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Analysis of Hydrologic Model Parameter Characteristics Using
Automatic Global Optimization Method

Giha LEE¥*, Yasuto TACHIKAWA, and Kaoru TAKARA
*Graduate school of Urban and Environment Engineering, Kyoto University

Synopsis

The successful application of hydrologic models depends on how well the models are
calibrated. Therefore, the calibration procedure should be performed prudently to improve
model accuracy and maximize model reliability before making decision of an intended
purpose using a hydrologic model. Despite frequent utilization of manual calibration
especially for distributed hydrologic models, much more weakness still remains with
respect to the absence of generally accepted objective measures and extreme time
consuming. Automatic calibration can overcome these kinds of shortcomings. A global
optimization algorithm entitled shuffled complex evolution (SCE) has been proved to be
efficient and robust to find optimal parameters of hydrologic models. This study examines
the applicability of global optimization scheme, SCE, for calibrating two hydrologic
models which have different model structures and indicates variation of optimal
parameters according to objective functions. We also analyze parameter transferability
under various flood scale. At last, guideline indexes able to assess model stability are
introduced to allow modelers to select a more stable and suitable hydrologic model. Above
all procedures are applied to Kamishiiba catchment (211km?).

Keywords: Automatic calibration, Shuffled complex evolution, Parameter transferability,
Model stability

1. Introduction

The principal why modeling of
rainfall-runoff process is necessary are a limited

reasons

range of measurement techniques and a temporal and
spatial constraint of measurement (Beven, 2001).
Manifold hydrologic models have developed
mathematically and empirically to describe more
closely and accurately the response behavior

(transformation) of watershed from rainfall to runoff.

These types of models are conversion and
simplification of reality, thus no matter how
sophisticated and accurate they may be those models
only represent aspects of conceptualization or
empiricism of modelers. Accordingly, their outputs
are as reliable as hypothesis, structure of models, and
quantity and quality of input data, and parameter
estimates (Gupta et al., 1999; Muletha and Nicklow,
2005).

In general, one of the useful works to enhance



accuracy of model performance is identifying suitable
values of model parameters so that model simulations
closely match measured behaviors of a study site.

The parameter values are adjusted between each
run of the model, either manually by the modelers or
by some computer-based optimization algorithm until
some optimal parameter set has been found. However,
manual calibration has several shortcomings. It
requires comprehensive understanding of the
catchment runoff behavior and the model structure
and can be extremely time consuming. In addition,
the termination of calibration process is based on the
subjective decision of the hydrologists and therefore,
it is difficult to transfer the expertise to another
person (Wagener et al, 2004). But, methods of
automatic  calibration can complement these
weaknesses. Automatic calibration involves the use of
a search algorithm to determine best-fit parameters,
and it offers a number of advantages over the manual
approach with respect to calibration running time,
search of the

extensive existing  parameter

possibilities. There have been many automatic
calibration studies dealt with
models (Sorooshian and Gupta, 1995; Gupta et al.,
1998) and distributed models (Eckardt and Arnold,
2001; Muletha and Nicklow, 2005).

Nevertheless a

lumped-conceptual

remarkable development of
automatic calibration, so far, it is not sufficient to
interpret parameter tranferability according to a flood
scale in a single watershed. It is also difficult to
explain parameter transferability according to areas
different geomorphologic
characteristics for modeling of ungauged basins since
even nearby catchments can be very different with
respect to their hydrological behavior.

Furthermore, modelers frequently are faced with
of difficulties related to selection of a suitable

which have same or

hydrologic model for analysis of rainfall-runoff
process. That is to say, there are no existing
benchmark or guideline indexes able to assess the
suitability and stability of the model structure for
representing the natural system. Gupta et al. (1998)
pointed out that a subjective selection of objective
functions (e.g., SLS, HMLE) for calibration of

hydrologic model lead to an overemphasis on a
certain aspect of the response (e.g., peak flows),
while neglecting the model performance with regard
to another aspect (e.g., low flows). They suggested
multi-objective optimization method to find the
parameter set necessary to fit all aspects of the
observed output time series and to identify model
structural insufficiencies. Here, it is questionable that
hydrologic models, which have totally different
mechanism to reflect real rainfall-runoff process, lead
to the same simulation results according to the
variation of objective functions. If the optimized
parameter set vary irregularly according to various
objective functions, we are able to conjecture that
kinds of model has an unstable model structure.
Additionally, such approach makes it possible to
allow modelers to distinguish the suitable model
among diverse models.

