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Abstract

To investigate the relationship between cellular microelasticity and the structural

features of cytoskeletons (CSKs), a microindentation test for apical cell membranes and

observation of the spatio-distribution of actin CSKs of fibroblasts were performed by

fluorescence and atomic force microscopy (FM/AFM). The indentation depths of apical

cell membranes were measured from AFM force-indentation (f-i) curves under equal

final loads and were mapped two-dimensionally to show the relative distribution of

local microelasticity on cell membranes. Intracellular spatial distribution of actin CSKs

was visualized fluorescently by high Z-resolution cross-sectional observation of a cell

on which indentation mapping analysis had been performed in advance. Structural

features of stress fibers (SFs) were observed as three typical patterns of dense-SF,

sparse-SF and sparser-SF cell groups, which were quantitated using the degree of

orientation in apical SFs (ASFs) that had been defined using two-dimensional Fourier

analysis. In indentation depth maps, the upper nuclear region was markedly softer than

the pseudopodium region. The mean indentation depth of the upper nuclear region

decreased with increased SF density in whole cells and the degree of orientation of ASF,

although the pseudopodium region did not exhibit such a trend. The apical membrane of

adhered cells was found to tend to stiffen with the increase in both density and degree of

orientation of SFs.
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Introduction

Cell shape is known be closely related with cellular functions such as proliferation,

differentiation and metabolic activity [von der Mark et al. 1977; Folkman and Moscona

1978; Stein and Bronner 1989]. Understanding the mechanisms that determine cell

shape in the extracellular matrix and on an artificial substrate is essential for cellular

biomechanics and bioengineering. Three principal aspects that dynamically interact and

cooperatively contribute to cell mechanics have been examined from a mechanical and

structural viewpoint: adhesion mechanics to the extracellular milieu, the organization

features of cystoskeletons (CSKs), and cell-membrane deformation properties.

Regarding adhesion mechanics, both the focal adhesion (FA) complex of integrin

and receptor adhesion proteins such as fibronectin, and stress fibers (SF) connected to

the FA complex generate vertical adhesion forces and horizontal traction forces in the

adhesion interface. The manner of distribution of the FA complex and mechanical

properties of the FA-SF conjugated systems play a critical role in determining the shape

of the adhesion interface and total adhesion strength [Zhu et al. 2000]. In the CSK

mechanics aspect, formation, structure and changes in three types of CSKs, including

microfilaments (MFs), intermediate filaments (IFs) and microtubules (MTs), control the

cell shape. The cellular tensegrity model proposes balances between the tensional force

generated by MFs and the compression force by MTs, and between substrate traction

forces and MF contractions determine the cell shape [Ingber and Folkman 1989; Wang

et al. 2001; Ingber 2003]. The membrane mechanics aspect is controlled by mechanical

properties of the assembled structure of lipid molecules, membrane proteins and
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steroids, and of cortical lining actin meshworks [Evans and Yeung 1989; Oster 1989].

Both the internal pressure and inherent membrane tension of the cell generated by such

structural factors determine cell membrane deformation.

In principle, cell behaviors that are related to the cell shape, e.g., adhesion,

spreading and migration, are controlled through the interplay among or integration of

the above-mentioned mechanical factors as well as biochemical processes.

Determination of a quantitative correlation among them is essential for understanding

cell mechanics. For characterizing such interrelationships, several methodologies were

developed to determine the mechanical properties of adhered cells, which include cell

poking [Petersen et al. 1982], traction force microscopy [Dembo and Wang 1999; Lo et

al. 2000; Munevar et al. 2001; Wang et al. 2002], magnetic twisting cytometry [Wang et

al. 1993; Wang and Ingber 1995], and atomic force microscopy (AFM) [Henderson et al.

1992; Kasas et al. 1993; Chang et al. 1993; Hoh and Schoenenberger 1994; Shroff et al.

