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We find numerical solutions of Einstein equations and scalar field equation for a global defect in higher
dimensional spacetimes ( � 6). We examine in detail the relation between the expansion rate H and the
symmetry-breaking scale � and the number of extra dimension n for these solutions. We find that even if
the extra dimensions do not have a cigar geometry, the expansion rate H grows as � increases, which is
opposite to what is needed for the recently proposed mechanism for solving the cosmological constant
problem. We also find that the expansion rate H decreases as n increases.
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I. INTRODUCTION

Recent observations suggest that majority of the
Universe is the unknown: 27% is matter (and only 4% is
ordinary matter) and the rest is the cosmological constant
(or dark energy) [1,2]. Since the cosmological constant is
interpreted as a vacuum energy [3], these observations
indicate that the energy density of the vacuum energy is
�� � �10�3 eV�4. On the other hand, a field theoretical
estimate of zero point energy of the vacuum yields the
Planck energy � 1018 GeV. Therefore, the mismatch be-
tween observations and the theory is huge:
�10�3 eV�4=M4

p ’ 10�120. This mismatch is called the cos-
mological constant problem (CCP) [4,5] and still remains
to be solved.

Dvali et al. [6] has suggested the mechanism of diluting
the cosmological constant by using brane world models
with codimension greater than 2. In this mechanism the
observed effective cosmological constant related to the
expansion rate becomes small because whose energy is
consumed to bend the bulk space even if the bare vacuum
energy (brane tension) is as large as the Planck scale. The
success of the mechanism rests on the conjectured relation
in higher dimension

H ’ M�

�
M4

�

��4

�
1=�n�2�

; (1)

whereM� is the �4� n�-dimensional Planck mass and ��4

is the four-dimensional (bare) vacuum energy (brane ten-
sion). If the number of extra dimensions n is greater than 2,
the expansion rate H is inversely proportional to the brane
tension ��4. Then the smallness of the cosmological con-
stant could be explained by the largeness of the brane
tension.

Cho and Vilenkin (extending the analytic solutions in
[7]) have recently constructed numerical solutions of a
global defect in seven (n 	 3) dimensional spacetime
[8]. They obtained numerical solutions of an inflating
global defect if the symmetric breaking scale is greater
than the higher dimensional Planck scale. Then the infla-

tion rate is found to grow almost linearly as the brane
tension is increased, which is opposite to what is needed
to solve the cosmological constant problem (1).

The main purpose of this paper is to extend Cho and
Vilenkin’s model to the arbitrary �4� n�-dimensional one
and find numerical solutions without ‘‘cigar ansatz’’ and to
examine the relation among the number of extra dimen-
sions, the energy density, and the expansion rate.

We shall find that the conjectured relation (1) does not
hold even by using our new bulk solutions in other extra
dimensions n �� 2�. However, we find that the brane’s
expansion rate is a monotonically decreasing function of
the number of the extra dimensions n and can vanish at the
specific dimension.

In the following section, we introduce the model in
Sec. II. Results of the numerical integration are shown in
Sec. III. Finally, we summarize our results in Sec. IV. Some
numerical details are given in Appendix A. Cigar type
solutions are reexamined in Appendix B.

II. MODEL

A. spacetime structure

In our model, the brane is assumed a 4-dimensional
de Sitter apace dS4, and the extra space is a spherically
symmetric n-dimensional space R
 Sn�1. Here the num-
ber of extra dimensions n is equal to or greater than 2 . The
entire manifold is wrapped product of both spaces R

Sn�1 
 dS4, whose metric is

ds2	dr2�C�r�2r2d�2
n�1�B�r�

2

�
�dt2�e2Ht

X3
i	1

dxi2
�
:

(2)

Here the coordinate of the brane is �t; x1; x2; x3� and H is
the positive constant expansion rate. The extra space’s
coordinate is �r; �1; . . . ; �n�1� and d�n�1 is the metric of
an n� 1 dimensional sphere Sn�1. C�r�r and B�r� are the
radius of the extra space and the warp factor depending on
r only. We adopt the Einstein-Hilbert action for the space-
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time dynamics such that

S E�H 	
1

2�2
Z
d4�nx

�������
�g

p
R; (3)

where �2 	 1=M2�n
� with M� being the �4�

n�-dimensional Planck mass.

