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Solvation effects in near-critical binary mixtures

Akira Onuki and Hikaru Kitamura
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 8 April 2004; accepted 14 May 2004

A Ginzburg-Landau theory is presented to investigate solvation effects in near-critical polar fluid
binary mixtures. Concentration dependence of the dielectric constant gives rise to a shell region
around a charged particle within which solvation occurs preferentially. As the critical point is
approached, the concentration has a long-range Ornstein-Zernike tail representing strong critical
electrostriction. If salt is added, strong coupling arises among the critical fluctuations and the ions.
The structure factors of the critical fluctuations and the charge density are calculated and the phase
transition behavior is discussed. @004 American Institute of Physic§DOI: 10.1063/1.1769357

I. INTRODUCTION cently been discussed when the solvent is a liquid cryétal,
where the director field can be much deformed around a

Solvation effects are of great importance in understandéharged particle over a long distance.

ing the degree of solubility of ions in various polar

solventst? A large number of papers have been devoted on
this problen?=® The theoretical approaches range from solv-
ing phenomenological continuum models to performing!!- SOLVATION AROUND A SINGLE CHARGED
computer simulations on microscopic models. Originally,P'A‘RTICLE

Born used a simple continuum theory of electrostatics toa. Electrostatics

derive the solvatioripolarization free energy of a single ion

with chargeze, -7 We place a charged particle in a near-critical binary mix-

ture in a one-phase state in equilibrium, in which the dielec-
tric constant = ¢(¢) depends strongly on the concentration.
This is the case when the two components have very differ-
ent dielectric constantg;, and eg, with £, considerably
where Ry represents the ionic radid$.In his theory the [arger thansg. There is no established theory of the dielec-
solvent dielectric constant is assumed to be homogeneoustric constant of such mixtures. However, empiricallycan
and the contribution without polarizatione€1) or in  be expressed roughly as a linear function of the concentra-
vacuum is subtracted. In the line of continuum models, contion in many relevant mixturesin the present theory, for
siderable efforts have been made to take into account thgmpncity, we assume the linear dependence,
dielectric saturation near the ion cdrehich are particularly
crucial for multivalent ions®° The Born theory also ne- e=goterd, 2.1
glects possible inhomogeneity ef in the vicinity of the  wheree, and e, are constant§with eg=g, and ex=¢
ion due to a change in the density for one-component fluids+- ¢,) and ¢ is the concentration or the volume fraction of
or in the concentration for binary fluid mixtures the preferred componedt Debye and KlebotH performed
(electrostriction !~ a light scattering experiment on a mixture of nitrobenzene
We point out that the previous theories have not yet(NB)+ 2,2,4-trimethylpentane in electric field, for which
treated the physics on mesoscopic scales such as solvatiefy) increased from 2.1 to 34.2 with increasing NB with
effects on phase transitions or collective phenomena at no?s/9¢?=28.7 near the critical point. The measured curve
dilute salt concentrations. In this paper we will show thatof £(¢) versus¢ may be fairly fitted to the linear forr®.1)
such effects can be conveniently studied within a scheme afand fitting is better in the regiogp=¢.). In their experi-
Ginzburg-Landau theory. First, we will apply this approachment the critical temperature was 29.16 °C and the critical
to solvation around a charged particle in polar binary mix-concentration was 51.7 wt % of N@orresponding to a vol-
tures near the consolute critical point. Here important is thaime fraction of 0.381 of NB In this paper the dielectric
gradient free energy well known in the field of critical constant is assumed to be independent of electric field, al-
phenomend; which will reasonably accounts for the long- though this is a questionable assumption in the vicinity of
range electrostriction around ions. In the previoussmall ions?*°
theories'3in the physical chemistry, the gradient free en-  The electric fieldE= —V® is induced by the electric
ergy has been neglected. On the basis of these results we wilharges and the electric potentilsatisfies
then discuss the effects of low-density salt in polar binary
mixtures in a Debye-Htkel-type approximation. This sec- V-eVe=—4mp(r), (2.2
ond part is an extension of a previous paper by one of theherep(r) is the charge density. In our problem the space
present author®. We also note that similar effects have re- dependence of is crucial.