1995; Rotsh and Radmacher 2000]. Of these approaches, AFM force measurement

technique has become a powerful tool in the last decade because it directly measures the

relationship between applied force (stress) and deformation (strain) of a cell at the

nanoscale level. Although AFM provides mechanical information about the cell surface

and subsurface region, it cannot probe intracellular CSK structures. Quantitative

understanding of the effect of intracellular architectures of CSKs on cell elasticity has

been insufficient so far. The AFM force measurement technique coupled with

simultaneous fluorescence microscopic observation of CSKs may determine the

relationship between cell elasticity and structural features of CSKs in an identical cell.
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Especially, architectural contributions from CSKs, such as orientation of CSK fibers,

may be related to cell elasticity, which is expected to be analyzed using the combined

methodology.

In the present study, fluorescence and atomic force microscopy (FM/AFM)

[Yoshinaga et al. 2002] was employed to investigate the relationship between cell

elasticity and structural features of actin CSKs. The relative microelasticity distribution

of the apical cell membranes of cultured fibroblasts was analyzed using two-

dimensional mapping of the indentation depth under equal final loads. The intracellular

spatial distribution of actin CSKs was investigated using high Z-resolution cross-

sectional observation with a high-aperture oil-immersion 100×objective lens (NA; 1.35,

focal depth; ca. 230 nm). Mean indentation depth as the relative index of cellular

elasticity was compared with the structural features of SFs characterized by their density

and orientation. Statistical comparison indicated that apical cell membranes are

stiffened by the increase in both SF density and the degree of SF orientation.

Materials & Methods

Cell preparation

A mouse fibroblast cell line (3T3-Swiss albino) purchased from Dainippon

Pharmaceutical Co. Ltd. (Osaka, Japan) was cultured in Dulbecco’s modified Eagle’s

medium (DMEM; Gibco BRL, Grand Island, N.Y., USA) supplemented with 10% fetal

bovine serum (FBS; Gibco BRL), 3.5 g / l glucose, 2 mM L-glutamine, 100 units / ml

penicillin, and 100 µg / µl streptomycin. The cells were maintained on tissue culture
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polystyrene dishes at 37°C under 5% CO2 in a humidified incubator. Prior to force

volume (FV) measurement by AFM, 80–90% confluent cells were trypsinized and

harvested as a suspension. Then, 1×104 cells were seeded in 35-mm-φ glass-based

dishes (Iwaki Glass Co. Ltd., Japan) pretreated with 100% FBS, and incubated between

24 h and 48 h. Just before measurements, a serum-free Leibowitz’s L-15 medium

(Gibco BRL) medium was substituted for DMEM to maintain a constant pH during

measurement without a 5% CO2 atmosphere.

Indentation depth mapping by AFM force volume measurement

Indentation depth mapping of the apical cell membranes was performed by the

following three steps: (1) f-i curves were measured for lattice points of 13×13 every 4

µm (169 points, 48×48 µm area) of a cell membrane (FV measurement) [Radmacher et

al. 1996] under equal final loads of 1.5 nN, using FM/AFM (NVB100; Olympus Optical

Co. Ltd., Tokyo, Japan; AFM controller & software: Nanoscope IIIa, Digital

Instruments, CA, USA) with a commercial silicone-nitride cantilever with a half-

pyramidal tip and nominal spring constant of 0.03 N/m (Bio-lever; Olympus Optical Co.

Ltd.). Cells were incubated at 35–37°C in a temperature-controlled open chamber

(MATS-CO2CHK; Tokai HIT Co. Ltd., Shizuoka, Japan) during FV measurement. The

resolution and the scan area were set to complete the FV measurement within 30 min to

avoid the effects of cell movement and changes in osmotic pressure that typically result

of water evaporation from the medium. During measurement, the relative trigger mode

was employed to keep the final load constant. The Z-center position of the scanning

head was optimized dynamically using a stepping motor. The force was loaded through
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the tip-approaching movement with a constant rate and was increased continuously to

the maximum trigger value. Then the force was unloaded through the tip-retracting

movement with a constant rate. The rate of the repeated motion of tip-approaching and

retracting in the Z-direction was set at as 1.5 Hz (7.5 µm/s) to minimize the viscosity

effect at around 30°C [Hassan et al. 1998]. (2) The indentation depths were measured

from the traveling distances of the tip in the tip-sample contact region for each f-i curve.