In this paper, the Shuffled Complex Evolution
(SCE) optimization method is used to calibrate
lumped model, Storage Function Model, and
distributed model, KsEdgeFC2D model using five
flood events from Kamishiiba catchment located in
Kyushu area. Especially, we focus on four main
questions as described in following:

(1) Assessment of applicability of automatic
global
inspections, goodness-of-fit between the simulated
and the observed, minimization progress of objective
function values due to number of function evaluations.

optimization scheme wusing two visual

The outputs from calibrated parameters with SCE
method are compared to the simulation results
evaluated (manually calibrated) by Tachikawa et al.
(2004) in their previous literature.

(2) Variation of optimal parameter according to
two different objective functions, Simple Least
Square (SLS), Heteroscedastic Maximum Likelihood
(HMLE).
calibration is evaluated by using percent bias
(PBIAS) and Nash-Sutcliffe  (NS)
commonly used in goodness-of-fit measure.

(3) Analysis of parameter transferability including

Estimator The performance of each

statistics

uncertainty of parameters according to a different
flood scale through applying calibrated parameters of



four flood events to the rest flood event. Especially,
the biggest flood event among flood events occurred
in the study site is selected for analyzing the
influence due to model parameters optimized by each
different flood scale.

(4) Introduction of guideline indexes to analyze
the model stability in terms of entire behaviors of
predicted hydrographs.

2. Applied Hydrologic models

To assess the applicability of global optimization
algorithm, Storage Function model (SFM) proposed
by Kimura (1975) and KsEdgeFC2D developed by
Ichikawa et al. (2001) are applied to the Kamishiiba
catchment. More detailed description of models is
introduced in following subsections.

2.1 Storage Function Model (SFM)

This model is known as a reasonable lumped
model because of reflection of nonlinear
characteristics of hydrologic response behavior and
simplification of computational procedures. SFM is
also used for the rainfall-runoff simulation in a small
watershed less than five hundred square kilometers in

Japan. The form of SFM is expressed as:

ds

—=r.(t-T)-q" S=kq” (1)

dt e( I) q

re—{fxr' . it > r<Rq @)
rooif D r>Rg,

where, S = water storage; r = rainfall intensity; q

runoff; t = time step; k = storage coefficient; p
coefficient of nonlinearity; f = primary runoff ratio;
T, = lag time; and R, = cumulative saturated rainfall.

2.2 KsEdgeFC2D Model

KsEdgeFC2D is a physically based distributed
hydrologic model developed by Ichikawa et al.
(2001) and discharge-stage relationship,
represents the hillslope runoff phenomena, including
unsaturated flow is imbedded by Tachikawa et al.
(2004). The model solves the one-dimensional

which

kinematic wave equation with the discharge-stage
equation using the Lax-Wendroff finite difference
scheme according to orderly nodes and edges, edge
connection along flow direction
geomorphologic information are extracted from a

250m based DEM. Channel routing is also carried out

map. All

by the kinematic routing scheme as well as
calculation of slope elements reflecting contributing
areas.

The model assumes that permeable soil layers
cover the hillslope as illustrated in Figure 1. The soil
layers consists of a capillary layer in which
unsaturated flow occurs and a non-capillary layer in
which saturated flow occurs. According to this
mechanism, if the depth of water is higher than the
soil depth, then overland flow occurs.

Non-capillary pore
saturated flow

Capillary pore

unsaturated flow

D dm

m

Vadwrtva (h—ds) +o (h—da)

\_\“

vndrtva (h—dw)

Vndm+Va (da—da)
vade [------
0

Fig. 2 The discharge-stage relationship.

