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In systems driven away from equilibrium, the velocity correlation function and the linear-response
function to a small perturbation force do not satisfy the fluctuation-response relation (FRR) due to the lack
of detailed balance in contrast to equilibrium systems. In this Letter, an equality between an extent of the
FRR violation and the rate of energy dissipation is proved for Langevin systems under nonequilibrium
conditions. This equality enables us to calculate the rate of energy dissipation by quantifying the extent of
the FRR violation, which can be measured experimentally.
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Macromolecules and colloidal particles of the order of
nanometers to submicrometers suspended in an aqueous
solution provide an ideal ground to study the foundation of
nonequilibrium statistical mechanics. Recent advances in
experimental techniques for the observation and manipu-
lation of such small systems have generated the possibility
of directly investigating the nonequilibrium nature of fluc-
tuations in the system. In particular, such techniques have
been designed to verify several universal relations such as
the fluctuation theorem [1–3], the Jarzynski equality [4,5],
and the Hatano-Sasa identity [6,7].

Through the investigation of nonequilibrium systems, it
has been recognized that the quantification of the violation
of the fluctuation-response relation (FRR) [8] provides new
information for systems driven far from equilibrium [9–
11]. On the other hand, the rate of energy dissipation is the
most fundamental quantity that characterizes nonequilib-
rium steady states. Thus, it is naturally expected that the
FRR violation is related to the amount of energy dissipa-
tion. Toward this end, in this Letter, we present an equality
between the rate of energy dissipation and an extent of the
FRR violation for a class of nonequilibrium stochastic
systems.

In this Letter, for simplicity, we mainly study a system
described by the Langevin equation

� _x�t� � F�x�t�; t�� ��t� � "fp�t�; (1)

where � is a friction coefficient and ��t� is zero-mean
white Gaussian noise with variance 2�T. In particu-
lar, we consider two models of the force F�x; t�. In the
first model, which is termed Model A, F�x; t� �
����t�0@xU0�x� � ���t�1@xU1�x�, where Ui�x� for i � 0; 1
are periodic potentials with period l, and ��t� is a Poisson
process on f0; 1g with a constant transition rate � for the
transitions from both 0 to 1 and 1 to 0. This model was
originally studied as a model of motor proteins, and is
termed a flashing ratchet model [12,13]. In the second
model, termed Model B, we address a time-independent
force F�x; t� � F�x� � f� @xU�x�, where f is a constant

driving force and U�x� is a periodic potential with period l.
See Ref. [14] for the physical significance of this model.
The last term in Eq. (1) with a sufficiently small " repre-
sents a ‘‘probe’’ force used to investigate the linear-
response property of the system. The initial condition is
given at t � tinit and we consider the limit tinit ! �1
below.

First, we define several measurable quantities for this
system. Assuming vs to be the steady-state velocity with
" � 0, the response of the velocity to the probe force is
characterized as

h _x�t�i" � vs � "
Z t

�1
R�t� s�fp�s�ds�O�"2�; (2)

where h� � �i" denotes the ensemble average in the presence
of the probe force with ". The response function R�t� has
the causality property R�t� � 0 for t < 0. Another impor-
tant quantity is the time-correlation function of velocity
fluctuations in the absence of perturbation, which is de-
fined as

C�t� � h� _x�t� � vs	� _x�0� � vs	i0: (3)

Next, we quantify the energy dissipation in the Langevin
description. According to the definition in Ref. [15], the
rate of energy dissipation J�t� at time t for each trajectory is
expressed as

J�t�dt � �� _x�t� � ��t�	 
 dx�t�; (4)

where 
 denotes the Stratonovich multiplication [16]. This
definition of the rate of energy dissipation complies with
both the conservation of energy and the second law of
thermodynamics [17].