AGg=—(Z%€*2Rg)(1—1/e), (1.1
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B. Ginzburg-Landau free energy 1 AR AR A' ARARRARRES
We construct a simple theory for a nearly incompressible a:00104 0.=0.5
mixture near the consolute critical point at a given pressure. co.104 Xh
Theny= ¢— ¢, is the order parameter of liquid-liquid phase d: (1)316
transition, whereg, is the critical concentration. The total F 346 1
Ginzburg-Landau free energy of the system is given by o g:104
<

F—fdf+cv2+852 2.3
The molecules of the two components have a common vol-
umevo=a3, although they can have different volumes in
general. The free-energy density=f(¢) is given by the
Hildebrand?® (or Bragg-Williams®) expression a

FIG. 1. Concentration profilep(r) around an ion for variou\ at y

kgT
f= vio[d) Inp+(1—@)IN(1—¢)+xP(1— )], (2.4 =1.99 where¢=10a and ¢— ¢..= 1/2 far from the ion.

where x is the interaction parameter dependent on the tem-

peratureT. The critical-point values ot and y are . _ .
under the assumptio(2.8). The electrostatic free energy is

=112, Xxc=2, 29 now simply of the form

respectively, in the mean field theory. The order parameter is 1 1 s 1
i T L E2_ 72,2 2

defined by f dr 87_rsE 2Z e Jo drma(r) . (2.12
=¢d—1/2. (2.6)

o . . If ¢ is replaced by the dielectric constant far from the ion
The coefficientC of the gradlent term is of ordé«BTla and €0, the above quantity is integrated to become a Born con-
we will use a simple forrff?* tribution [see Eq(1.1)],’

C=kgTx/a. (2.7) Fg..=Z%€%/2¢,Rg. (2.13
The last term irF is the electrostatic contribution. The free- |n terms of the critical-point dielectric constant.= ¢,

energy functional2.3) supplemented with Eq2.2) can be 4+ /2 and the order parameter, = ¢..— 1/2 far from the
used generally in the presence of ions in polar near-criticajon, we have

fluids.
en=ggt e =e.te 1., . (2.19
The Born radius is given by
C. Preferential solvation Rg=5R/6. (2.15

We consider a single charged particle at the origin of thg, he integral(2.12 the contribution from the ion interior
reference frame. The charged particle has a raBu#t is [ ~R js 1/5 of that from the ion exterior, resulting in the
convenient to assume that the charge density is homogeneoys i, 1/(1+ 1/5)=5/6 in Eq.(2.15. However, if we replace
within the sphere as & by its value at the ior:(0)=g,+&,¢4(0), we obtain an-

p=26el(47R%3) (r<R) (2.8  other estimate,

and vanishes outside the sphereR. The total charge is Fgo=2%€’/26(0)Rg=Fp..ec/[e9+&14(0)]. (2.1

given byZe. In our theoryR is a phenomenological param-  xg il be calculated in the Appendix, the equilibrium free

eter. Then the volume fractio#h and the electric potentiab energy of a single ion accounting for the inhomogenedus
can be defined even within the sphere and, for the singlgnd8 in the mean field theory reads

charge case, all the quantities may be assumed to depend

only on space as |:50|=47Tf drr[f+C(¢")2/2+ cE?8m]
0

p=¢(r), ®=d(r), E=—d'(r)r 'r, (2.9
- - i 4 (= Z%e?6%> d [r3
where r=|r| and ® d@/dt. The.concentrqtlon(,/)(r) :_Wf dr| Cra(¢)2+ > _) @217
decrease fromp(0) to ¢., with increasing (see Fig. 1 to be 3 Jo 8mrr™ dr\ e
presented below In this case Eq(2.2) is solved to give
where
, Aaqr (r ’ Ze X
—e(p)P (r)=r—zf0dr1r1p(rl)=r—20(r), (2.10 f(P)=F(d)— () — u(dp— .., (2.18

with u="f'(¢.) being the chemical potential difference. As
shown in the second line of E§2.17), F, consists of the
o(r)=(r/R)® (r<R) (2.11 gradient contribution¢ C) and the electrostatic contribution

whered(r)=1 forr>R and
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(<e?). The latter becomes the Born contributich13 or r>AY4,. (2.28
(2.16) if ¢ is replaced bys., or £(0). In Fig. 7 below we
shall see the relatioRgp<Fso<Fg.. .