The discharge-stage relationship is expressed by
three equations corresponding to water levels divided
into three layers (see Figure 2). This relationship is
defined as:

v,d, (h/d,)", 0<h<d,

@)
q=4v,d, +v,(h—-d,), d, <h<d,
v, d,+v,(h—-d,)+a(h-d,)", d,<h
oh dq (4)
—+—=r(t)
ot 0ox

Flow rate of each slope segment are calculated by



above governing equations combined with the
continuity equation like equation (4). where,
Vo =kyii v, =k,is k,=k, /B8 a=+i/n; i is slope
gradient, g_ is saturated hydraulic conductivity of

the capillary soil layer, _ is hydraulic conductivity

of the non-capillary soil layer, n is roughness
coefficient, ¢ is the depth of the capillary soil layer
and ¢, is soil depth. Detailed explanations of model

structure appear in Tachikawa et al. (2004).
3. Study site and storm events

The study site is the Kamishiiba catchment which
lies within Kyushu region in Japan and covers an area
of 211km?. Topographic data processing is basically
performed with 250m DEM (Geographical Survey
Institute). Figure 3 shows the study area and drainage
outlet, Kaimsiiba Dam described by ExtractNodeEge,
one of the geo-processing procedures in Geohymos
(http://flood.dpri.kyoto-u.jp/product/geohymos/geohy
mos.html). Figure 4 describes geomorphologic
characteristics of the study site. The maximum

elevation is 1724m and average slope of catchment is
around 0.52 and hence, the study area is a steep
mountainous area. For parameters calibration, and
analysis of parameter transferability and model
stability, five past storm events are used in this study.
Event 1 ~ 4 are gauged on Eshiroyama radar and
Event 5 is measured by radar AMeDAS. Rainfall data
have 10-min temporal resolutions. Table 1 shows
historical storm events for this study.
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Fig. 3 Channel networks and subcatchments
of Kamishiiba.
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Fig. 4 Elevation and Slope Density graphs
of Kamishiiba catchment.

Table 1 Historical storm events.

Som  Duey B demdaed
(hr) (mm) (m’/s)
1 1997/09/15 96 495.94 1192
2 1999/06/ 24 168 462.56 210
3 1999/08/01 168 473.63 472
4 1999/09/22 120 339.62 590
5 2005/09/03 144 713.93 1718

In SFM case, a mean areal rainfall data is
considered as input data and spatially-distributed
two-dimensional rainfall data is applied for
simulation of KsEdgeFC2D model. The distributed
grid rainfall data which each cell has 1km (Event
1~4) and 2.5km (Event 5) spatial resolutions is shown
in Figure 5. Colorful solid lines show the rainfall
contour map.

Legend of contour lines

700rmm
e BO0MNM
S00mm

Grid size of radar rainfall

2.5k

el D)

Fig. 5 Spatially distributed 2-D rainfall data (2005)
for simulation of KsEdgeFC2D.

4. Shuffled Complex Evolution (SCE) Algorithm

The Shuffled Complexes Evolution (SCE), one of

the computer-based automatic optimization algorithm



developed by Duan et al. (1992) is a single-objective
optimization method designed to handle high
-parameter dimensionality encountered in calibration
of a nonlinear hydrologic simulation models. (Duan
et al, 1992). This evolutionary approach method has
been performed by a number of researchers on a
variety of models with outstanding positive results
(Gupta et al., 1999) and has proved to be an efficient,
powerful method for the automatic optimization
(Duan et al, 1992, 1993, 1994; Yu et al, 2001;
Wagener et al, 2004).

Basically, this scheme is synthesized by following
three notions: (1) combination of simplex procedure
(Nelder and Mead, 1965) with the concepts of
controlled random search approaches (Price, 1987);
(2) competitive evolution (Holland, 1975); and (3)
complex shuffling. The integration of these steps
above mentioned makes the SCE method effective
and robust, and also flexible and efficient (Duan et al.,
1994).