B. Energy momentum tensor

The global defect in the n-dimensional spherically sym-
metric space is introduced to construct the brane, which is
described by a multiplet of the scalar fields �i with the
action,

S � 	
Z
d4�nx

�������
�g

p
�
�

1

2
@A�i@A�i � V���

�
; (4)

where capital letters �A; . . .� and small letters �i; . . .� run
from 1 to 4� n and from 1 to n respectively. Because we
consider spherically symmetric solutions only, the scalar
multiplet has been assumed to have a hedgehog configu-
ration, �i 	 ��r��i=r. Here ��r� depends only on the
radius coordinate r and �i represent for the Cartesian
coordinates of the extra space. The potential of the scalar
field V��� has minimum at j�ij 	 � 	 � such that

V��� 	
�
4
��2 � �2�2: (5)

The energy density due to the scalar field may be regarded
as the brane tension.

C. Basic equations

The Einstein equations and the equation of motion of the
scalar field are derived from the action, Eqs. (3) and (4) .
The Einstein equations are

G�� 	 �
1

4

�4�R

B2 � 3
B00

B
� 3

�
B0

B

�
2
� 3�n� 1�

�
B0

Br
�
B0C0

BC

�

� �n� 1�
C00

C
�

�n� 2��n� 1�

2

�
C0

C

�
2
� n�n� 1�



C0

Cr
�

�n� 2��n� 1�

2

�
1

r2
�

1

C2r2

�

	 �2
�
�
�02

2
�

�n� 1��2

2C2r2
�
�
4
��2 � �2�2

�
; (6)

Grr 	 6
�
B0

B

�
2
� 4�n� 1�

�
B0

Br
�
B0C0

BC

�
�

�n� 2��n� 1�

2




�
C0

C

�
2
� �n� 2��n� 1�

C0

Cr
�

�n� 2��n� 1�

2




�
1

r2
�

1

C2r2

�
�

1

2

�4�R

B2

	 �2
�
�02

2
�

�n� 1��2

2C2r2
�
�
4
��2 � �2�2

�
; (7)

G�i�i 	 �
1

2

�4�R

B2 � 4
B00

B
� 6

�
B0

B

�
2
� 4�n� 2�

�
B0

Br
�
B0C0

BC

�

� �n� 2�
C00

C
�

�n� 3��n� 2�

2

�
C0

C

�
2
� �n� 1�


 �n� 2�
C0

Cr
�

�n� 3��n� 2�

2

�
1

r2
�

1

C2r2

�

	 �2
�
�
�02

2
�

�n� 3��2

2C2r2
�
�
4
��2 ��2�2

�
: (8)

Here �4�R 	 12H2 represents for the 4-dimensional Ricci
scalar depending on the expansion rate of the brane. The
prime denotes the differentiation with respect to r. The
equation of motion of the scalar field is

�00 � �n� 1�
�

4

�n� 1�

B0

B
�
C0

C
�

1

r

�
�0

� �n� 1�
�

C2r2
� ����2 � �2� 	 0: (9)

Equation (7) imposes the constraint when solving Eqs. (6),
(8), and (9) as the second-order differential equations for
B;C, and �.