With the aid of Eq.(2.11) the minimization condition
OF/8¢é= u=const in equilibrium is rewritten as

The shell radius should thus grow A$“a for A>1. In the
near-critical region, Eq(2.19 may be approximated in the
Landau expansion forrf,
2r .2 2 8 2 3 3402
a‘ k= V7] oY+ 5(31,/;@54,11 + Oy )ZAF, (2.29
where 6= — iy, . This equation does not hold within the
solvation shell ifys is not small there for strong solvation, but

d 2 2y? —Aa402 2.1
1_2¢ X'# xa ’7[/ V= é2r41 ( . 9

wheree is the normalized dielectric constant,

In

e=¢elec=1+(e1/ec) . (2.20  holds generally far from the ion. If we retain the linear terms
; i i 2y o
The dimensionless chemical potential difference ~ ©Nly in the above equation, we obtairi-V )6y=0 far
—voulkgT is written in terms ofyr.,. = () as Irc_)lm the ion, so there should emerge the Ornstein-Zernike
ail,
v=IN[(1+2¢ ) (1—=2¢.) ] —2x s - (2.21 B
The coefficientA on the right-hand side of E¢2.19 repre- O(r)= ?e* “ (2.30
sents the strength of solvation defined by
o 2 R in the concentration. The coefficiel® is a microscopic
A=e,Z°e8meckgTa=e,2"(g/8meca. (222 |ength to be determined in the following.
In the second line the Bjerrum length In the Landau theory of phase transitigmsually pre-
(o= %o kgT (2.23 sented in the context of Ising spin systarhsthe right-hand

side of EqQ.(2.19 or Eqg.(2.29 plays the role of dposition-
at the critical concentration is introduced. For example, if wedependent magnetic fieldh. If h were homogeneous and
setlg~14 A, a~2A, e;/e0~2, we obtainA~Z?/5. Inthe  small, we would have the linear responsg~h/«2. In the
vicinity of the ion the right-hand side of Eq2.19 takes a present case, howeven=nh(r) steeply changes in space
maximum of ordeAa*/R* (becausé ~1). If this maximum  (cr ~#) from a maximum of ordeAa*/R* to zero and as a
is much larger than 1, there arises a solvation shell aroungksult the gradient term V2 becomes increasingly crucial
the ion within which preferential solvation is strong atdd  with decreasinge.

=1. Thus the condition of strong solvation may be expressed

as

A>(R/a)*. (2.24 E. Weak solvation limit near the critical point
The solvation is stronger for small&/a, which is a well- It is instructive first to consider the simplest case of very
known result in the literaturé. small A near the critical point where<02—y<<1 and .,

It is worth noting that Padova presented an equation=0. Furthermore, ifiy(0)<«a holds at the ion, we may
similar to Eq.(2.19 for the concentration in the vicinity of neglect the second term on the left-hand side of (B9 in
an ion using thermodynamic argumefitsyhereC=0 and  the whole space to obtain the linearized equation,
the gradient ternxV2¥ did not appear ¢=0). Even far 2 w2 g 2 21m 4
from the critical point, as can be seen in Fig. 8 below, the (K= VO p=Ab(r)"a2r, (239
result withC=0 is considerably different from that with the where we have segi=1. This equation is readily integrated

gradient term in the strong solvation case. to give
D. Relations near the critical point AaZ (»dr; , D _
| o p(n=7—| —ze I nlory’-—e,  (2.32
If the system is near the critical point far from the 4xr Jo 1y r

charged particle, we have=2 and ¢, =1/2. Then the in-

’ 5 it where the coefficienD is determined such that(0) is fi-
verse correlation lengtlk= ¢~ far from the ion is deter-

nite. We can see the relations

mined by
alk?=4l(1—4¢2)y—2=2— x+8y>. (2.25 ¢(0)=2KD:Aa2f0 drie <"1g(ry)?/2r3

As T—T, in the upper critical solution temperatufgCST)

case we may set =3Aa%8R? (kR<1). (2.33
2— x=D(T/T~1). (2.26 The second line holds forR<1. As stated above.31), the

} . ) ) linearization is allowed for

The correlation length in the mean field expression becomes

E= &, (TITe— 1)~ Y2 with A<kR?’la or &,Z%(g/87s <R%«. (2.39
§0+=aD1_1’2 (2.27 From Eq.(2.3)) the three-dimensional Fourier transfor-