The SCE method is initialized by selecting p and
m, where p is number of complexes and m is number
of points in each complex. The population, s, is
sampled randomly using uniform probability
distribution in a feasible parameter space and a
objective function value at each point is computed
subsequently. Then, the s points are sorted in order of
increasing criterion value. Sorted s points are divided
into p complexes, each containing m points. Each
complex evolves independently according to the
competitive complex evolution algorithm based on
the Simplex downhill search scheme (Nelder and
Mead, 1965). The next step is a shuffling to combine
the points in the evolved complexes into a new single
population with sharing information came from
previous complexes. The evolution and shuffling
processes repeat until any of termination criteria are
satisfied.

Duan et al. (1994) indicated that algorithmic
parameters, controlling SCE method, must be
selected very carefully because the effectiveness and
efficiency of the optimization performance are
influenced by the choice of these algorithmic
parameters. The necessary algorithmic parameters are

explained in Table 2. In this study, all algorithmic
parameters are introduced with the recommended
values by Duan et al. (1994). Those proposed values
marked by * are also described in the same Table and
n is number of parameters to be optimized in the
hydrologic model.

Table 2 Algorithmic parameter in SCE method.

Parameter Description
m the number of points in a complex
*m=2n+1
p the number of complexes
*p = 2
Pmin the minimum number of complexes
required in the population
* Pmin=P
q the number of points in a subcomplex
*g=n+1
a the number of consecutive offspring
generated by each subcomplex
*o=1
B the number of evolution steps taken by
each complex
*$=m=2n+1

The purpose of automatic calibration is to find
proper values of the model parameters that minimize
or maximize the numerical value of the objective
function. Two objective functions are used in this
study for investigating results due to selection of
objective functions. The first is the Simple Least
Square (SLS), the
commonly utilized measure in hydrological modeling
and the second is the Heteroscedastic Maximum
Likelihood (HMLE)
Sorooshian and Dracup (1980).

These estimation criteria are defined as below

estimation  criterion most

Estimator suggested by

forms.
N
minSLS =’ (6™ — g, (6))° ©)
t=1
N
. 1/N tZl:WtSI (6)
min HMLE = — %
0,4
W,

t
t=1

where, g =q™ —q,(@) Isthe model residual at time



t; g™ is observed stream flow value at time t;
q,(8) is model simulated stream flow value at time t
using parameter set ¢ ; and w, is the weight

assigned to time t.
5. Parameter estimation and analysis of results

5.1 Identification of parameters to be optimized

Sensitivity analysis is conducted before the
calibration process to identify the most important /
sensitive  parameters, and model components.
Insensitive parameters can be fixed to suitable values
to decrease the dimensionality of the calibration
problem through this process.

In other words, a previous sensitivity analysis
shows which parameters should be given priority in
the optimization. As a result of this step, four process
parameters of SFM are determined for calibration.
Five parameters to be optimized are selected in
KsEdgeFC2D. Physical parameters,
physically measurable properties of watershed such

as watershed area, channel length, slope gradient and

representing

(a) SFM_SLS
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Number of Function Evaluations

so on, are estimated from geo-processing based on
DEM data. Each parameter set of two hydrologic
models is optimized using the upper and lower
parameter bounds indicated in Table 3.

Table 3 Parameters of two hydrologic models.

Parameters optimized Lower Upper
(Storage Function Model) bound bound
k 0.0 50
p 0.0 1.0
f 0.0 1.0
Rg, (mm) 0.0 300
*T, (n) : :
Parameters optimized Lower Upper
(KsEdgeFC2D) bound bound
n 0.1 0.5
k, 0.01 0.05
B=k 1k, 2 10
d,, (mm) 0.0 490
d, (mm) 500 900

*T| is regarded as a fixed value, 1hr during calibration procedure

(b) SFM_HMLE
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Fig. 6 Minimization progress of objective function value.



5.2 Methodology

The five steps for calibration and applicability
assessment of global optimization algorithm are
carried out as follows.