III. NUMERICAL SOLUTIONS

We have solved Eqs. (6)–(9) numerically with the initial
conditions B�0� 	 C�0� 	 1, B0�0� 	 C0�0� 	 0, and
��0� 	 0. These equations have a set of three parameters
�n; ��; ��=�1=2�H�. It is found by the numerical integration
that the proper relation among them is obtained under the
condition that the point of a singularity becomes as far as
possible. We assume that only a particular combination of
these parameters gives a nondiverging solution. We shall
call such parameters eigenvalues and regard regular solu-
tions with eigenvalues as physical solutions. Solutions
obtained from parameters deviated from the eigenvalues
have divergence in B or C. Similar situations are consid-
ered in [8] for the cigar ansatz which is detailed in
Appendix B. We shall find yet another numerical solution.
The set of eigenvalues forms the surface in the
3-dimensional parameter space, whose shape also will be
studied in the following. The discussion of technical details
for finding numerical solutions is given in Appendix A.

A. Asymptotic solutions

For H 	 0, we can find an asymptotic solution analyti-
cally which is obtained by solving Eqs. (6)–(9) at large r. If
n � 3, the solution is

��1� 	 �; (10)

B2�1� 	 constant; (11)

C2�1� 	 1�
����2

n� 2
; (12)

SATSUKI SHIMONO AND TAKESHI CHIBA PHYSICAL REVIEW D 71, 084002 (2005)

084002-2



where ����2 � n� 2. From Eq. (12), the sphere Sn�1 has
a solid angle deficit such that

�� 	
2�n=2

��n=2�
�
����2

n� 2
; (13)

where � is the gamma function. As �� approaches������������
n� 2

p
, the deficit angle consumes the entire area. If n 	

2, C�1� can take an arbitrary constant.

B. ����2� n�2 case

For ����2 � n� 2, a nonsingular solution exists when
the brane is not expanding,H 	 0. Then, the solution takes
an asymptotic form given in the last subsection.

We have solved the Einstein equations and the equation
of motion of � numerically in the range of �0; rmax�. Here
rmax should be taken to be sufficiently large so that � takes
a constant value given in Eq. (10). The details of the
method of numerical integration is given in Appendix A.

As an example, Fig. 1 shows a solution with the parame-
ter �n; ��; ��=�1=2�H� 	 �3; 0:65; 0�. The scalar field �
approaches � rapidly, which makes the defect core with
the energy density ����4 approximately, and B�r� and C�r�
approach toward constants as Eqs. (10)–(12).

C. ����2>n�2 case

For ����2 > n� 2, arbitrary H including H 	 0 leads
to a divergence in B or C at finite distance from the origin
and the singularity is formed. We call this point rsing. At the
specific value ofH, the distance to the singularity becomes
as far as possible and the divergence vanishes. We call this
point rf . We note that a fine tuning of the parameters is
required to find this local peak of the distance. The details
of the numerical method is given in Appendix A.

As an example, the numerical solution with the eigen-
value �n; ��; ��=�1=2�H� 	 �3; 1:09; 0:003 786 056� is

shown in Fig. 2. It is noticed that the B�r� vanishes at finite
r but C�r� does not diverge. The solutions for other dimen-
sions can be obtained and are shown in Fig. 3.

Figure 4 shows the relations between � and H with n
fixed at some values. Each line approaches the point
���;H� 	 �

������������
n� 2

p
; 0�. We find that H grows as � is

increased. This tendency is similar to the Friedmann equa-
tion but opposite to the conjectured relation Eq. (1).

Figure 5 shows the relations between n and H with �
fixed at some values. At n 	 0 in this figure, the values
read from the usual four-dimensional Friedmann equation,
H2 	 �2�=3; � 	 ��4=4 are also indicated. This figure
shows that the expansion rate determined by the
Friedmann equation is suppressed as the number of extra
dimensions increases and H vanished at a specific dimen-
sion. This effect may be considered as the dilution of the

FIG. 1. This graph shows a solution with the eigenvalue
�n; ��; ��=�1=2�H� 	 �3; 0:65; 0�.

FIG. 2. This graph shows the solution with the eigenvalue
�n; ��; ��=�1=2�H� 	 �3; 1:09; 0:003 786 056�. B approaches to-
ward 0 at finite rf .

