in-
verse correlation lengthk5j21 far from the ion is deter-
mined by

a2k254/~124c`
2 !x22>22x18c`

2 . ~2.25!

As T→Tc in the upper critical solution temperature~UCST!
case we may set

22x>D1~T/Tc21!. ~2.26!

The correlation length in the mean field expression becomes
j5j01(T/Tc21)21/2 with

j015aD1
21/2 ~2.27!

in one-phase states at the critical composition.18 The fluid
can remain near-critical only in the region whereAa4/r 4

!1 or

r @A1/4a. ~2.28!

The shell radius should thus grow asA1/4a for A@1. In the
near-critical region, Eq.~2.19! may be approximated in the
Landau expansion form,16

a2@k22¹2#dc1
8

3
~3c`dc21dc3!5A

a4u2

2r 4 , ~2.29!

wheredc5c2c` . This equation does not hold within the
solvation shell ifc is not small there for strong solvation, but
holds generally far from the ion. If we retain the linear terms
only in the above equation, we obtain (k22¹2)dc>0 far
from the ion, so there should emerge the Ornstein-Zernike
tail,

dc~r !>
B

r
e2kr , ~2.30!

in the concentration. The coefficientB is a microscopic
length to be determined in the following.

In the Landau theory of phase transition~usually pre-
sented in the context of Ising spin systems!,15 the right-hand
side of Eq.~2.19! or Eq. ~2.29! plays the role of a~position-
dependent! magnetic fieldh. If h were homogeneous and
small, we would have the linear responsedc;h/k2. In the
present case, however,h5h(r ) steeply changes in space
(}r 24) from a maximum of orderAa4/R4 to zero and as a
result the gradient term2¹2c becomes increasingly crucial
with decreasingk.

E. Weak solvation limit near the critical point

It is instructive first to consider the simplest case of very
small A near the critical point where 0,22x!1 andc`

50. Furthermore, ifc(0)!ka holds at the ion, we may
neglect the second term on the left-hand side of Eq.~2.29! in
the whole space to obtain the linearized equation,

~k22¹2!c5Au~r !2a2/2r 4, ~2.31!

where we have set«̂51. This equation is readily integrated
to give

c~r !5
Aa2

4kr E0

` dr1

r 1
3 e2kur 2r 1uu~r 1!22

D

r
e2kr , ~2.32!

where the coefficientD is determined such thatc(0) is fi-
nite. We can see the relations

c~0!52kD5Aa2E
0

`

dr1e2kr 1u~r 1!2/2r 1
3

>3Aa2/8R2 ~kR!1!. ~2.33!

The second line holds forkR!1. As stated above~2.31!, the
linearization is allowed for

A!kR2/a or «1Z2,B/8p«c!R2k. ~2.34!

From Eq.~2.31! the three-dimensional Fourier transfor-
mation ofc becomesck5Hk /(k21k2), where

Hk52pAa2E
0

`

dru~r !2 sin~kr !/kr3. ~2.35!
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Here Hk tends to a well-defined long-wavelength limitH0

5 limk→0 Hk for kR!1. Thus, for kR!1, c(r ) approxi-
mately takes the Ornstein-Zernike form~2.30! in a wide
space region withB5a2H0/4p. Here,

B5Aa2E
0

`

dru~r !2/2r 25Aa2/2RB , ~2.36!

with RB being given by Eq.~2.15!. This form also directly
follows from the integral form~2.32! ~by taking the limitk
→0). If we do not assume the special formC in Eq. ~2.7!,
we have B5(kBT/C)Aa/RB @which will be used in Eq.
~3.12! below#.

At very long distancesr .l, however, the gradient term
2¹2c in Eq. ~2.31! becomes negligible to give

c~r !>Aa2/2k2r 4. ~2.37!

This is the relation of linear response as stated at the end of
Sec. III D. The crossover lengthl is longer thanj5k21 and
is determined by the balance of the Ornstein-Zernike form
~2.30! and the long-distance limit~2.37! as

~kl!3e2kl5kR. ~2.38!