Based on the above, we present a theorem that consti-
tutes the main claim of this Letter:

hJi0 � �
�
v2

s �
Z 1
�1

�
~C�!� � 2T ~R0�!�

�
d!
2�

�
: (5)

We express the Fourier transform of an arbitrary function
A�t� as ~A�!� �

R
1
�1 A�t� exp�i!t�dt. The prime denotes
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the real part of the function. It is widely acknowledged that
in equilibrium, i.e., for cases wherein � � 0 for Model A
and f � 0 for Model B, the correlation function C�t� is
connected to the response function R�t� as C�t� � TR�t�
for t > 0, which is the FRR in model (1) [8,14]. Thus, from
C�t� � C��t� and R�t� � 0 for t < 0, we obtain the
Fourier transform of this relation as

~C�!� � 2T ~R0�!�: (6)

Here, we stress that Eq. (6) does not hold in nonequilibrium
steady states; thus, it is observed that the right-hand side of
Eq. (5) represents the extent of the FRR violation.

It is noteworthy that the equality (5) holds for variety of
Langevin systems regardless of the magnitude of external
driving as well as the manner in which the system is driven
away from equilibrium. We will provide a detailed expla-
nation of this equality in another paper. In the present
Letter, we demonstrate the validity of Eq. (5) by the
numerical verification for Model A and provide a mathe-
matical proof for Model B.

First, we investigate Model A. Statistical quantities for
Model A can be calculated by analyzing the following
Fokker-Planck equation that corresponds to the Langevin
equation (1) [12,13]:

@
@t

P0�x; t�
P1�x; t�

� �
�

L0 � � �
� L1 � �

� �
P0�x; t�
P1�x; t�

� �
; (7)

where Li � �@x�Fi�x� � "f
p�t� � T@x	=� and Fi�x� �

�@xUi�x� for i � 0; 1. In particular, the potentials were
selected asU0�x� � D cos�2�x=l� andU1�x� � const:, and
all the quantities were converted into dimensionless forms
by normalizing �, l, and T to unity. The functions, ~C�!�
and ~R�!�, were calculated accurately by the matrix-con-
tinued-fraction method [14]. In Fig. 1, ~C�!� and 2T ~R0�!�
are represented as functions of!whenD � 5 and� � 10.
It exemplifies the violation of the FRR in a nonequilibrium

steady state. In this case, it should be noted that vs � 0
because the selected potentials are symmetric with respect
to the reflection of the variable x. We then calculated the
right-hand side of Eq. (5), which amounted to 16.891, by
integrating the difference between ~C�!� and 2T ~R0�!� over
the entire frequency domain. On the other hand, the rate of
energy input for Model A has been calculated as [15,18]

hJini0 � �
Z ‘

0
�U1�x� �U0�x�	�Pst

0 �x� � P
st
1 �x�	dx; (8)

where �Pst
0 �x�; P

st
1 �x�� is the stationary solution of Eq. (7).

As a result of the energy balance, the rate of energy input
hJini0 should coincide with the rate of energy dissipation
hJi0 irrespective of the validity of Eq. (5). Subsequently, if
hJini0 coincides with the right-hand side of Eq. (5), it
indicates the validity of Eq. (5). Using the above parame-
ters, we obtained hJini0 � 16:891. Thus, in this case,
Eq. (5) has been confirmed.

In order to demonstrate that this result is not accidental,
both the quantities defined in Eqs. (5) and (8) are repre-
sented as functions of � for two values of D in Fig. 2. This
figure clearly shows a good agreement between hJi0 and
hJini0, independent of the values of the model parameters.
In this manner, Eq. (5) has been numerically verified for
Model A.