FIG. 3. (a), (b), (c), and (d) are for the eigenvalues
�n; ��; ��=�1=2�H� 	 �2; 0:65; 0:003467�, �4; 1:46; 0:004330�,
�5; 1:765; 0:004535�, and �6; 2:025; 0:004119�, respectively.
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cosmological constant. However, very small but nonzero
expansion rate of H � 10�33 eV cannot be reproduced
without a fine tuning for ��.

IV. CONCLUSION

We have solved the Einstein equations and the scalar
field equation for a global defect in higher dimensional
spacetimes ( � 6). The defect has a (3�1) dimensional
core in n � 2 extra dimensions. We have extended the
analysis by Cho and Vilenkin [8] to other extra dimensions
and found numerical solutions without ‘‘cigar ansatz.’’ We
have examined in detail the relation among the expansion
rate H and the symmetry-breaking scale � and the number

of extra dimensions n for these solutions. We find that even
if the extra dimensions do not have a cigar geometry, the
expansion rate H grows as � increases, which is the
opposite to what is needed for the recently proposed
mechanism [6] for solving the cosmological constant prob-
lem. Finally we want to notice that our nondiverging
solutions require fine tuning of parameters
�n; ��; ��=�1=2�H�. So the problem of fine tuning remain
exist even if H decreases as � increases.
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APPENDIX A: NUMERICS

In this appendix, we give the details for finding the
numerical solutions.

1. ����2� n�2 case

In this case, our strategy for the calculation is divided
into 2 steps.

(i) First numerically integrating Eq. (6), (8), and (9) as
an initial value problem from the origin.

(ii) Then solving them as a two-point value problem by
the relaxation method with the initial solutions ob-
tained by the previous step.

In step (i), we solve the differential equations by the 4th-
order Runge-Kutta method. The calculation starts from the
origin with the initial conditions, B�0� 	 C�0� 	 1,
B0�0� 	 C0�0� 	 0; ��0� 	 0, and different�0�0�. The cal-
culation is so sensitive to the initial condition, �0�0�, that
bad choice would lead to the divergence of B;C;� at finite
distance. So we have fine tuned the sixth initial condition
�0�0� so that the point of divergence goes as far away as
possible which we call rlim. Then we can obtain an ap-
proximate solution in the range �rlim; rmax�without numeri-
cal divergence by fixing ��r� 	 ��rlim� at r � rlim
artificially. In the step (ii), we solve the differential equa-
tions by the relaxation method with two-point boundary
conditions at r 	 0 and at rmax. The sixth condition is now
replaced with �0�rmax� 	 0. After the iteration converges
(typically relative error below 5
 10�10), we finally ob-
tain a solution.

2. ����2>n�2 case

For ����2 > n� 2, arbitrary H including H 	 0 leads
to a divergence in B or C at finite distance from the origin
and the singularity is formed. We call this point rsing. At the

FIG. 4. The relation between � and H with n fixed, respec-
tively. In the region where H is small, we cannot find eigenvalue,
because the point of singularity is very far from the origin. H 	
0 seems to be established at �� 	

������������
n� 2

p
.

FIG. 5. The relations between n andH. (a), (b), (c), (d), and (e)
were given by fixing �� 	 0:760; 1:15; 1:50; 1:80; 2:01 respec-
tively. Values the normal Friedmann equation holds are also
indicated at n 	 0. As the number of extra dimensions increase,
the expansion rate is suppressed. The end points of each lines are
�n;H� 	 �n; 0:01�.
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specific value ofH, the distance to the singularity becomes
as far as possible and the divergence vanishes. We call this
point rf .

We solve the Einstein equations and the equation of
motion of � numerically in the range of �0; rsing�. But the
value of rsing remains unknown to be decided by solving
accurately. So, our strategy of the calculation is divided
into 4 steps.

(i) First numerically integrating Eqs. (6), (8), and (9)
as an initial value problem from the origin.