For example,l>10.8j for R50.03j. Thuskl increases as
kR decreases.

We may then calculate the excess accumulationC of the
componentA around the ion as

C5E drc~r !52pAa2/k2RB54pB/k2, ~2.39!

which coincides with the space integral of the Ornstein-
Zernike form~2.30! and grows strongly on approaching the
critical point. The integral of the tail~2.38! in the regionr
.l is much smaller than the value in Eq.~2.39! by R/l and
is canceled with a contribution from the correction to the
Ornstein-Zernike form in the ranger ,l.

F. Behavior at the critical point

At the critical point (x52 andf`50.5),c(r ) is of the
form Ba/r at long distances in the linear theory. We here
show that it is delicately modified in the nonlinear theory. We
rewrite Eq.~2.29! for r @a as

2a2¹2c1
8

3
c35A

a4

2r 4 . ~2.40!

We setG(s)5rc(r )/a with s5 ln(11r/a) to obtain

~12e2s!2F d2

ds2 2
d

dsGG~s!5
8

3
G~s!32

1

2
Ae2s. ~2.41!

For s@1 we assume the algebraic decayG(s);s2b. Then
the above equation is approximated as2dG(s)/ds
>8G(s)3/3, yielding the solution

G~s!>~31/2/4!s21/2 ~2.42!

with b51/2. Thus the asymptotic behavior at extremely long
distancess@1 should be

c~r !>31/2a/@4rAln~11r /a!. ~2.43!

The above form will turn out to be consistent with numerical
analysis in Fig. 6 to be presented below.

G. Numerical results

We then show numerical solutions of Eq.~2.19! around
an ion in equilibrium one-phase states for the case«0510
and «1570 in Eq. ~2.1!, assuming the model charge distri-
bution ~2.8!. The ion radius is given byR50.3a in terms of
the solvent radiusa.

We show the concentration profile,f(r ) versusr /a, in
Fig. 1 and the concentrationf(0) at the ion center in Fig. 2.
Notice thatf(r )>f(0) within the interior of the ionr &R
owing to the smoothing effect of the gradient term. We can
see that the concentrationf(0) at the ion increases obeying
the linear growth~2.31! for A!1 and saturates into 1 for
A*0.3 and that the shell region expands with increasingA.
The shell radiusRshell may be defined such thatf(r ).0.75
for r ,Rshell, say. ThenRshell;Aa with the effective expo-
nent a being about 1/4 for the profiles~d!–~g! in Fig. 1.
Below ~2.28! we have discussed thata should tend to 1/4 for
A@1.

In Fig. 3 we examine the behavior ofc(r )5f(r )21/2
with f`51/2 atA50.346. We can see that the combination
rc(r )/a behaves as (B/a)exp(2kr) in a wide intermediate
rangea&r &l. The correlation lengthj5k21 is given by
10a for x51.99 and by 103/2a for x51.999. Forr *l, c(r )
can be fitted to ther 24 tail in Eq. ~2.37!. Figure 4 displays
B/a versusA for x51.99 and 1.999 atf`50.5. In the non-
linear regimeA*0.1 the data may be fitted toB/a;A0.4. In
Fig. 5 we plot the crossover lengthl divided bya obtained
from equating the two fitted functions~2.30! and ~2.37!. In
the linear regime with smallA, l is given by Eq.~2.37!.

The concentration profile just at the critical point is also
of great interest. In Fig. 6 we plot the combinationc(r )rs1/2

versuss5 ln(11r/a) in the regions,12 or r /a,e1221 for
A50.2,1, and 5. If Eq.~2.42! is valid, this combination
should tend to 31/2/4>0.43. Thus the three curves are con-
sistent with Eq.~2.42!.

Figure 7 displays the numerically calculated solvation
free energyFsol in Eq. ~2.17! divided byFB` in Eq. ~2.13!.

FIG. 2. Concentration deviationc(0)5f(0)21/2 at the ion center for
variousA at x51.99.
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Also plotted is the ratioFB0 /FB`5«c /@«01«1f(0)# in Eq.
~2.26!. Thus we find thatFsol is intermediate betweenFB0

and FB` . Coincidence of the two curves ofx51.99 and
1.999 implies thatFsol tends to a constant on approaching the
critical point.