The initial contact position was defined as the point at which the force increment in the

tip-approaching process becomes markedly higher than the noise fluctuation level in the

tip-sample noncontact region. (3) Finally, the measured indentation depths were plotted

as a gray-scale image of 65×65 pixels, increasing the pixel numbers of raw data (13×

13 pixels) through bilinear interpolation using the NIH image ver.1.62 software, which

produced the indentation depth map in the FV area. Such an increase of pixels was

applied to modify the unnatural description of discrete change in indentation depth

around the boundary between two neighboring FV areas of 4×4 µm.

Actin observation

Actins were visualized fluorescently. Immediately after FV measurement, the

medium was removed and the cells were fixed in 10% formalin in phosphate buffered

saline (PBS) for 10 min, rinsed three times with PBS, permeabilized in 0.5% Triton X-

100 for 5 min, and rinsed again three times with PBS. Then, rhodamine-phalloidin

(Molecular Probes Inc., Eugene, OR) was added at 0.07 µM in PBS and incubated for 1

h at room temperature. After incubation, excess dye was removed by rinsing three times

with PBS. The spatial distribution of actins inside a cell was observed using a
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fluorescence microscope with an ultraweak-light-detecting CCD camera and a video-

enhancing unit (EB-CCD and Argus 50; Hamamatsu Photonics KK) connected to the

FM/AFM system, and with an oil-immersion 100×objective lens (UpalnApo; Olympus

Optical Co. Ltd.) with a high Z resolution (NA; 1.35, focal depth; ca. 230 nm), while

changing the focal plane manually by approximately 1 µm increments from the basal

side to the apical side of the cell using an objective handle.

Two-dimensional Fourier analysis of apical stress fiber patterns

The degree of orientation of the apical stress fiber patterns (ASFs) was quantitated

using two-dimensional Fourier analysis [Wood 1990]. The orientation distribution

function (ODF) of the two-dimensional power spectra of the fluorescence images of

ASFs was calculated for 20 cells as follows: First, the power spectra images were

produced through discrete Fast Fourier Transform (FFT) using NIH image ver.1.62

software for 8-bit gray-scale fluorescence microscopic images of actins in the nuclear

region of a cell, which was clipped into a 128×128 pixel area and pretreated with the

Hanning window function. Windowing was employed to reduce the contribution of an

artificial frequency arising from the edge discontinuity [Pourdeyhimi 1997]. Next, the

images of the windowed FFT power spectra were exported as text data of the two-

dimensional array of powers. Finally, ODF P(θ) were calculated from power data using

Visual Basic and Excel 2001 software (Microsoft Corp.) according to [Wood 1990],

P P u v N
u v

( , ) ( , ) / ( )
,

θ θ θ θ
1 2

2

2 1

1
2

= −∑ (1)

θ θ
1

1

2
≤ <−tan u v( / ) (2)
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0 1< ≤ −u N (3)

0 1< ≤ −v N , (4)

where P(u,v) is the power at the frequency domain (u, v), and u, v and N are integers. In

addition, θ1 and θ2 are the angles of the two radii that form the sector. At the limit, as θ2

→θ1, P(θ1, θ2) becomes the ODF function P(θ). In this study, the limit angle (θ2 -θ1) and

radius of the sector for averaging the power distribution were set respectively at 5° and

32 pixels in the frequency domain.

Statistical analysis

Comparison of the indentation depths at the upper nuclear region and pseudopodium

region of 20 cells among three cell groups classified by SF density and orientation was

performed using both one-way factorial ANOVA and Ryan’s multiple comparison.

Values of p<0.05 were considered statistically significant.

Results

Indentation depth mapping and observation of intracellular spatial distribution of

actin cytoskeletons

Indentation depths in apical cell membranes of cultured fibroblasts were measured

using AFM under the equal final load, and two-dimensionally mapped as a gray scale

contour graph to visualize the relative microelasticity distribution on the cell membrane.

Subsequently, intracellular spatial distribution of actin CSKs in the same cell was

observed fluorescently in high Z-resolution cross-sectional images obtained at 1-µm

intervals. Within the 20 cells for which these coupled examinations were performed,



10

three representative observations for cells that exhibited different features in indentation

mapping and structural features of actin CSKs are shown in Figs. 1–3.