Next, we provide a mathematical proof of the theorem.
For simplicity, we restrict our argument to Model B in this
proof. In the case of Model B, it has recently been dem-
onstrated that the response Eq. (2) can be derived from
the Langevin equation (1) by transforming the force
F�x�t�� as [19]
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FIG. 1. ~C�!� and 2T ~R0�!� as functions of ! when D � 5 and
� � 10. All the quantities are dimensionless under the normal-
ization as � � l � T � 1. The solid and dotted lines represent
~C�!� and 2T ~R0�!�, respectively.
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FIG. 2. Energy fluxes hJi0 and hJini0 calculated on the basis of
Eqs. (5) and (8), respectively, as functions of the transition rate
�. The solid line and the closed circles represent hJi0 and hJini0,
respectively, whenD � 1. The dotted line and the closed squares
represent hJi0 and hJini0, respectively, when D � 5. As in Fig. 1,
all the quantities are dimensionless.
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F�x�t����vs�
Z t

�1
K0�t�s� � ���s��"f

p�s�	ds

�
Z t

�1
K?�t�s;x�s�� � ���s��"f

p�s�	ds; (9)

where � denotes the Itô multiplication [16]. We define
K0�t� � 0 and K?�t; x�s�� � 0 for t < 0. This decomposi-
tion of force is determined by definingK?�t; x�s�� such that
it satisfies the property

hK?�t; x�s��i0 � 0 (10)

for arbitrary t > 0 and s. By taking the average of Eq. (1)
after substitution of Eq. (9), we obtain Eq. (2) by the use of
Eq. (10). Then, it is established that

� ~R�!� � ~K0�!� � 1: (11)

See Ref. [19] for further details.
We now set " � 0. Hereafter, in order to distinctly treat

the coexistence of two types of multiplication 
 and �, we
discretize time as tn � n�t. Furthermore, we introduce a
Wiener process [16], W�t�, in place of the noise, ��t�.
Accordingly, the following notations are employed: xn �
x�tn�, �xn � xn�1 � xn, and �Wn � W�tn�1� �W�tn�.
By the definition of the Wiener process, the relations,
h�Wni0 � 0 and h�Wn�Wmi0 � �nm�t, hold.

Combining Eqs. (1) and (4) and taking into account the
definition of the multiplication 
, we obtain

J�tn��t � �Fn�xn �O��t3=2�; (12)

where �Fn � �F�xn� � F�xn�1�	=2. On the other hand, in-
tegration of Eq. (1) from tn to tn�1 gives

��xn � �Fn�t�
���������
2�T

p
�Wn �O��t2�: (13)

A straightforward calculation then gives

hJ�tn�i0 � �v2
s � �

��
�xn
�t
� vs

�
2
	

0
�

2T
�t

�

������
2T
�

s
h �Fn�Wni0

�t
�O��t1=2�: (14)

In the limit of �t! 0, the second and third terms on the
right-hand side of Eq. (14) can be transformed as

lim
�t!0

�
�
��

�xn
�t
�vs

�
2
	

0
�

2T
�t

�
�
Z 1
�1
�� ~C�!�� 2T	

d!
2�

:

(15)

Next, since the discrete expression of Eq. (9) becomes

F�xn� � �vs �
���������
2�T

p X1
k�1

K0�tk��Wn�k

�
���������
2�T

p X1
k�1

K?�tk; xn�k��Wn�k; (16)

it follows from Eq. (10) that

h �Fn�Wni0 �

�������
�T
2

s
K0��t��t; (17)

In addition, using Eq. (11), Fourier’s integration theorem,
lim�t!0�K0���t� � K0��t�	=2 �

R
1
�1

~K00�!�d!=2�,
leads to

lim
�t!0�

K0��t� � 2
Z 1
�1
�� ~R0�!� � 1	

d!
2�

: (18)

Substituting Eqs. (15), (17), and (18), into Eq. (14), we
obtain the theorem.

We now present several discussions on the generality of
the equality proved here. First, although this proof has been
restricted to Model B, we can prove Eq. (5) in almost the
same manner for Model A, by determining the decompo-
sition of the force as expressed in Eq. (9). Furthermore, our
result represented in Eq. (5) can be generalized for a larger
class of Brownian ratchet models [20], including models
with an inertia effect, a time-periodic potential, and spa-
tially inhomogeneous temperature profile. We will provide
a detailed description of these derivations in another paper.