. N _ ~ mation of ¢ becomesjy,=H, /(«*+k?), where
in one-phase states at the critical compositiothe fluid

c<a11 remain near-critical only in the region wheha?/r* Hk=277Aa2fmdr0(r)2sin(kr)/kr3. (2.39
<1 or 0
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Here H, tends to a well-defined long-wavelength linkit,
=lim,_oHy for kR<1. Thus, for kR<1, (r) approxi-
mately takes the Ornstein-Zernike for(2.30 in a wide
space region witlB=a?H /4. Here,

B=Aa2J dro(r)?/2r’=Aa’/2Rg, (2.36

0

with Rg being given by Eq(2.15. This form also directly
follows from the integral form2.32 (by taking the limitx
—0). If we do not assume the special fotnin Eq. (2.7),
we haveB=(kgT/C)Aa/Rg [which will be used in Eg.
(3.12 below.

At very long distances>\, however, the gradient term
—VZ2y in Eq. (2.31) becomes negligible to give

p(r)=Aa22k?r4, (2.3

This is the relation of linear response as stated at the end d

Sec. llID. The crossover lengthis longer tharé=«~* and

A. Onuki and H. Kitamura

log,w(0)
|

)

FIG. 2. Concentration deviatiog/(0)= ¢(0)—1/2 at the ion center for
f\riousA at y=1.99.

is determined by the balance of the Ornstein-Zernike formry. apove form will turn out to be consistent with numerical

(2.30 and the long-distance limi2.37) as

(kN)3e” M =kR.

(2.38

For exampleA=10.& for R=0.03%. Thusx\ increases as
xR decreases.

We may then calculate the excess accumulaifoof the
componentA around the ion as

Y= f dri(r)=2mAa’l k’Rg=4mB/ k2, (2.39

analysis in Fig. 6 to be presented below.

G. Numerical results

We then show numerical solutions of E.19 around
an ion in equilibrium one-phase states for the cage 10
ande,;=70 in Eq.(2.1), assuming the model charge distri-
bution (2.8). The ion radius is given bir=0.3a in terms of
the solvent radius.

We show the concentration profile(r) versusr/a, in

which coincides with the space integral of the Ornstein-Fig. 1 and the concentratiof(0) at the ion center in Fig. 2.
Zernike form(2.30 and grows strongly on approaching the Notice that¢(r)= ¢(0) within the interior of the iomr =R

critical point. The integral of the tail2.38 in the regionr
>\ is much smaller than the value in EQ.39 by R/A and

owing to the smoothing effect of the gradient term. We can
see that the concentratiah(0) at the ion increases obeying

is canceled with a contribution from the correction to thethe linear growth(2.31) for A<1 and saturates into 1 for

Ornstein-Zernike form in the range<\.

F. Behavior at the critical point

At the critical point (=2 and¢..=0.5), (r) is of the

form Ba/r at long distances in the linear theory. We here

A=0.3 and that the shell region expands with increaging
The shell radiudRy, may be defined such that(r)>0.75
for r <Rgnen, Say. ThenRguo~ A with the effective expo-
nent o being about 1/4 for the profile&)—(g) in Fig. 1.
Below (2.28 we have discussed thatshould tend to 1/4 for
A>1.

In Fig. 3 we examine the behavior @f(r)= ¢(r)—1/2

show that it is delicately modified in the nonlinear theory. Wewith ¢..,=1/2 atA=0.346. We can see that the combination

rewrite Eq.(2.29 for r>a as
8 a*
29200 23 A%
avVaoy+ 3 7 A2r4'
We setG(s)=r(r)/a with s=In(1+r/a) to obtain
2

ds* ds

For s>1 we assume the algebraic dedays)~s #. Then
the above equation is approximated asdG(s)/ds
=8G(s)?/3, yielding the solution

G(s)=(3"44)s™1?