Step 1 : Decision of Initial model parameter set

of hydrologic models

Calibration using SCE can be started as we decide
initial model parameters within chosen ranges of
parameters. The initial SFM parameters selected are k
=36.3, p = 0.6, f=106, R,=230. The five model
parameters in KsEdgeFC2D model are initialized by:
n=03, k=001, g =550, ¢ =450,/5=4.0.

All initial values selected in this study are the
optimal parameters evaluated by Tachikawa et al.
(2004). The reason we set up these values as initial
ones is to compare the best parameter set obtained by
manual and automatic calibration more easily. Entire
starting points located in vertical axis of Figure 6
indicate initial objective function values and initial
parameter values.

Table 4 Algorithmic parameters of SCE
used in this study.

Algorithmic Storage Function KsEdgeFC2D Model
parameters Model

n 4 5

m m=2n+1=9 m=2n+1=11

p p=2 p=2

Pmin Prmin = P=2 Prin = P=2

q g=n+1=5 g=n+1=6

o a=1 a=1

p pf=m=2n+1=9 p=m=2n+1=11

Step 2 : Initialization of SCE algorithmic

parameters

It is essential to select appropriate algorithmic
parameter values of SCE strategy for improving
calibration procedure more efficiently and robustly.

Algorithmic parameters used in this study are
initialized as shown in Table 4.

Step 3 : Selection of objective functions

The performance of a model is typically judged
using objective functions, usually in combination
with visual inspection of the calculated hydrograph. A
wide range of statistical and hydrological objective
functions is available. However, while so many
studies have tried to assess the suitability of different
measures, it still remains a subjective decision of
modelers to select one or more objective functions
(Wagener et al., 2004).

Two different measures, Simple Least Squares
(SLS) and Heteroscedastic Maximum Likelihood
Estimation (HMLE) are used for
calibration processess. Figure 6 shows that results of
iterations gradually approach the minimum objective

the model

function value of two rainfall-runoff models. These
charts imply that SCE method successfully results in
better objective function values than manually
optimized ones.

Step 4 : Analysis of optimized parameters

Optimized model parameters using the SCE
algorithm are compared to optimal values proposed
by Tachikawa et al. (2004) for appraising suitability
and accuracy of manually optimized parameters. The
same parameter set is applied for rainfall-runoff
simulation over all storm events in the former
research. As shown in Table 5 and 6, pre-specified
parameters are compared with newly evaluated
parameters using SCE algorithm. In SFM, parameter
values of SLS are not similar to the corresponding
values of HMLE. In contrast, calibrated parameter
values of KsEdgeFC2D have a very small difference
between SLS and HMLE. Figure 7, 8 describes
parameter values plotted against number of function
evaluations. Parameter k of SFM and , of
KsEdgeFC2D converges into approximate single
value, 45 and 0.013 respectively. However, other
calibrated parameters are scattered irregularly.



Table 5 Comparison of optimized parameters (SFM).

Optimized parameters (SFM)
Storm Event k P f Rsa
SLS HMLE SLS HMLE SLS HMLE SLS HMLE

1 4961 4964 052 064 063 057 201 119
2 3418 37.35 1 097 084 08 205 299
3 4956 4938 068 073 066 086 51 71
4 4939 4959 055 077 064 05 26 239
5 4916 4939 052 063 022 018 224 193
o'vp'ft‘:‘nﬂfz'% 363 0.6 06 230

Table 6 Comparison of optimized parameters (KsEdgeFC2D).
Optimized parameters (KsEdgeFC2D)