For the cell in Fig. 1a, indentation depths measured under the load of 1.5 nN for 13

×13 lattice points in the white dotted square area were mapped as in Fig. 1b, which

varied between approx. 150 and 1000 nm. Here the relatively high load of 1.5 nN was

adopted to evaluate not only the contribution of deformation of cortical actin network,

but also of structural changes of SFs to the elasticity of apical cell membrane. Under the

1.5 nN load, no measured f-i curves exhibited a straight profile in the tip-sample contact

region, even in the pseudopodium region (data not shown), which suggests that the

AFM probe tip does not reach to the substrate position and that full compression of

pseudopodium is avoided in the indentation process. In the maps, the darker area

indicates the deeper indented (i.e. softer) area, and mean indentation depth and its

standard deviation in the upper nuclear region and pseudopodium region (including both

lamellipodium and filopodium) were determined respectively, as 470 ± 170 nm and 300

± 140 nm, suggesting that the former is softer than the latter. In the observation of the

intracellular spatial distribution of actin CSKs, as the focal plane was moved from the

basal side towards the apical side of the cell, many thick well-developed SFs were

observed near the basal side (basal stress fibers, BSFs, Fig. 1c), in both sides of the

nucleus (Figs. 1d and 1e), and above the nucleus (apical stress fibers, ASFs, Figs. 1f and

1g). The ASFs are attached closely to the apical cell membranes by adhesive plaques

[Osborn et al. 1978; White and Fujiwara 1986; Katoh et al. 1995; Katoh et al. 1996].

Therefore, the Z position of the highest ASF (Fig. 1g) approximately marks the top
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region of the cell. The total Z-movement distance of the focal plane from the BSF

observation position to the highest ASF observation position shows that the approximate

cell height in Fig. 1 was 3–4 µm, which suggests that the indentation depths measured

in the mapping were between 10–15% of the cell height. The group of cells represented

in Fig. 1 that contains many well-developed SFs in the whole cell is denoted as the

“dense SF” group below.

For the cell in Fig. 2a, the upper nuclear and pseudopodium regions exhibited mean

indentation depths of 770 ± 190 nm and 350 ± 100 nm (Fig. 2b), respectively,

suggesting that the former is much softer than the latter. The upper nuclear region of the

cell in Fig. 2 was markedly softer than that of the cell shown in Fig. 1. In the entire

region ranging from the basal side to apical side of the cell, SFs were observed to be

sparse and dispersed granular aggregates of actins coexisted with the sparse SFs (Figs.

2c–2h). This type of cell group that exhibited the coexistence of sparse BSFs, sparse

ASFs, and the granular aggregates of actins was denoted as the “sparse SF” group. The

cell height evaluated from Figs. 2c-2h was approximately 5–6 µm.

The cell in Fig. 3a exhibited considerably large indentation depths that ranged

between 150 and 1800 nm (Fig. 3b). The mean indentation depths of the upper nuclear

region and pseudopodium region were, respectively, 1300 ± 130 nm and 450 ± 120 nm.

Compared with the cells depicted in Figs. 1 and 2, both the upper nuclear and

pseudopodium regions were much softer. The coexistence of sparse BSF and many

granular aggregates of actins was observed near the basal side (Fig. 3c), whereas only

the granular aggregates and no SFs were observed around the nucleus (Figs. 3e and 3f)
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or above the nucleus (Figs. 3g and 3h). This type of cell group that exhibits the feature

of sparse BSF and no ASF is denoted as “sparser SF” group. The cell height was

evaluated as approximately 10–12 µm (Figs. 3c–3h are shown at 2-µm-intervals).