In Fig. 8 we demonstrate thatrc(r )/a versusr /a far
above the critical point withx51.5 andf`50.5. The pro-
file can be fitted neither to the Ornstein-Zernike form nor to
the solution of Eq.~2.19! without the gradient term. The
curves from the local equilibrium theory without the gradient
term11 considerably differ from that in our theory even away
from the critical point.

III. NEAR-CRITICAL FLUIDS WITH IONS

Experimentally, it has long been known that even a small
fraction of ions ~salt! with c!1 dramatically changes the

liquid-liquid phase behavior, wherec is the mass or mole
fraction of ions. For smallc, the UCST coexistence curve
shifts upward as

DTion5Aionc1O~c2!, ~3.1!

with large positive coefficientAion , expanding the region of
demixing. For example,Aion /Tc;10 with Tc;300 K when
NaCl was added to cyclohexane1methyl alcohol22 and to
triethylamine1H2O.23 The LCST coexistence curve of
2,6-lutidine1H2O~D2O!, the shift is downward with
uAionu/Tc;10.24 Similar large impurity effects were ob-
served when water was added to methanol1cyclohexane.25

In some aqueous mixtures, even if they are miscible at allT
at atmospheric pressure without salt, addition of a small
amount of salt gives rise to reentrant phase separation
behavior.26–29 Such reentrant phase behavior is believed to
arise from hydrogen bonding.

A. Ginzburg-Landau free energy

In the preceding section we have examined the concen-
tration profile around a single fixed charged particle. We then
need to construct a theory on polar binary mixtures in which
a small amount of salt is doped.16 Even if the ion concentra-
tion is very small, the interactions among the ions should be

FIG. 3. Numerical rc(r )/a vs r /a on a semilogarithmic scale atA
50.346 for x51.99 ~lower solid line! and 1.999~upper solid line! with
f`51/2. The numericalc(r )5f(r )21/2 can be excellently fitted to the
Ornstein-Zernike form~corresponding to dotted lines! in the intermediate
rangea&r &l, while it can be fitted to ther 24 tail ~2.37! ~corresponding to
broken lines! for r *l. The curve ofl vs A will be given in Fig. 5.

FIG. 4. CoefficientB of the Ornstein-Zernike tail in the concentration pro-
file as a function ofA at f`50.5 for x51.99 and 1.999. It exhibits only
weak dependence on 22x}T2Tc .

FIG. 5. Crossover lengthl from the Ornstein-Zernike tail~2.30! to ther 24

tail ~2.37! at f`50.5 for x51.99 wherej510a.

FIG. 6. c(r )rs1/2 vs s5 ln(11r/a) at the critical point forA50.2,1, and 5.
The curves appear to approach)/4 very slowly supporting~2.43!.
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much influenced by the preferential solvation near the criti-
cal point. We here present a Ginzburg-Landau free energy in
which the fluctuations on the spatial scale of the solvation
shell radiusRshell have been coarse grained. Then the order
parameterc(r )5f(r )2fc and the ion densitiesn1(r ) and
n2(r ) for the two species do not change appreciably on the
scale ofRshell.

The two ion species, 1 and 2, have charges,Q15Ze and
Q252e. The average densities are written as

^n1&5n̄, ^n2&5Zn̄, ~3.2!

where^¯& denotes taking the space average. Notice that the
charge neutrality condition yieldsZ^n1&5^n2&. The total
charge number density is written as

ntot5~Z11!n̄. ~3.3!

We propose the free energyF in the form16

F5E dr F f ~c!1
C

2
u“cu21

«c

8p
E2

1kBT (
K51,2

~nK ln nK1wKnKc!G . ~3.4!