(ii) Then solving them as a two-point value problem by
the relaxation method with the initial solutions
obtained by the previous step.

(iii) Extending the solution of � to sufficiently large
value of r.

(iv) Numerically integrating the equations with the
fixed � obtained in the Step (iii) to find the true
position of the singularity and the solution.

Step (i) is executed in the same way as step (i) of ����2 �
n� 2 case. But the range of r is �0; �rsing�, where the bar
means that this position of the singularity is different from
the true one. Step (ii) is also executed in the same way as
����2 � n� 2 case. But the boundary condition is im-
posed at r 	 0 and at r 	 �rsing � �r. The right point is
shifted to the left by �r so that the singularity is not
included in this range �0; �rsing ��r�. By executing
step (ii), solutions of B;C;� can be obtained and
�0��rsing ��r� is vanishing. So we can extend ��r� to
sufficiently a large value of r, this procedure is step (iii).
In step (iv), we solve the differential equations by treating
the B�r� and C�r� as unknown functions and ��r� as fixed
background obtained in step (iii). The algorithm used is the
same as step (i). From steps (i)–(iv), we finally obtain the
numerical solutions and the point of the singularity.

Next, we find the ‘‘eigenvalue’’ under the condition that
the position of the singularity becomes as far as possible.
We can find the unique H as the eigenvalue with �n; ���
fixed like as follows. If H is smaller than the eigenvalue,
the energy of the defect core bends and closes the bulk
space such that B�r� ! 0 as r! rsing, which is shown as
solid lines in Fig. 6. Then C�r� diverge at the same point
and forming the singularity. As H is increased, the energy
density of the defect is consumed to inflate the brane and
the bulk’s curvature is relaxed. If H is beyond the specific
value, then that B�r� ! 1 at finite distance rsing, which is
shown as broken lines in Fig. 6. At a very specific value of
H which exists between these two values, neither B�r� nor
C�r� diverges and the position of the singularity has a local
peak here. This H is to be called the ‘‘eigenvalue.’’ Typical
examples are given in Figs. 2 and 3.

APPENDIX 2: CIGAR TYPE SOLUTIONS

In the previous works [8,9], the cigar type solutions in
n 	 3 case are studied. These solutions have asymptotic
forms

����
�

p
�Cr! constant. The analytic solution for arbi-

trary n � 3 is

�2�2�rmax� 	
2�n2 � 4� � �n� 1�����2

�n� 5�
; (B1)

B�rmax� 	
H����
�

p
�k

sin�
����
�

p
�krmax�; (B2)

��2C2�rmax�r2max 	
�n� 1��n� 5�����2

2�n� 2������2 � �n� 2��
; (B3)

where

FIG. 6. This graph shows solutions which have singularity. The
solid line and the broken line is for the parameter
�n; ��; ��=�1=2�H� 	 �3; 1:09; 0:00375�; �3; 1:09; 0:00400�, re-
spectively. These solutions have singularity at finite r.

FIG. 7. The relation between � and H for cigar type solutions
with n 	 3.
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k 	

��������������������
n� 2

2�n� 5�2

s
����2 � �n� 2�

��
(B4)

and rmax is a sufficiently large value.
It is concluded in [8] that eigenvalues in

���; ��=�1=2�H� space can be line fitted. But we have
reexamined this calculation and found more complex
structure shown in Fig. 7.

Our method of the numerical integration is as follows.
We have set the seven boundary conditions B�0� 	 C�0� 	
1, B0�0� 	 C0�0� 	 0, ��0� 	 0; �0�rmax� 	 0,
�rmaxC�rmax��

0 	 0, and considered Eqs. (6), (8), and (9)
and H0�r� 	 0, in which H is treated as the dependent
variable of r. The strategy to solve these equations is the
same as described in Appendix A. The iteration is not
converged for some values of �� corresponding to the
blanks in Fig. 7.
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