Comparison between mean indentation depth and structural feature of SFs

Because the indentation depths measured under equal final load are normalized

values that thereby reflect the relative local Young’s modulus (see Discussion), the

indentation depth mapping not only provides information on the microelasticity

distribution in a single cell; it also enables the quantitative comparison of the

microelasticities of many cells. Figure 4 shows the mean indentation depth for the upper

nuclear region (Fig. 4a) and the pseudopodium region (Fig. 4b) on each of the measured

20 cells, which were classified into one of the three cell groups of dense SF, sparse SF,

or sparser SF. For the upper nuclear region, the indentation depths varied from 150–750

nm in the dense SF group, 450–1300 nm in the sparse SF group, and 600–1600 nm in

the sparser SF group. The indentation depths tended to increase in the order of dense SF,

sparse SF, and sparser SF groups: the order of decreasing SF density. On the other hand,

for the pseudopodium region, the indentation depths were distributed in a similar range

of 100–600 nm among the three cell groups, suggesting that the elasticity of the

pseudopodium region does not exhibit clear dependence on the SF density. The total

mean and standard deviations of the indentation depths in each cell group are shown in

Fig. 5. It has been confirmed statistically that the indentation depths in the upper nuclear

region decreased: the membrane stiffened concomitant with the increasing SF density.

In the pseudopodium region, irrespective of the SF density, the indentation depths were
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markedly less than those in the upper nuclear region, which suggests that the former is

stiffer than the latter in the cultured cells.

As the next step, the relationship between the mean indentation depth and SF

orientation was investigated quantitatively using the degree of fiber orientation

evaluated through two-dimensional Fourier analyses of the SF distribution patterns.

Fourier methods are useful for extracting orientation information quantitatively by

transforming a gray-scale image into a frequency image. Spatial frequencies in the

perpendicular direction will appear to be high if any fibrous components are oriented

predominantly in a given direction [Wood 1990; Pourdeyhimi 1997]. The degree of

orientation can be reflected in the power contribution in the spatial frequency domain.

In this study, ASF distribution patterns were chosen especially to be analyzed as

representative information of SF orientation in a cell.

The left panels in Fig. 6 exemplify typical fluorescence images of ASF with

different degrees of development. For each image, Fourier power spectra and

orientation distribution function (ODF) were obtained as shown respectively in the

middle and right panels. In the power spectra of the dense ASF image (Figs. 6a and 6b),

a characteristic direction with higher power than the other directions appeared, and the

higher power region spread widely to high-frequency domains. For the sparse ASF

images (Figs. 6c and 6d), although both the characteristically oriented power

distribution and the isotropic broad power distribution were observed, the range of the

concentrated power region from the center is rather narrower than the dense ASF image.

In the case of no ASF (Figs. 6e and 6f), no characteristic direction was observed and
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only an isotropic broad power distribution appeared. Both the direction of orientation

and the mean power level in that direction were measurable from the ODF. Based on

these measurements, we defined the degree of orientation as the difference between the

maximum and the minimum power levels in the peak of ODF. Figure 7 shows a plot of

mean indentation depths versus the degree of orientation of ASF. The degree of

orientation of ASF was varied less than 11 (arbitrary unit) for the sparser SF group,

11–17 for the sparse SF group, and 18–31 for the dense SF group, indicating that the

increase in ASF orientation tends to be accompanied by the increase in SF density in a

whole cell. The correlation coefficient for the mean indentation depth and the degree of

orientation was –0.77, suggesting a significant correlation between them: indentation

depths tended to decrease; i.e., the apical cell membrane was stiffened, with increases in

both SF density in whole cells and the degree of orientation of ASFs.

Discussion

In general, the shape and motility of adherent cells are determined by the dynamic

balances of the following three principal aspects of mechanical and/or biochemical

factors belonging to different structural divisions in an adhered state: (1) Basal

membranes, adhesion mechanics including adhesion and traction forces generated by

the adhesion machineries on a substrate; (2) inside a cell, the contributions of CSKs and

cytosol that include the polymerization dynamics of CSK elements (dynamic instability),

mechanical property of CSK filaments and their bundling, and viscoelastic property of

CSK matrix in cytosol; and (3) the apical membrane, elasticity and tension that are
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regulated by the lateral assembly force of membrane molecules and the mechanical

property of the lining cortical actin network, etc. Understanding quantitative

correlations among these aspects is an important issue of cell mechanics. In this study,

to gain some insight into such interrelationships, both the cellular microelasticity and

the structural features of actin CSKs (SF density and orientation) were characterized

quantitatively in identical cells and compared to one another.