The first line is of the same form as the free energy in Eq.
~2.3!, but f (f) can be expressed in the Landau expansion
form f 5rc2/21u0c4/4 because the noncritical behavior in
the solvation shell is not treated here. In addition we do not
assume the special form~2.7! for the coefficientC. The elec-
tric field E52“F here arises from the Coulomb interaction
among the ions so that

¹•E52¹2F54p«c
21r~r !, ~3.5!

where

r~r !5e@Zn1~r !2n2~r !# ~3.6!

is the charge density. Therefore, the electrostatic part of the
free energy is rewritten as

E dr
«c

8p
E25

1

2«c
E drE dr 8r~r !r~r 8!

1

ur2r 8u
. ~3.7!

Because the small-scale electrostriction on the scale ofRshell

has been coarse grained, we neglect the small-scale inhomo-
geneity of the dielectric constant and set«5«c with «c being
the dielectric constant at the critical point.

The free energy with the bilinear coupling (}nKc) was
already examined in Refs. 30 and 31, where the coupling
constantswK were phenomenological parameters, however.
We claim that the small-scale solvation or electrostriction is
the origin of the bilinear coupling. In fact, the minimization
of F at fixed inhomogeneous ion densities yields

m5 f 82C¹2c1kBT~w1n11w2n2!5const, ~3.8!

where f 85] f /]c. For small inhomogeneous deviationsdc
5c2^c& and dnK5nK2^nK& (K51,2) we linearize the
above equation to obtain

C~k22¹2!dc1kBT~w1dn11w2dn2!50, ~3.9!

where Ck25]2f /]c2 with k being the inverse correlation
length. Notice that if the ion densities are localized in regions
shorter thanj5k21, dc has Ornstein-Zernike tails in the
form of Eq.~2.30! around such localized regions. ThuswK is
written as

wK52~4pC/kBT!BK ~K51,2!, ~3.10!

where BK is the coefficient of the Ornstein-Zernike tail
around an ion of the speciesK. If the two components of the
fluid mixture have the same molecular sizea as assumed in
the preceding section,BK is determined by the parameters
AK in Eq. ~2.22!, where

A1 /Z25A25«1,B/8p«ca. ~3.11!

In particular, in the linear solvation regime with smallAK ,
Eq. ~2.36! yields

wK524pAKa/RBK ~ linear!, ~3.12!

FIG. 7. Solvation free energyFsol in Eq. ~2.17! divided byFB` in Eq. ~2.13!
as a function ofA. The two curves forx51.99 ~broken line! and 1.999
~solid line! are almost identical. The dotted line representsFB0 /FB` at x
51.99 @see Eq.~2.16!#.

FIG. 8. rc(r ) vs r /a on a semilogarithmic scale around an ion far above the
critical point with x51.5 andf`50.5. The profile can be fitted neither to
the Ornstein-Zernike form~dotted line! nor to the local equilibrium curve
without the gradient term~broken line!. The inset displaysf(r ) vs r /a near
the ion on a linear scale.
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whereRBK is the Born radius of the ion speciesK. See Fig.
4 for the nonlinear behavior ofBK . That is,BK /a;AK

0.4 for
largeAK andwK can well exceed 1.

In Ref. 16 wK was related to the Born solvation free
energy DGBK52(QK

2 /2RBK)(121/«) in Eq. ~1.1! which
should be defined for the two species. That is, treating« as a
function of c, we obtain

kBTwK5
]

]c
DGBK52«1QK

2 /2«c
2RBK , ~3.13!

where the differentiation is taken atf5fc . Obviously, Eqs.
~3.12! and~3.13! are equivalent from Eq.~2.22!. This simple
derivation cannot be used in the strong solvation regime,
however.

B. Fluctuations in one-phase states

We consider small plane-wave fluctuations in a one-
phase state. The fluctuation contributions toF in the bilinear
order are written as

dF5E
q
F1

2
~r 1Cq2!ucqu21

2p

«cq
2 urqu2

1kBT (
K51,2

S unKqu2

2^nK&
1wKnKqcq* D G , ~3.14!

where*q¯5(2p)23*dq¯ denotes the integration over the
wave vectorq and

r 5]2f /]c2. ~3.15!