‘gfe',':: n dy d, ke B
SLS  HMLE  SLS  HMLE SLS HMLE SLS  HMLE  SLS  HMLE
1 0.196 0.256  489.995 489.998 576.904 561.785  0.017 0.016 3.839 4.054
2 0.135 0.157 10006  10.039  899.984 895274 0.1 0.01 7.425 7.929
3 0.102 0.103  203.71 130.145 639.218 713.858  0.016 0.014 7.091 7.573
4 0.332 0.475  489.992 489.961 529.731 500 0.011 0.01 4.417 4213
5 0.1 0.1 191.655 176.937 500.001 500.023  0.016 0.011 7.997 7.999
&i:‘;?z"g(’j 0.25 450 550 0.01 40
Table 7 Model performance of each calibration.
Storm Event
Method 1997.9.15 1999.6.24 1999.8.1 1999.9.22 2005.9.3
SEM  KEdgeFCID  SEM KEdgeFCID  SEM KEdgeFC2D  SFM KsBdgeFCD  SEM KeEdgeFCab
SLS_PBIAS 411 -1.16 3.14 -4.73 3.68 3.18 0.31 257 9.09 7.77
HMLE_PBIAS 1.18 -1.55 2.06 -4.71 5.07 4.42 1611 -2.07 9.27 9.31
*Previous_PBIAS 6.80 073 1178  -1039 1811 2.05 2.33 -0.70 8.48 16.20
SLS_NS 0.94 0.99 0.88 0.90 0.95 0.96 0.93 0.99 0.96 0.98
HMLE_NS 0.88 0.98 0.88 0.90 0.94 0.99 0.68 0.97 0.91 0.97
*Previous_NS 0.93 0.98 0.42 0.65 0.69 0.94 0.92 0.96 0.95 0.92

Step 5 : Assessment of model performance

of each calibration N
tho ) -G (0) (7)
S PBIAS =& x100%
The success of automatic calibration is measured > g
t
by how much improvement in model performance is =
achieved in this step compared with results from the N
obs 2
former study using manual calibration. Z(q[ ~4.(9) (8)
Lo NS =1-F———
The performance of each calibration is evaluated 2@ —g™")?
t=1

by using percent bias (PBIAS) and Nash-Sutcliffe

(NS) statistics of the residuals, commonly used  Where, g™ is the average flow rate of observed
goodness-of-fit measure between the simulated time data.

series and the observed time series, defined as:
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Fig. 7 Parameter value plotted against number of function evaluations by SCE algorithm (SFM).
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As shown in Table 7, the overall model

performance with parameters calibrated by SCE
method lead to a better improved simulation results.
The distributed model, KsEdgeFC2D tends to
reproduce hydrograph more closely to measured
streamflow data when compared with SFM. The
simulation results due to two different objective
functions bring on similar hydrologic responses,
except for several cases (Event 1, 4, 5) carried out
using SFM. The calibrated SFM based on HMLE
doesn’t emphasize minimization of peak flow error in
these unusual cases. The reproduced and observed

hydrographs are displayed in Figure 9.

6. Analysis of parameter transferability
according to flood scale

Parameter transferability is a one of the issue that
a number of hydrologist and engineers has studied
recently. This issue is very important for Predictions
for Ungauged Basins (PUBSs). It is not clear how
model parameters according to variation of
geomorphologic characteristics and flood scale affect
the accuracy and reproducibility of hydrographs. In
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Fig. 8 Parameter value plotted against number of function evaluations by SCE algorithm (KsEdgeFC2D).

this study, we analyze effect of parameter uncertainty different flood scale. The simulated results of
according to flood scale. The biggest flood event, parameters transferability are displayed in Figure 10.
Event 5 among the flood events occurred in the study If we focus on just peak flow, the interesting finding
cathment is particularly selected for analyzing the is that the best parameter set of Event 1 results in the
affection due to model parameters optimized by each better prediction results than when we apply another
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Fig. 9 Comparison of Simulation results according to hydrologic models and objective functions.

Table 8 The evaluation of model performance according to flood scale : Each calibrated model parameter from
Event 1~4 are applied to Event 5 for analysis of parameter transferability.