For analyses of cellular microelasticity, the indentation depth of the apical cell

membrane was measured using AFM under equal final load, which provided the relative

index for microelasticity, as described in the following theoretical basis [Hassan et al.,

1998]. According to the Hertz model [Hertz 1881; Sneddon 1965], the relationship

between force and indentation depth in the case of using a conical shaped indenter such

as AFM probe tip, is written as

F
tan E=

−
2

1 2

2( )α
π µ

δ , (5)

where α, E, µ, and δ respectively represent the semivertical angle of the conical tip,

Young’s modulus of the sample surface, the Poisson ratio, and the indentation depth.

When the f-i curves are measured at different positions in a single cell or in different

cells under equal load, Eq. 1 is reduced to

E

E
1

2

2

1

2

=








δ

δ
, (6)

where the suffixes denote points 1 and 2. Equation 6 suggests that the squared ratio of

indentation depths in different positions is inversely proportional to the ratio of elastic
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moduli, which is independent of the conditions of the tip-sample contact area, Poisson’s

ratio, cantilever’s spring constant, and the semivertical angle. Consequently, the two-

dimensional relative microelasticity distribution in a single cell and elasticity

differences between different cells can be analyzed simply through measuring, plotting

and comparing only the indentation depths under equal load. Based on Eq. 6, Young’s

moduli of the upper nuclear region in sparser SF, sparse SF and dense SF cells are

evaluated respectively as approximately 0.07-fold, 0.13-fold and 0.36-fold of that in the

pseudopodium region of the cells (see Fig. 5), which suggests that the upper nuclear

region is 3-fold to 14-fold softer than the pseudopodium region and tends to be stiffened

with increasing SF density and orientation. Such a tendency that the nuclear region is

markedly softer than the peripheral one with more microfilaments well corresponds

with that described in previous works [Shroff et al. 1995, Rotsch and Radmacher 2000].

On the other hand, the elasticity of the pseudopodium region exhibited no marked

dependency on the SF density (see Fig. 4b) in the present result, though the substrate

effect has been carefully avoided in force-indentation measurements. From the

experiment of drug-induced disruption of microfilaments such as by cytochalasin B, it

has been reported that all regions of the cell are softened except for the nuclear region

[Petersen et al. 1982]. Such the difference of elasticity response of the peripheral region

between the present result and the literature are attributable to the difference in the

structure of cortical actin network, which was retained in our study, but disrupted in the

experiment using cytochalasin B.

Considering the reason for the tendency mentioned above, it is noteworthy that four
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classes of mechanistic factors act in the cortical region of apical cell membranes: (1)

elasticity induced by the bending of the membrane itself [Oster 1989], (2) elasticity

induced by the bending and/or entropic writhing of the cortical lining actin filament

network [Oster 1989], (3) bending elasticity of ASFs beneath the membrane [Oster

1989], and (4) contributions of viscoelasticity and tensegrity mechanisms of the CSK

matrix in the cytosol [Ingber and Folkman 1989]. Because the present indentation depth

mapping was performed under low-resolution force volume measurement (4-µm

intervals), and because the intervals between ASFs were comparable to the order of the

resolution (1–2 µm; see Fig. 6), the mean indentation depths calculated for the upper

nuclear and pseudopodium regions are affected considerably by the membrane positions

where ASF is not located. In such positions, the indentation depths, as the representative

index of cellular elasticity, reflect the contribution from the above-mentioned factors (1),

(2) and (4) rather than factor (3). Based on these characteristics, stiffening of the upper

nuclear region accompanied by the increased SF density and orientation is inferred to be

affected not only by the increase in bending elasticity of ASFs, but also by the increase

in tension in the tangential direction induced by factors (1), (2) and (4), which is

proportional to the bending elasticity of the apical cell membrane [Sokabe et al. 1997].

In addition, the tension in the apical membrane is in close association with the spreading

and flattening state of cell that is regulated by the size, density and manner of

distribution of adhesion machineries in the basal cell membrane. Especially, factor (4)

effects membrane tension through the CSK prestress change connected with the traction

force change of the adhesion machineries in the basal cell membrane [Munevar et al.
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2001; Wang et al. 2001; Wang et al. 2002]. Increases in both SF density in a whole cell

and ASF orientation accompanied by the stiffening of apical cell membrane observed in

our result might be attributable to the effect of factor (4), together with the traction force

change in the cell-substrate boundary, i.e. tensegrity mechanism. In our observation,

dense SF cells were more spread out and thinner than sparse SF and sparser SF cells

(Figs. 1–3). Such flattening of cells can induce a decrease in the apical membrane

curvature and increase traction forces in the basal membranes, both of which can

contribute to increased tension in apical membranes, thereby stiffening them.