(2.40

(1—e 5)? G(s)= 26(3)3— %Aefs. (2.4)

(2.42

with 8=1/2. Thus the asymptotic behavior at extremely long

distancess>1 should be

P(r)=3Y2a/[4rIn(1+r/a). (2.43

r(r)/a behaves asB/a)exp(—«r) in a wide intermediate
rangea<r=<\. The correlation lengtf=« ! is given by
10a for y=1.99 and by 182 for y=1.999. For =\, (r)
can be fitted to the ~* tail in Eq. (2.37). Figure 4 displays
B/a versusA for y=1.99 and 1.999 ap..=0.5. In the non-
linear regimeA=0.1 the data may be fitted &a~A%“ In
Fig. 5 we plot the crossover lengihdivided bya obtained
from equating the two fitted function2.30 and (2.37). In
the linear regime with smal\, \ is given by Eq.(2.37).

The concentration profile just at the critical point is also
of great interest. In Fig. 6 we plot the combinatigtr )rs*?
versuss=In(1+r/a) in the regions<12 orr/a<e'?-1 for
A=0.2,1, and 5. If Eq.(2.42 is valid, this combination
should tend to 8%4=0.43. Thus the three curves are con-
sistent with Eq.(2.42.

Figure 7 displays the numerically calculated solvation
free energyF ¢, in EqQ. (2.17) divided byFg., in Eq. (2.13.

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 7, 15 August 2004 Solvation in near-critical mixtures 3147

0 T T T T T T T
A=0346 [ ‘ 1or _ _linear 1
-5 100 .
T
z S
Z <
£ 90+ -
-10
80t -
_]5 1 “‘ 1 1 1 "‘
0 100 200 300 400 -3 1

rla log;0A

FIG. 3. Numericalry(r)/a vs r/a on a semilogarithmic scale aA FIG. 5. Crossover lengtk from the Ornstein-Zernike ta{2.30) to ther ~*

=0.346 for y=1.99 (lower solid line and 1.999(upper solid ling with tail (2.37 at ¢..=0.5 for y=1.99 where£=10a.

¢..=1/2. The numericaly(r)= ¢(r)—1/2 can be excellently fitted to the

Ornstein-Zernike form(corresponding to dotted lingén the intermediate

rangea<r =<\, while it can be fitted to the ™ tail (2.37 (corresponding to  liquid-liquid phase behavior, where is the mass or mole

broken lineg for r=\. The curve ofA vs A will be given in Fig. 5. fraction of ions. For smalt, the UCST coexistence curve
shifts upward as
ATion:AionC_i_O(Cz)y (3.1

Also plotted is the ratid-gq/Fg..=¢&./[ €9+ e1¢(0)] in EQ.
(2.26. Thus we find thatg is intermediate betweeRgg
and Fg,, . Coincidence of the two curves ¢gf=1.99 and
1.999 implies thaF ¢, tends to a constant on approaching the
critical point.

In Fig. 8 we demonstrate that/(r)/a versusr/a far
above the critical point withy=1.5 and¢.,=0.5. The pro-
file can be fitted neither to the Ornstein-Zernike form nor to
the solution of EQ.(2.19 without the gradient term. The
curves from the local equilibrium theory without the gradien
term! considerably differ from that in our theory even away
from the critical point.

with large positive coefficiend,,, expanding the region of
demixing. For exampleA,,/T.~10 with T.~300 K when
NaCl was added to cyclohexahenethyl alcohdt® and to
triethylaminet H,0.2 The LCST coexistence curve of
2,6-lutidine+H,0O(D,0), the shift is downward with
|Aionl/ Tc~10.2* Similar large impurity effects were ob-
served when water was added to methammjclohexane®

In some aqueous mixtures, even if they are miscible ar all
pat atmospheric pressure without salt, addition of a small
amount of salt gives rise to reentrant phase separation
behavio®=2° Such reentrant phase behavior is believed to
arise from hydrogen bonding.