Model Storage Function Model KsEdgeFC2D
Applied 97/9/15 99/6/24 99/8/1 99/9/22 97/9/15 99/6/24 99/8/1 99/9/22
parameter HM HM HM HM HM HM HM HM
set
SLS LE SLS LE SLS LE SLS LE SLS LE SLS LE SLS LE SLS LE
RMSE 927 105 208 207 125 143 85 174 | 113 113 219 222 8.4 119 101 109
NS 093 091 065 065 087 08 094 075 0.9 0.9 061 0.6 094 088 092 09
PD 103 413 896 891 493 580 180 744 38 0.8 648 658 166 328 119 59

parameter set calibrated from Event 2, 3, 4. In other
words, it implies that the unknown parameters can be
replaced by pre-specified (pre-classified) parameters
from the various past events for flood prediction.
Furthermore, it may be the useful information for
parameter transfer if the calibrated model parameters
from the similar flood scale successfully reproduce
more reliable output to the target event in the single
study watershed. The parameter transferability is
evaluated by Root Mean Square Error (RMSE)
estimator and absolute Peak Difference (PD) between

the computed and the observed. The evaluated results
using these estimators are shown in Table 8.

7. Analysis of model stability

As we pointed out in subchapter 5.2, the
hydrographs simulated by the distributed model
overlap closely real ones without regard of objective
functions while the simulated results of SFM vary
according to objective functions. In addition, the
range of fluctuation due to parameter transfer in SFM
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Fig. 12 Evaluation of model stability using NPR; Dashed lines are Normalized peak discharge ratio.

cases is bigger and more irregular than those of
KsEdgeFC2D cases. These kinds of behaviors of
model response are intimately associated with model
stability and hence it is strongly requested to propose
some guideline indexes able to allow the engineers
and hydrologists to select a suitable and secure
hydrologic model in terms of model structure. In this

study, we evaluate model stability through
normalization of the prediction uncertainty in terms
of entire behaviors of predicted hydrographs. Two
types of indexes, Normalized Nash-Sutcliff
coefficient (NNS) and Normalized Peak discharge
ratio (NPR) are suggested for analyzing the model
stability. NNS and NPR are defined as following



expressions.

NNS, =%Z NS/ (6,) ©)
i=1
. N pi
NPR’\JA :iz P5|m(0k) (10)
N i=1 Pobs,i

where, j is the objective function; M is the hydrologic
model; accordingly ~ NNS), NPR) are the
normalized Nash-Sutcliffe coefficient and peak
discharge ratio values under j, M respectively; i is the
target event for analysis; ¢, is the calibrated model
parameters at event k; k is the rest events excluding
event i; N is the total number of combination. As
illustrated in Figure 11(a), 12(a), each evaluated
result of SFM under the different objective functions
tends to fluctuate irregularly. In other words, there are
large intervals in the calibrated values based on
between SLS (red diamond symbols) and HMLE
(blue cross symbols). Furthermore, Figure 11 reveals
that the distribution of evaluated NS in KsEdgeFC2D
has more constant variance. It implies that
KsEdgeFC2D has more stable model structure than
SFM and hence KsEdgeFC2D is less influenced by
objective functions and flood scale. The results of

NNS and NPR are summarized in Table 9.

Table 9 Analysis of model stability.

Hydrologic NPR NNS
Model SLS HMLE SLS HMLE
SFM 0.60 0.49 0.63 0.60
KsEdgeFC2D 0.66 0.64 0.79 0.79

8. Conclusions

In this paper, SCE global optimization algorithm
is successfully applied for calibration of two
rainfall-runoff models. The simulated hydrographs by
using automatic calibration are closer to the measured
ones than hydrographs reproduced by manually
calibrated parameters.
parameter variation according to objective functions
and flood scale is performed. As results of these

In addition, analysis of

works, we can find out that parameter set of the
conceptual and lumped model is strongly connected
with objective functions and flood size. In contrast,
the distributed model
regardless of objective functions and the variance of
model performance from different flood scale is
considerably constant. However, it is hard to explain
the model stability and parameter transferability

structure is very stable

because while an amount of data from a wide range
of climatic and geomorphologic conditions should be
used for studying this issue, a few different types of
storm events are used in this study. Hence, it is
absolutely necessary to investigate tendency of those
two issues under various flood scale and spatial
conditions. and acceptable
methods are requested to prove the stability of
models used for rainfall-runoff modeling.

Also more general
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