Regarding the variance of structural features of SF, SF density has been reported to

be closely associated with cell motility. Similarly to our observations, three classes of

characteristic SF distribution are known: frequent or dense SF formation, a mixture of

diffuse actins and SF patterns, and a lack of SF [Byers et al. 1984]. Within these classes,

well-spread cells with dense SFs exhibit suppressed motility. Cells without SFs show

rapid migration [Byers et al. 1984]. On the other hand, actively migrating cells show

elasticity oscillation in the upper nuclear region of apical membranes and stationary

cells do not exhibit such oscillation and maintain rather stiff membranes [Nagayama et

al. 2001]. Increase in the SF density and the degree of orientation, suppression of

motility, stiffening of apical membranes, and flattening of cells are suggested to be the

events accompanying the process of cell adhesion, spreading and migration.

Conclusion

In this study, we analyzed the relationship between the elasticity of apical cell
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membranes and the structural features of actin CSKs in adhered cells, particularly

emphasizing the SF density and orientation. Apical cell membranes tended to be

stiffened with the increase in both SF density in a whole cell and ASF orientation as

well as spreading and flattening of cells. Although further detailed study is required to

clarify the mechanistic reason of such accompanying behaviors, contributions not only

from the bending elasticity of ASF but also from the increase in inherent tension of

apical membranes affected by such flattening and CSK prestress should be taken into

account, considering the characteristics of the low resolution of the indentation depth

mapping in the measurements described in this study.
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Figure Captions

Figure 1. Typical indentation depth mapping and intracellular spatial distribution of

actin CSK in cultured fibroblasts with dense SFs. (a) Phase contrast micrograph, (b)

indentation depth map for the white dotted square area in (a), and (c–g)

immunofluorescence images of actin CSK observed in five different focal planes. The

white dotted circle in (b) shows the nuclear region. Scale bars show 10 µm.

Figure 2. Typical indentation depth mapping and intracellular spatial distribution of

actin CSK in cultured fibroblasts with sparse SFs. (a) Phase contrast micrograph, (b)

indentation depth map for the white dotted square area in (a), and (c–h)

immunofluorescence image of actin CSK observed in six different focal planes. The

white dotted circle in (b) shows the nuclear region. Scale bars show 10 µm.

Figure 3. Typical indentation depth mapping and intracellular spatial distribution of

actin CSK in cultured fibroblasts with sparser SFs. (a) Phase contrast micrograph, (b)

indentation depth map for the white dotted square area in (a), and (c–h)

immunofluorescence image of actin CSK observed in six different focal planes. The

white dotted circle in (b) shows the nuclear region. Scale bars show 10 µm.

Figure 4. Mean indentation depths in upper nuclear region (a) and pseudopodium

region (b) of apical cell membrane, which are measured from the indentation depth

maps of 20 cells.
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Figure 5. Statistical comparison of mean indentation depths in upper nuclear region and

pseudopodium region of apical cell membrane from the cell groups with dense, sparse,

and sparser SFs. * p < 0.001, ** p < 0.005.

Figure 6. Two-dimensional Fourier transformation analysis of distribution patterns of

ASFs. Left panels: fluorescence image of typical distribution patterns of dense ASFs (a

& b), coexistence of sparse ASFs and dispersed granular aggregates of actins (c & d),

and lack of ASFs (e & f). Middle panels: Fourier-transformed power spectrum images

of each distribution. Right panels: orientation distribution functions of respective

Fourier-transformed images. Scale bar shows 5 µm.

Figure 7. Correlation between mean indentation depths on upper nuclear region of

apical cell membrane and the degree of orientation of ASF evaluated from ODF. Circles,

squares, and triangles respectively indicate cell groups with dense, sparse, and sparser

SFs. The correlation coefficient was –0.77.
