IIl. NEAR-CRITICAL FLUIDS WITH IONS A. Ginzburg-Landau free energy

) ] In the preceding section we have examined the concen-

Experimentally, it has long been known that even a smallration profile around a single fixed charged particle. We then

fraction of ions(saly with c<1 dramatically changes the peed to construct a theory on polar binary mixtures in which
a small amount of salt is dopé@Even if the ion concentra-

tion is very small, the interactions among the ions should be

1 T T T T
— 7/
9,705 '\xf’/ 0.8 . . . . .
/
/ 0.7r 5 b
- /
= 0 / 0.6- 4
3 / :
z Tk & 05F 1
8 7yt “ 1
-1t E < 04t =
>
0.3r E
o =199 A=02
O %=1.999 0.2F » . E
-2t 4 critical point
Il 1 1 L 01 -
2 -1 0 i N A

0 2 4 6 8 10 12

s=In(1+r/a)

log,cA
FIG. 4. CoefficientB of the Ornstein-Zernike tail in the concentration pro-

file as a function ofA at ¢,,=0.5 for y=1.99 and 1.999. It exhibits only FIG. 6. y(r)rs'? vs s=In(1+r/a) at the critical point forA=0.2,1, and 5.
weak dependence on2yxT—T,. The curves appear to approa¢dv4 very slowly supporting2.43.
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1
" F=fdr F)+ 2|V g2+ So g2
2 8
0.9+ ]
s 0.8F “‘\‘ _ +kBT E (nK In nK"‘WKnKlﬂ) . (34)
a Y K=1,2
%s 0
= 0.7} . The first line is of the same form as the free energy in Eq.
/’ (2.3, but f(¢) can be expressed in the Landau expansion
0.6} e et 00)] ™, ] form f=ry?/2+ uyy*/4 because the noncritical behavior in
T the solvation shell is not treated here. In addition we do not
05—t = (') . assume the special for(R.7) for the coefficienC. The elec-
lon A tric field E= — V& here arises from the Coulomb interaction
B0 among the ions so that
FIG. 7. Solvation free enerdy,, in Eq.(2.17) divided byFg,. in Eq.(2.13 2 -1
as a function ofA. The two curves fory=1.99 (broken line and 1.999 V-E=-V CI):471'80 P(r), (3.5
(solid ling) are almost identical. The dotted line represdhtg/Fg.. at x
=1.99[see Eq(2.16)]. where

p(r)=e[Zny(r)—ny(1)] (3.6

. . . ... is the charge density. Therefore, the electrostatic part of the
much influenced by the preferential solvation near the Clitiraa eneray i -

. . . gy is rewritten as
cal point. We here present a Ginzburg-Landau free energy in
which the fluctuations on the spatial scale of the solvation
shell radiusRg, have been coarse grained. Then the order f
parameter/(r) = ¢(r) — ¢, and the ion densities(r) and o
n,(r) for the two species do not change appreciably on thé3ecause the small-scale electrostriction on the scaRy;

dSCEZ—lfdfd’ N1 @3
r8'7T _280 r r p(r)P(r )lr_r/|' ( 7)

scale ofRgpe. has been coarse grained, we neglect the small-scale inhomo-
The two ion species, 1 and 2, have charg@s=Zeand geneity of the dielectric constant and set & with & being
Q,=—e. The average densities are written as the dielectric constant at the critical point.
The free energy with the bilinear coupling (k) was
(n))=n, (ny)=27n, (3.2  already examined in Refs. 30 and 31, where the coupling

constantswy were phenomenological parameters, however.

where(- -+ denotes taking the space average. Notice that th¥ve claim that the small-scale solvation or electrostriction is
charge neutrality condition yieldZ(n;)=(n,). The total the origin of the bilinear coupling. In fact, the minimization

charge number density is written as of F at fixed inhomogeneous ion densities yields
o w="F"—CV?y+KkgT(wyn;+w,n,)=const, (3.9
wheref’=9f/d. For small inhomogeneous deviatioAg
We propose the free enerdyin the formt® =y¢—(4) and sng=nx—(nx) (K=12) we linearize the
above equation to obtain
C(k?—V?) 5+ kgT(W;6n;+W,8n,)=0, (3.9

where Cx?= 9*f/9y® with k being the inverse correlation
length. Notice that if the ion densities are localized in regions
shorter thané= k"1, &y has Ornstein-Zernike tails in the
form of Eq.(2.30 around such localized regions. Thug is

5} written as

i

H W= —(47ClkgT)Bx  (K=1,2), (3.10
=

where By is the coefficient of the Ornstein-Zernike tail
around an ion of the speci&s If the two components of the
fluid mixture have the same molecular segeas assumed in
the preceding sectiorBy is determined by the parameters
Ak in Eq. (2.22, where

¥a

A 1Z2=A,=e,lp/8meA. (3.1
FIG. 8.r¢(r) vsr/a on a semilogarithmic scale around an ion far above the . . . . . .