Second, we can also analyze systems with many degrees
of freedom, such as colloidal dispersions, in a parallel way.
As a simple example, we consider a system where N
spherical colloidal particles in a three dimensional aqueous
solution are driven by an constant external force fex. (See
Ref. [21] for a related experimental system.) Let us denote
the coordinates of the particles by � � fxig (i �
1; . . . ; 3N), where r� � �x3��2; x3��1; x3�� represents the
position of the�th particle (� � 1; . . . ; N). Then, a widely
used model describing the motion of the particles is pro-
vided as [22]

� _xi�t� � Fi���t��� �i�t� � "f
p
i �t�; (19)

where Fi��� �
PN
��1 f�i;3��2 � @xi

PN
��1 U�r�� �

@xi
PN
�;��1 U

int
���jr� � r�j�=2 represents single-body forces

and two-body interactions, and the noise satisfies that
h�i�t��j�s�i0 � 2�T�ij��t� s�. For this model, the energy
dissipated into the solvent is expressed as J�t�dt �P3N
i�1�� _xi�t� � �i�t�	 
 dxi�t� [23]. We can then prove

hJi0�
X3N
i�1

�
�
h _xii

2
0�

Z 1
�1
� ~Cii�!��2T ~R0ii�!�	

d!
2�

�
; (20)

where Cij�t� � h� _xi�t� � h _xii0	� _xj�0� � h _xji0	i0 are the
cross correlations of velocity fluctuations, and Rij�t� are
the cross response functions defined as

h _xi�t�i" � h _xii0 � "
X3N
j�1

Z t

�1
Rij�t� s�f

p
j �s�ds�O�"

2�:

(21)

The derivation of Eq. (20) will be presented in another
paper, although it is a straightforward extension of the
above argument for Model B.
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In addition, we present another generalization of Eq. (5).
For Model B, by a similar argument with the above proof,
we can derive an expression for the symmetrized time
correlation between the velocity and force I�t� � h� _x�t� 

F�x�0��� _x�0� 
 F�x�t��	i0=2 as

I�t� � �
�
v2

s �
Z 1
�1
� ~C�!� � 2TR0�!�	ei!t

d!
2�

�
: (22)

In the case of equilibrium, this equality leads to the FRR
[Eq. (6)] since we can derive I�t� � 0 and vs � 0 from the
detailed balance condition. Thus, in order to further inves-
tigate the physical meanings of the FRR violation, it might
be important to study the function I�t�.

Before we conclude, let us discuss the physical signifi-
cance of the theorem. From an experimental point of view,
it has been difficult to estimate the amount of the rate of
energy dissipation in systems under investigation. The
virtue of the expression in Eq. (5) is that it enables us to
determine the energy dissipation from experimentally ac-
cessible quantities alone, without knowing every detail of
the system such as the profile of the force, F�x; t�. It is
expected that the present result is also useful in the study of
biological molecular motors.

In conclusion, we have presented an equality between
the rate of energy dissipation and the extent of the FRR
violation for a class of Langevin systems under nonequi-
librium conditions. To the best of our knowledge, no
previous study has addressed this equality, with the ex-
ception of a similar, but not precise, expression that was
conjectured by one of the authors [24]. However, we
should state that an inequality between the rate of entropy
production and the FRR violation was demonstrated in
Ref. [25].

In the present Letter, we restricted our argument to
Langevin dynamics. To extend our result for more general
nonequilibrium systems that are not described by Langevin
dynamics is an important open problem. Related to this
problem, one might be able to prove the present result on
the basis of microscopic dynamics, e.g., the Liouville
equation, at least with focusing on the vicinity of equilib-
rium. Experimental examinations on various nonequilib-
rium systems are also of great importance.
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