The cq , nKq , andrq are the Fourier transformations ofdc,
dnK , andr, respectively. We may set

r 5a0~T2Tc! ~3.16!

at the critical concentration, where the coefficienta0 is of
orderkB /a3 and is equal to 4kBD1 /a3 with D1 being defined
by Eq. ~2.26!. In the mean field expressionj5j01(T/Tc

21)21/2 of the correlation length, we have

a05C/j01
2 Tc . ~3.17!

We may then calculate the structure factor for the order
parameterS(q)5^uCqu2& in the mean field theory. Since the
equilibrium distribution is given by const3exp(2dF/kBT),
the inverse ofS~q! is written as16,30

kBT/S~q!5a0~T2Tc2DTion!

1Cq2@12gp
2/~11lD

2q2!#, ~3.18!

whereDTion is the critical temperature shift due to salt given
by

DTion5~kBTc /a0!~w11Zw2!2ntot /~11Z!2, ~3.19!

andlD is the Debye screening length defined by

lD
215~4pZntote

2/«ckBT!1/2. ~3.20!

We introduce a dimensionless parameter,

gp5uw12w2u~kBT/4pC,B!1/2/~11Z!

5uB12B2u~4pC/,BkBT!1/2/~11Z!. ~3.21!

This number is independent of the ion density and represents
the strength of asymmetry in the ion-induced polarization
between the two components. In the linear solvation regime
with small AK , we use Eq.~3.12! to obtain

gp5
«1A,BkBT

2«c~11Z!A4pC
U Z2

RB1
2

1

RB2
U ~ linear!. ~3.22!

The structure factor of the charge density fluctuations
Srr(q)5^urqu2&/e2 is written as

Srr~q!5Zntot

lD
2q2

11lD
2q2 1~w12w2!2S Zntot

Z11D 2

3S lD
2q2

11lD
2q2D 2

S~q!, ~3.23!

where the first term is the Debye-Hu¨ckel structure factor and
the second term arises from the coupling to the order param-
eter.

From the structure factorS(q) in Eq. ~3.18! we may
draw the following conclusions:

~i! If gp,1, S(q) is maximum atq50 and the critical
temperature shift due to ions is given by Eq.~3.19!. As a
rough estimate for the monovalent caseZ51, we seta0

21n̄
;kBTj10

3 n̄;c, wherec is the mass or mole fraction of the
ions. ThenDTion;(w11w2)2c. If uw11w2u;3, this result
is consistent with the experiments.22,23In future experiments,
let kBT/CS(q) versusq2 be plotted; then, the slope is 1
2gp

2 for qlD!1 and is 1 forqlD@1. This changeover
should be detectable unlessgp!1.

~ii ! The casegp51 corresponds to a Lifshitz point,32,33

where 1/S(q)21/S(0)}q4/(11q2lD
2).

~iii ! If gp.1, the structure factor attains a maximum at
an intermediate wave numberqm given by

qm5~gp21!1/2/lD , ~3.24!

so qm}ntot
1/2. The maximum of the structure factorS(qm) is

written as

S~qm!5kBT/@a0~T2Tc2DTion8 !#, ~3.25!

where

DTion8 5DTion1~gp21!2Tcj01
2 /lD

2 , ~3.26!

where use has been made of Eq.~3.17!. A charge-density-
wave phase should be realized forT2Tc,DTion8 . It is re-
markable that this mesoscopic phase appears however small
ntot is as long asgp.1 andqmL@1 with L being the system
length. Here relevant is the coupling of the order parameter
and the charge density in the form}cr in the free-energy
density, which generally exists in ionic systems. This possi-
bility of a mesoscopic phase was first predicted for electro-
lytes by Nabutovskiiet al.,30 but has not yet been confirmed
in experiments. In polyelectrolytes, on the other hand, elec-
tric charges are attached to polymers and the structure factor
of the polymer is known to take a form similar to Eq.~3.18!,
leading to a mesoscopic phase at low temperatures, in the
Debye-Hückel approximation.32
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IV. SUMMARY AND CONCLUDING REMARKS