critical point with y=1.5 andé,.=0.5. The profile can be fitted neither to | Particular, in the linear solvation regime with smal ,
the Ornstein-Zernike fornfdotted ling nor to the local equilibrium curve  EQ. (2.36) yields

without the gradient terrbroken ling. The inset displayg(r) vsr/a near

the ion on a linear scale. wg=—4mAka/Rgk (linean, (3.12
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whereRg is the Born radius of the ion speci&s See Fig. This number is independent of the ion density and represents

4 for the nonlinear behavior @y . That is,BK/a~Aﬁ'4 for  the strength of asymmetry in the ion-induced polarization

large A andwy can well exceed 1. between the two components. In the linear solvation regime
In Ref. 16 wx was related to the Born solvation free with small Ay, we use Eq(3.12 to obtain

energy AGgx=—(Q2/2Rgy)(1—1/e) in Eq. (1.1) which

should be defined for the two species. That is, treatiag a _ e1VlekeT Z_2 2 (lineay (3.22
function of ¢, we obtain 7P 2e(1+2)VAnC Rer Rez ' '
kBTWK:%AGBK: _ngi/zggRBK, (3.13  The structure factor of the charge density fluctuations

S,,(a)=(|pg|?)/e? is written as
where the differentiation is taken &t= ¢.. Obviously, Egs.

2.2 2
(3.12 and(3.13 are equivalent from Eq2.22). This simple S (q)=Z \pd i w2 LNt
7 . . . op(0) = Z Nyt 72 T (Wi—Wp)
derivation cannot be used in the strong solvation regime, 1+\pQ Z+1
however. 2,2 \2
Apd
X [ESv S(q), (3.23

B. Fluctuations in one-phase states where the first term is the Debye-kkel structure factor and

We consider small plane-wave fluctuations in a one-the second term arises from the coupling to the order param-
phase state. The fluctuation contributiong=tin the bilinear  eter.

order are written as From the structure facto8(q) in Eg. (3.18 we may
1 o draw the following conclusions:

5|::f {z(r+cq2)|{/,q|2+ —2|Pq|2 () If yp<1,_S(q) is mgximgm gtq=0 and the critical

q e temperature shift due to ions is given by HE§.19. As a

rough estimate for the monovalent cage 1, we seta, 'n’
, (3.19 ~kgT&2 ;n~c, wherec is the mass or mole fraction of the
ions. ThenA T~ (W +W,)2c. If |wy+w,|~3, this result
where[ --=(2) %fdq- - denotes the integration over the i consistent with the experimerfs?In future experiments,
wave vectorg and let kgT/CS(q) versusqg? be plotted; then, the slope is 1
—yf) for gAp<<1 and is 1 forqAp>1. This changeover

|n|<q|2 *
+ kBTK:21,2 (m +WKanlﬂq

_ 2 2
r=9"t/9y”. (3.19 should be detectable unlegg<1.
The ¢, Nkq. andp, are the Fourier transformations 6f, (i) The casey,=1 corresponds to a Lifshitz poiff;**
ony , andp, respectively. We may set where 15(q) — 1/S(0)<q*/(1+ qz)\%).
_ B (ii) If y,>1, the structure factor attains a maximum at
r=ao(T=To (316 an intermediate wave numbagy, given by
at the critical concentration, where the coefficientis of 1o
orderkg/a® and is equal to KgD, /a® with D, being defined am=(7p=1)"/Np, 3.29
by Eqg. (2.26. In the mean field expressioé= &y, (T/T, 112 . .
—1)~Y2 of the correlation length, we have SO Q™ Nigy - The maximum of the structure fact&q,,) is
written as
ag=Cl&, T.. (3.17
oo S(Qm) = ke T/[a0(T~ T~ ATp)], (3.25

We may then calculate the structure factor for the order
parameteS(q) =(|¥4|?) in the mean field theory. Since the where
equilibrium distribution is given by constexp(— 6F/kgT),
the inverse ofS(q) is written ag®%° ATl = ATiont (vp— 1)°Te&f N, (3.26

KeT/S(d)=ag(T—Tc=ATiopn) where use has been made of E8.17. A charge-density-
24 2 2.0 wave phase should be realized for T, <AT{,,. It is re-
FCQTL= 7/ (1+Apa7) ], (318 markable that this mesoscopic phase appears however small
whereAT,, is the critical temperature shift due to salt given ny is as long asy,>1 andq,,L>1 with L being the system
by length. Here relevant is the coupling of the order parameter
o 2 2 and the charge density in the formyp in the free-energy
ATion= (KgTc/@0) (W1 ZwWo) it/ (1+2)%, (319 density, which generally exists in ionic systems. This possi-
and\p is the Debye screening length defined by bility of a mesoscopic phase was first predicted for electro-
lytes by Nabutovskiet al.,*° but has not yet been confirmed

-1_ 2 1/2
Ao = (4mZNee ecksT) ™ (3.29 in experiments. In polyelectrolytes, on the other hand, elec-
We introduce a dimensionless parameter, tric charges are attached to polymers and the structure factor
Yom Wy —W,| (KsT/4mCeg) Y2 (1+2) of th_e polymer is known_ to take a form similar to E(G.l&,_
leading to a mesoscopic phase at low temperatures, in the
=|B;—B,|(4mwClegkgT) Y% (14 2). (3.2)  Debye-Hickel approximatiort?
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IV. SUMMARY AND CONCLUDING REMARKS binary mixtures, but dynamics of critical electrostriction
We summarize our results: should be very different between the two cakes.

(i) In the first part, we have examined the concentration Note added in proofThe long-distance behavie.43

profile around a charged particle in a near-critical polar bi-V3S also obtained in a different context of critical absorption

nary mixture, as can be seen in Figs. 1 and 2. We havBy Hanke and DietrictiPhys. Rev. E59, 5801(1999].
started with the simple Ginzburg-Landau free enefgy)

supplemented with the relatiofi.1) and(2.2) of electrostat- ACKNOWLEDGMENTS

ics. Preferential solvation can occur in the presence of a onpe of the authorA.0.) would like to thank K.

concentration-dependent dielectric constant and become$,,echowski. M. Misawa. and M. Anisimov for valuable

strong when the parametér defined by Eq(2.22 satisfies  giscyssions on the ion effects in near-critical fluids. This
the condition(2.24. As the critical point is approached, the \york was supported by Grants in Aid for Scientific Research
concentration has a long-range Ornstein-Zernike (@80  ang for the 21st Centure COE “Center for Diversity and

in an intermediate range<r <\ as demonstrated in Fig. 3. ynjversity in Physics” from the Ministry of Education,
We plot the coefficienB versusA in Fig. 4 and the crossover Culture, Sports, Science and Technology of Japan.

length\ versusA in Fig. 5. At the critical points(r) is long
ranged in the form of Eq(2.43 as demonstrated in Fig. 6.
The solvation free enerdy,, behaves as a function &f as
in Fig. 7. In equilibrium ¢(r) around a charged particle is deter-

(i) In the second part of this work we have presented themined by
coarse-grained free energy as in K§.4) where the order

. . . ~ €1

parameter and the ion densities are strongly coupled in the {'—CV?2¢— -
bilinear form. We have related the coupling constamtsand 8me’r
w, in terms ofB; andB,, the coefficients of the Ornstein- \\here? is defined in Eq.(2.16. Multiplying ¢’ =dg/dr
_Zern_ike tails_for f[he ?on_, _1 and 2,_respectively. Furthermore 5nq integrating over in the ranggr,>], we obtain
if this coupling is significantly different between the two

APPENDIX: DERIVATION OF EQ. (2.17)

Z%e?6*=0, (A1)

. . i o A ZZeZ C o
Zﬁczag:je.s of the ions, a charge-density-wave phase can be re i — 62— EWI)Z: _ Jr driH(ry), (A2)
We then give some remarks.
(i) We have neglected the dielectric saturation near thgvhere
ion. 210 If this effect is taken into account, the growth of the 2C , Z2%e* d (¢
coefficientB with increasingA would be weaker than in H(r :T( i Sme E(F)- (A3)
Fig. 4.

(i) In future experiments, the structure facts.1g  Integration of Eq.(A2) over the whole space 3yie|ds Eg.
should be observed. There could be the case 1, where (2.17) with the aid of [qdrr<[ dryH(ry)=Jodrr H(r)/3.
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