We summarize our results:
~i! In the first part, we have examined the concentration

profile around a charged particle in a near-critical polar bi-
nary mixture, as can be seen in Figs. 1 and 2. We have
started with the simple Ginzburg-Landau free energy~2.3!
supplemented with the relations~2.1! and~2.2! of electrostat-
ics. Preferential solvation can occur in the presence of a
concentration-dependent dielectric constant and becomes
strong when the parameterA defined by Eq.~2.22! satisfies
the condition~2.24!. As the critical point is approached, the
concentration has a long-range Ornstein-Zernike tail~2.30!
in an intermediate rangea,r ,l as demonstrated in Fig. 3.
We plot the coefficientB versusA in Fig. 4 and the crossover
lengthl versusA in Fig. 5. At the critical pointc(r ) is long
ranged in the form of Eq.~2.43! as demonstrated in Fig. 6.
The solvation free energyFsol behaves as a function ofA as
in Fig. 7.

~ii ! In the second part of this work we have presented the
coarse-grained free energy as in Eq.~3.4! where the order
parameter and the ion densities are strongly coupled in the
bilinear form. We have related the coupling constantsw1 and
w2 in terms ofB1 andB2 , the coefficients of the Ornstein-
Zernike tails for the ion, 1 and 2, respectively. Furthermore,
if this coupling is significantly different between the two
species of the ions, a charge-density-wave phase can be re-
alized.

We then give some remarks.
~i! We have neglected the dielectric saturation near the

ion.9,10 If this effect is taken into account, the growth of the
coefficient B with increasingA would be weaker than in
Fig. 4.

~ii ! In future experiments, the structure factor~3.18!
should be observed. There could be the casegp.1, where
the mesoscopic phase is formed at low temperatures, for
pairs of small cations such as Li1 or Al31 and relatively
large anions.1

~iii ! Dynamical problems remain largely unsolved. For
example, we are interested in the response of ions against ac
electric field in near-critical polar binary mixtures. In the
strong solvation condition the ion mobility should strongly
depend onvtj wherev is the frequency of the field andtj

is the order parameter lifetime (56phj3/kBT with h being
the shear viscosity15!. Furthermore, even ifvtj!1, the
large-scale solvation cloud on the scale ofj should become
nonlinearly dependent on the applied field.

~iv! Solvation or polarization effects due to inhomoge-
neous dielectric constant~or dielectric tensor for liquid crys-
tals! can strongly influence the phase transition behavior in
complex fluids including polyelectrolytes, charged gels, and
liquid crystals containing ions or charged colloids.17 The im-
portance of this effect in polyelectrolytes has recently been
pointed out by Kramarenkoet al.34

~v! A similar Ginzburg-Landau theory can easily be de-
veloped on solvation effects in polar one-component fluids.
For example, we may start with the free-energy density in
the van der Waals theory15 in place of the Hildebrand free-
energy density~2.4!. As regards statics salient features in
one-component fluids are nearly the same as those in polar

binary mixtures, but dynamics of critical electrostriction
should be very different between the two cases.15

Note added in proof.The long-distance behavior~2.43!
was also obtained in a different context of critical absorption
by Hanke and Dietrich@Phys. Rev. E59, 5801~1999!#.
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APPENDIX: DERIVATION OF EQ. „2.17…

In equilibrium f(r ) around a charged particle is deter-
mined by

f̂ 82C¹2f2
«1

8p«2r 4 Z2e2u250, ~A1!

where f̂ is defined in Eq.~2.16!. Multiplying f85df/dr
and integrating overr in the range@r ,`#, we obtain

f̂ 1
Z2e2

8p«r 4 u22
C

2
~f8!252E

r

`

dr1H~r 1!, ~A2!

where

H~r !5
2C

r
~f8!21

Z2e2

8p«

d

dr S u2

r 4 D . ~A3!

Integration of Eq.~A2! over the whole space yields Eq.
~2.17! with the aid of*0

`drr 2* r
`dr1H(r 1)5*0

`drr 3H(r )/3.
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